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IBM VM/370

 Robert Jay Creasy (1939-2005)
 Project leader of the first full virtualization hypervisor: IBM CP-40, a core 

component in the VM system
 The first VM system: VM/370



Virtual Machine: Origin

 IBM CP/CMS
 CP-40
 CP-67
 VM/370
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Why Virtualize
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 Underutilized machines
 Easier to debug and monitor OS
 Portability
 Isolation
 The cloud (e.g. Amazon EC2, Google Compute Engine, Microsoft 

Azure)
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IBM VM/370
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Classic Virtual Machine Monitor (VMM)
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Virtualization: rejuvenation

 1960’s: first track of virtualization
 Time and resource sharing on expensive mainframes
 IBM VM/370

 Late 1970’s and early 1980’s: became unpopular
 Cheap hardware and multiprocessing OS

 Late 1990’s: became popular again
 Wide variety of OS and hardware configurations
 VMWare

 Since 2000: hot and important
 Cloud  computing
 Docker containers



Full Virtualization
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 Complete simulation of underlying hardware
 Unmodified guest OS
 Trap and simulate privileged instruction
 Was not supported by x86 (Not true anymore, Intel VT-x)
 Guest OS can’t see real resources



Paravirtualization
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 Similar but not identical to hardware
 Modifications to guest OS
 Hypercall
 Guest OS registers handlers
 Improved performance



VMware ESX Server
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 Full virtualization
 Dynamically rewrite privileged instructions
 Ballooning
 Content-based page sharing



Denali
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 Paravirtualization
 1000s of VMs
 Security & performance isolation
 Did not support mainstream OSes
 VM uses single-user single address space



Xen and the Art of Virtualization13



Xen
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 University of Cambridge, MS Research Cambridge
 XenSource, Inc.
 Released in 2003 and published in SOSP 2003
 Acquired by Critix Systems in 2007 for $500M
 Now in RHEL5, Solaris, SUSE Linux Enterprise 10, EC2



Xen and the art of virtualization

 SOSP’03
 Very high impact (data collected in 2013)
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Xen
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 No changes to ABI (application binary interface)
 Full multi-application OS
 Paravirtualization
 Real and virtual resources
 Up to 100 VMs



Virtualization on x86 architecture

 Challenges: Virtualization on x86 architecture
 Correctness: not all privileged instructions produce traps!
 Example: popf

 Performance:
 System calls: traps in both enter and exit (10X)
 I/O performance: high CPU overhead
 Virtual memory: no software-controlled TLB



Xen
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 Xen 3.0 and up supports full virtualization with hardware support
 See backup slides



Xen architecture



Domain 0
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 Management interface
 Created at boot time
 Policy from mechanism
 Privileged



Control Transfer
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 Hypercalls
 Lightweight events



Interface: Memory Management
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 Guest OSes manage their own page tables
 Register pages with Xen
 No direct write access
 Updates through Xen
 Hypervisor @ top 64MB of every address space

 2018: security issues with Meltdown/Spectre



Interface: CPU
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 Xen in ring 0, OS in ring 1, everything else in ring 3
 “Fast” exception handler
 Xen handles page fault exceptions
 Double faulting



Interface: Device I/O

 Shared-memory, asynchronous buffer descriptor I/O rings



Subsystem Virtualization
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 CPU Scheduling : Borrowed Virtual Time
 Real, virtual, and wall clock times
 Virtual address translation : updates through hyper call
 Physical memory : balloon driver, translation array
 Network : VFR, VIF
 Disk : VBD



Porting effort



Evaluation: Relative Performance



Evaluation: Concurrent Virtual Machines



Conclusion

 x86 architecture makes virtualization challenging
 Full virtualization

 unmodified guest OS; good isolation
 Performance issue (especially I/O)

 Para virtualization: 
 Better performance (potentially)
 Need to update guest kernel

 Full and para virtualization will keep evolving together



Microkernel vs. VMM(Xen)

Virtual Machine Monitor (VMM): “… software which transforms the single machine interface 
into the illusion of many. Each of these interfaces (virtual machines) is an efficient replica of 
the original computer system, complete with all of the processor instructions …“

-- Robert P. Goldberg. Survey of virtual machine research. 1974 

Microkernel: "... to minimize the kernel and to implement whatever possible outside of the 
kernel…“

-- Jochen Liedtke. Towards real microkernels. 1996



Are Virtual Machine Monitors Microkernels Done 
Right?

