
CLOUD SCALE STORAGE: THE GOOGLE 
FILE SYSTEM

Harjasleen MalvaiCS6410

1



Where do the files go?
2

¨ Machines placed in a network need to share and use data. 
¨ Introduces a few problems:

¤ Plain old access
¤ Consistency/Reliability
¤ Availability

Source: Brown Daily Herald



Version 1.0: Network File System
3

¨ Introduced by Sun in 1985 (Sandberg et al. at USENIX).
¨ Interface looks like Unix File System: machine actually holding the file 

becomes “server”, machine requesting becomes “client”.
¨ Single copies stored.
¨ No locks, which might cause problems with concurrent modifications.
¨ There is a cache.
¨ Unreliable due to the fact that the strategy for getting files from server is 

based on:

Source: Sandberg, Russel, et al. "Design and implementation of the Sun network filesystem." Proceedings of the Summer USENIX conference. 1985.



Version 2.0: Sharing is Caring (p2p)
4

¨ Many untrusted nodes which can come and go store files. E.g. Napster, 
Limewire for p2p filesharing.

¨ Napster (1999) and its contemporaries had to maintain some 
centralized store of where files were or search all nodes for them, 
limiting scalability.

¨ Concurrent proposals (~2001) of various distributed hash tables: hash 
“keys” (e.g. file IDs) and/or node names, use some structure to speed 
up search for key locations (Chord, CAN, Tapestry, Pastry). 

¨ Applications could include any distributed system with nodes leaving 
such as distributing nonce ranges to nodes in a mining pool! 

¨ Using the distributed hash tables (among other new tools), the issues 
from Napster could be overcome: Systems such as Pond (2003) 
implemented scalable p2p data storage. 

¨ Did not trust the hosts!
Source: Website



Why Google File System?
5

¨ Datacenter! Cheap commodity machines to run Google’s operations 
with high bandwidth.

¨ Machines owned by Google, within data center, hence trusted!
¨ Need to design file system which accounted for: 

¤ Large scale distributed storage
¤ Reliability
¤ Availability



ASSUMPTIONS
6

¨ Hardware:
¤ Using commodity hardware.
¤ Component failures are common and need to be accounted for.

¨ Files:
¤ Huge files are common so design needs to accommodate. 

¨ Writes:
¤ Most mutations are appends and not overwrites. 
¤ Concurrent modifications are to be accommodated.

¨ Reads:
¤ Primarily large streaming reads and small random reads.

¨ Efficiency:
¤ High bandwidth > low latency: Most applications process data at a high rate but do not 

have fast response requirements. 



Data Under The Hood

File

Fixed Sized 
Chunks

Chunk Handle Chunk Handle Chunk Handle

…

Salient features:
• Chunk is treated as a Linux file on the hardware, Linux caching is implicitly used.
• Data is written at an offset within a chunk.
• Size is a parameter. They chose 64 MB.
• Many replicas (more on this later).



Architecture

Master

Primary 
replica of 

chunk
Chunk
Servers

C1 C2 Ci Cj CnClients … …

Data/Operation
On Chunk



Client Interaction

1. Client wants to mutate a chunk (write or append).
2. Master grants an arbitrarily extendible 60s lease for 

the chunk to a random primary with an up to date 
version (version checked with master metadata).

3. Replies to client with primary and replicas.
4. Client caches the primary and other chunk servers 

with replicas (secondaries).
5. All edits are pushed to all replicas and write request 

is sent to the primary by the client. 
6. Primary mutates and also makes an ordered list of 

write requests, accounting for multiple users sending 
write requests to the chunk.

7. Primary forwards list of writes, hence ensuring 
consistency.

8. Any errors from secondary writes are sent to client 
which handles re-tries. Source: The Google File System



Problems Posed By GFS10



Synchronization I
11

¨ Filesystem itself (namespace):
¤ File/directory names saved as full pathnames in a lookup table, each with 

read/write locks.
¤ File manipulation requires no locks from directory!

n Why? “Because the old directory is dead!”

¤ This implies:
n Ability to snapshot while still writing to “directory”.
n Ability to write concurrently to “directory”.



Synchronization II
12

¨ Multiple users editing a chunk
¤ Atomic record appends:

n Since primary is the authority on write operations, if multiple users send write requests, it is 
just treated as a multi-user write queue.

n Details about chunk size being exceeded/needing new chunk.
n Checksums contained in records to deal with resulting inconsistencies.

