
VIRTUALIZATION: IBM VM/370 AND XEN

Hakim WeatherspoonCS6410

1

IBM VM/370

 Robert Jay Creasy (1939-2005)
 Project leader of the first full virtualization hypervisor: IBM CP-40, a core

component in the VM system
 The first VM system: VM/370

Virtual Machine: Origin

 IBM CP/CMS
 CP-40
 CP-67
 VM/370

3

Why Virtualize
4

 Underutilized machines
 Easier to debug and monitor OS
 Portability
 Isolation
 The cloud (e.g. Amazon EC2, Google Compute Engine, Microsoft

Azure)

IBM VM/370

System/370

Control Program (CP)

Conversation
al Monitor

System
(CMS)

Mainstream
OS (MVS,
DOS/VSE

etc.)

Specialized
VM

subsystem
(RSCS, RACF,

GCS)

Another
copy of VM

Hardware

Hypervisor

Virtual
machines

IBM VM/370

 Technology: trap-and-emulate

Kernel

Application

Privileged

Problem

CP

Trap Emulate

Classic Virtual Machine Monitor (VMM)
7

Virtualization: rejuvenation

 1960’s: first track of virtualization
 Time and resource sharing on expensive mainframes
 IBM VM/370

 Late 1970’s and early 1980’s: became unpopular
 Cheap hardware and multiprocessing OS

 Late 1990’s: became popular again
 Wide variety of OS and hardware configurations
 VMWare

 Since 2000: hot and important
 Cloud computing
 Docker containers

Full Virtualization
9

 Complete simulation of underlying hardware
 Unmodified guest OS
 Trap and simulate privileged instruction
 Was not supported by x86 (Not true anymore, Intel VT-x)
 Guest OS can’t see real resources

Paravirtualization
10

 Similar but not identical to hardware
 Modifications to guest OS
 Hypercall
 Guest OS registers handlers
 Improved performance

VMware ESX Server
11

 Full virtualization
 Dynamically rewrite privileged instructions
 Ballooning
 Content-based page sharing

Denali
12

 Paravirtualization
 1000s of VMs
 Security & performance isolation
 Did not support mainstream OSes
 VM uses single-user single address space

Xen and the Art of Virtualization13

Xen
14

 University of Cambridge, MS Research Cambridge
 XenSource, Inc.
 Released in 2003 and published in SOSP 2003
 Acquired by Critix Systems in 2007 for $500M
 Now in RHEL5, Solaris, SUSE Linux Enterprise 10, EC2

Xen and the art of virtualization

 SOSP’03
 Very high impact (data collected in 2013)

461

1093 1219 1222 1229
1413

1796

2286

5153

0

1000

2000

3000

4000

5000

6000

Disco (1997) A fast file
system for

UNIX (1984)

SPIN (1995) Exokernel
(1995)

Coda (1990) Log-structured
file system

(1992)

The UNIX time-
sharing system

(1974)

End-to-end
arguments in
system design

(1984)

Xen(2003)

Citation count in Google scholar

Xen
16

 No changes to ABI (application binary interface)
 Full multi-application OS
 Paravirtualization
 Real and virtual resources
 Up to 100 VMs

Virtualization on x86 architecture

 Challenges: Virtualization on x86 architecture
 Correctness: not all privileged instructions produce traps!
 Example: popf

 Performance:
 System calls: traps in both enter and exit (10X)
 I/O performance: high CPU overhead
 Virtual memory: no software-controlled TLB

Xen
18

 Xen 3.0 and up supports full virtualization with hardware support
 See backup slides

Xen architecture

Domain 0
20

 Management interface
 Created at boot time
 Policy from mechanism
 Privileged

Control Transfer
21

 Hypercalls
 Lightweight events

Interface: Memory Management
22

 Guest OSes manage their own page tables
 Register pages with Xen
 No direct write access
 Updates through Xen
 Hypervisor @ top 64MB of every address space

 2018: security issues with Meltdown/Spectre

Interface: CPU
23

 Xen in ring 0, OS in ring 1, everything else in ring 3
 “Fast” exception handler
 Xen handles page fault exceptions
 Double faulting

Interface: Device I/O

 Shared-memory, asynchronous buffer descriptor I/O rings

Subsystem Virtualization
25

 CPU Scheduling : Borrowed Virtual Time
 Real, virtual, and wall clock times
 Virtual address translation : updates through hyper call
 Physical memory : balloon driver, translation array
 Network : VFR, VIF
 Disk : VBD

Porting effort

Evaluation: Relative Performance

Evaluation: Concurrent Virtual Machines

Conclusion

 x86 architecture makes virtualization challenging
 Full virtualization

 unmodified guest OS; good isolation
 Performance issue (especially I/O)

 Para virtualization:
 Better performance (potentially)
 Need to update guest kernel

 Full and para virtualization will keep evolving together

Microkernel vs. VMM(Xen)

Virtual Machine Monitor (VMM): “… software which transforms the single machine interface
into the illusion of many. Each of these interfaces (virtual machines) is an efficient replica of
the original computer system, complete with all of the processor instructions …“

-- Robert P. Goldberg. Survey of virtual machine research. 1974

Microkernel: "... to minimize the kernel and to implement whatever possible outside of the
kernel…“

-- Jochen Liedtke. Towards real microkernels. 1996

Are Virtual Machine Monitors Microkernels Done
Right?