 VMMs (especially Xen) are microkernels done right
 Avoid liability inversion: 
Microkernels depend on some user level components

 Make IPC performance irrelevant: 
 IPC performance is the key in microkernels

 Treat the OS as a component
 Hard for microkernels to support legacy applications

Steven Hand, Andrew Wareld, Keir Fraser
HotOS’05



Are Virtual Machine Monitors Microkernels Done 
Right?

 VMMs (especially Xen) are microkernels done right. 
 Avoid liability inversion: 
Microkernels depend on some user level components

 Make IPC performance irrelevant: 
 IPC performance is the key in microkernels

 Treat the OS as a component
 Hard for microkernels to support legacy applications

Gernot Heiser, Volkmar Uhlig, Joshua 
LeVasseur
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Discussion

 What is the difference between VMMs and microkernels?
 Why do VMMs seem to be more successful than microkernels?



Perspective

 Virtualization: creating a illusion of something
 Virtualization is a principle approach in system design

 OS is virtualizing CPU, memory, I/O …
 VMM is virtualizing the whole architecture
 What else? What next?



 Project: next step is the Survey Paper due next Friday

 MP1 Milestone #1 due Today
 MP1 Milestone #2 due in two weeks

 Read and write a review:
 Required: Disco: Running Commodity Operating Systems on Scalable Multiprocessors, 

Edouard Bugnion, Scott Devine, and Mendel Rosenblum. 16th ACM symposium on 
Operating systems principles (SOSP), October 1997, pages 143--156..

 Optional: The Multikernel: A new OS architecture for scalable multicore systems.  
Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harrisy, Rebecca Isaacs, 
Simon Peter , Tim Roscoe, Adrian Sch�pbach, and Akhilesh Singhania . Proceedings of 
the Twenty-Second ACM Symposium on Operating Systems Principles (Austin, Texas, 
United States), ACM, 2009.

Next Time
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Backup
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Virtualization on x86 architecture

 Challenges
 Correctness: not all privileged instructions produce traps!
 Example: popf

 Performance:
 System calls: traps in both enter and exit (10X)
 I/O performance: high CPU overhead
 Virtual memory: no software-controlled TLB



Virtualization on x86 architecture

 Solutions:
 Dynamic binary translation & shadow page table
 Hardware extension
 Para-virtualization (Xen)



Dynamic binary translation

 Idea: intercept privileged instructions by changing the binary
 Cannot patch the guest kernel directly (would be visible to guests)
 Solution: make a copy, change it, and execute it from there

 Use a cache to improve the performance



Dynamic binary translation

 Pros:
 Make x86 virtualizable
 Can reduce traps

 Cons:
 Overhead
 Hard to improve system calls, I/O operations
 Hard to handle complex code



Shadow page table
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Shadow page table

 Pros:
 Transparent to guest VMs
 Good performance when working set is stable

 Cons:
 Big overhead of keeping two page tables consistent
 Introducing more issues: hidden fault, double paging …



Hardware support

 First generation - processor
 Second generation - memory
 Third generation – I/O device



First generation: Intel VT-x & AMD SVM

 Eliminating the need of binary translation
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Second generation: Intel EPT & AMD NPT 

 Eliminating the need to shadow page table



Third generation: Intel VT-d & AMD IOMMU

 I/O device assignment
 VM owns real device

 DMA remapping
 Support address translation for DMA

 Interrupt remapping
 Routing device interrupt



Para-virtualization

 Full vs. para virtualization
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