¨ Snapshots for versioning:
n If snapshot requested, leases revoked, new copies created.
n Copies created on the same machines to reduce network cost.
n Revoked lease prevents new writes without master in the mean time.

¨ Heartbeat messages to keep master knowledge about chunks/servers 
current.

¨ Operation Log of mutations stored to replicated persistent memory for the 
master.



Availability

¨ Chunk replications via chunk-servers
¤ Multi-level distribution
¤ Multiple copies per rack.
¤ Aim to keep copies on multiple racks in case specific routers fail.

¨ Master replication and logging
¨ Re-replication in case of failure:

¤ Priority depending on degree of failure.
¤ Trying to reduce bottlenecks by distributing new replicas.



Recovery 

¨ Primary down!
¤ Reconnect or new lease 
¤ Heartbeat messages keep track

¨ Master recovery
¤ All mutations are saved to disk and not considered complete till replicated 

to all the backup masters.
¤ Only background operations running in memory most of the time.
¤ This means re-start or start of new master is seamless.*



Integrity
15

¨ Correctness of chunk mutations from mutation order.
¨ Checksums on chunk servers and checksum version numbers stored on 

master. Corroboration with client to ensure integrity.



Server Efficiency
16

¨ Memory efficiency:
¤ Garbage collection
¤ Load balancing

¨ Data flow efficiency (utilizing bandwidth)
¨ Diagnostics 
¨ Atomic record appends for fast concurrent mutation.
¨ Avoiding bottlenecks by reducing role of master:

¤ Once primary assigned, client only interacts with primary and secondaries.
¤ Memory used only for “maintenance” operations such as garbage collection and 

load balancing.



Measurements
17

¨ Included measurements from real use cases!
¨ Low memory overhead for filesystem (see fig).
¨ It would appear memory bounds master but experiments show not an issue in 

practice.
¨ Some experiments with recovery:

¤ Killed a single chunkserver (new replicas made in ~23 min).
¤ Killed 16,000 chunkservers, leaving some chunks with single replica, hence high copy 

priority (all new replicas in ~2mins).



Comments/Questions
18

¨ Application design specific to assumptions! How does this extend? 
What assumptions can we drop/need to drop?

¨ Chunk server recovery is analyzed but master recovery is not. Since 
the centralized controller in itself seems like a dangerous idea from an 
availability perspective, to what extent is this worrisome?

¨ Seems like the trust model is that the clients are somehow internal and 
will not try to launch a DoS on the master. Is this a good assumption? 
Provided, they do have the caveat of not trying to generalize. 



CLOUD SCALE STORAGE: SPANNER: 
GOOGLE’S GLOBALLY DISTRIBUTED 
DATABASE

Harjasleen MalvaiCS6410

19



Why Spanner?
20

¨ Based on Colossus (successor to GFS)!
¨ Predecessors: 

¤ BigTable: Low functionality (no transactions), not strongly consistent. [Also 
uses GFS]

¤ Megastore: Strong consistency but low write throughput.
¨ Google needed a (third!) tool which addressed these drawbacks.
¨ In addition on a global scale:

¤ Client proximity matters for read latency.
¤ Replica proximity matters for write latency.
¤ Number of replicas matters for availability.



Spanner Solution
21

¨ Spanner solves this problem by implementing a derivative of BigTable with 
Paxos commits to support transactions. 

¨ Spanner is “chunked” by rows having same or similar keys which they call 
“tablets”.

¨ Spanner deployments termed “universe” with physically isolated units known 
as “zones”.

¨ Zones have zonemasters and placemasters which serve values and move 
data around respectively.

¨ Since no longer in one physical location with single master, time 
synchronization poses a problem. They address this using their new API 
TrueTime.



TrueTime
22

¨ Each datacenter has various servers which provide time using GPS and 
atomic clocks.

¨ Time is no longer returned as an absolute but rather as an interval 
with real time guaranteed to be within the interval.

¨ Spanner holds off on certain serialized transactions if it is required 
with certainty that it is after a given time.

¨ Allows externally consistent snapshots.
¨ Now Paxos leaders can be selected disjointly.



Comments/Questions
23

¨ Fast distributed file systems and databases are possible but may need 
to limit assumptions!

¨ To what extent are corporate scale assumptions widely useful?