 VMMs (especially Xen) are microkernels done right
 Avoid liability inversion:
Microkernels depend on some user level components

 Make IPC performance irrelevant:
 IPC performance is the key in microkernels

 Treat the OS as a component
 Hard for microkernels to support legacy applications

Steven Hand, Andrew Wareld, Keir Fraser
HotOS’05

Are Virtual Machine Monitors Microkernels Done
Right?

 VMMs (especially Xen) are microkernels done right.
 Avoid liability inversion:
Microkernels depend on some user level components

 Make IPC performance irrelevant:
 IPC performance is the key in microkernels

 Treat the OS as a component
 Hard for microkernels to support legacy applications

Gernot Heiser, Volkmar Uhlig, Joshua
LeVasseur

ACM SIGOPS’06
Xen also relies

on Dom0!

Xen performs
the same

number of IPC!

Look at
L4Linux!

Really??

Discussion

 What is the difference between VMMs and microkernels?
 Why do VMMs seem to be more successful than microkernels?

Perspective

 Virtualization: creating a illusion of something
 Virtualization is a principle approach in system design

 OS is virtualizing CPU, memory, I/O …
 VMM is virtualizing the whole architecture
 What else? What next?

 Project: next step is the Survey Paper due next Friday

 MP1 Milestone #1 due Today
 MP1 Milestone #2 due in two weeks

 Read and write a review:
 Required: Disco: Running Commodity Operating Systems on Scalable Multiprocessors,

Edouard Bugnion, Scott Devine, and Mendel Rosenblum. 16th ACM symposium on
Operating systems principles (SOSP), October 1997, pages 143--156..

 Optional: The Multikernel: A new OS architecture for scalable multicore systems.
Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harrisy, Rebecca Isaacs,
Simon Peter , Tim Roscoe, Adrian Sch�pbach, and Akhilesh Singhania . Proceedings of
the Twenty-Second ACM Symposium on Operating Systems Principles (Austin, Texas,
United States), ACM, 2009.

Next Time

36

Backup
37

IBM VM/370

 Technology: trap-and-emulate

Kernel

Application

Privileged

Problem

CP

Trap Emulate

Virtualization on x86 architecture

 Challenges
 Correctness: not all privileged instructions produce traps!
 Example: popf

 Performance:
 System calls: traps in both enter and exit (10X)
 I/O performance: high CPU overhead
 Virtual memory: no software-controlled TLB

Virtualization on x86 architecture

 Solutions:
 Dynamic binary translation & shadow page table
 Hardware extension
 Para-virtualization (Xen)

Dynamic binary translation

 Idea: intercept privileged instructions by changing the binary
 Cannot patch the guest kernel directly (would be visible to guests)
 Solution: make a copy, change it, and execute it from there

 Use a cache to improve the performance

Dynamic binary translation

 Pros:
 Make x86 virtualizable
 Can reduce traps

 Cons:
 Overhead
 Hard to improve system calls, I/O operations
 Hard to handle complex code

Shadow page table

Shadow page table

Guest page
table

Shadow
page table

Shadow page table

 Pros:
 Transparent to guest VMs
 Good performance when working set is stable

 Cons:
 Big overhead of keeping two page tables consistent
 Introducing more issues: hidden fault, double paging …

Hardware support

 First generation - processor
 Second generation - memory
 Third generation – I/O device

First generation: Intel VT-x & AMD SVM

 Eliminating the need of binary translation

Ring0

Ring1

Ring2

Ring3

Ring0

Ring1

Ring2

Ring3

Host mode Guest mode

VMRUN

VMEXIT

Second generation: Intel EPT & AMD NPT

 Eliminating the need to shadow page table

Third generation: Intel VT-d & AMD IOMMU

 I/O device assignment
 VM owns real device

 DMA remapping
 Support address translation for DMA

 Interrupt remapping
 Routing device interrupt

Para-virtualization

 Full vs. para virtualization

	Virtualization: IBM VM/370 and Xen
	IBM VM/370
	Virtual Machine: Origin
	Why Virtualize
	IBM VM/370
	IBM VM/370
	Classic Virtual Machine Monitor (VMM)
	Virtualization: rejuvenation
	Full Virtualization
	Paravirtualization
	VMware ESX Server
	Denali
	Xen and the Art of Virtualization
	Xen
	Xen and the art of virtualization
	Xen
	Virtualization on x86 architecture
	Xen
	Xen architecture
	Domain 0
	Control Transfer
	Interface: Memory Management
	Interface: CPU
	Interface: Device I/O
	Subsystem Virtualization
	Porting effort
	Evaluation: Relative Performance
	Evaluation: Concurrent Virtual Machines
	Conclusion
	Microkernel vs. VMM(Xen)
	Are Virtual Machine Monitors Microkernels Done Right?
	Are Virtual Machine Monitors Microkernels Done Right?
	Discussion
	Perspective
	Next Time
	Slide Number 36
	Backup
	IBM VM/370
	Virtualization on x86 architecture
	Virtualization on x86 architecture
	Dynamic binary translation
	Dynamic binary translation
	Shadow page table
	Shadow page table
	Shadow page table
	Hardware support
	First generation: Intel VT-x & AMD SVM
	Second generation: Intel EPT & AMD NPT
	Third generation: Intel VT-d & AMD IOMMU
	Para-virtualization

