
MODERN SYSTEMS:
EXTENSIBLE KERNELS AND CONTAINERS
Hakim WeatherspoonCS6410

1

Motivation
2

 Monolithic Kernels just aren't good enough?
 Conventional virtual memory isn't what userspace programs need (Appel +

Li '91)
 Application-level control of caching gives 45% speedup (Cao et al '94)
 Application-specific VM increases performance (Krueger '93, Harty +

Cheriton '92)
 Filesystems for databases (Stonebraker '81)
 And more...

Motivation
3

 Lots of problems…

Motivation
4

 Lots of problems…Lots of design opportunities!

5

Motivation

 Extensibility

 Security

 Performance

From Stefan Savage’s SOSP 95 presentation

Can we have all 3
in a single OS?

Presenter
Presentation Notes
Extensibility
	Ability to use application specific knowledge
Security
	Extensions should not compromise security. Applications should still be able to share resourses
Performance

Context for these papers

 1990’s
 Researchers (mostly) were doing special purpose OS hacks
 Commercial market complaining that OS imposed big overheads on them
 OS research community began to ask what the best way to facilitate

customization might be. In the spirit of the Flux OS toolkit…
 2010’s

 containers: single-purpose appliances
 Unikernels: (“sealable”) single-address space
 Compile time specialized

Motivation
7

 1988-1995: lots of innovation in OS development
 Mach 3, the first “true” microkernel
 SPIN, Exokernel, Nemesis, Scout, SPACE, Chorus, Vino,
 Amoeba, etc...
 And even more design papers

Motivation
8

 Exploring new spaces
 Distributed computing
 Secure computing
 Extensible kernels (exokernel, unikernel)
 Virtual machines (exokernel)
 New languages (spin)
 New memory management (exokernel, unikernel)

Exokernel

 Dawson R. Engler, M. Frans Kaashoek and James O’Toole Jr.
 Engler’s Master’s Thesis.
 Follow-up publications on 1997 and 2002.
 Kaashoek later worked on Corey.

11

Exokernels - Motivation

 Existing Systems offer fixed high-level abstractions which is bad
 Hurt app performance (generalization – eg: LRU)
 Hide information (eg: page fault)
 Limit functionality (infrequent changes – cool ideas don’t make it through)

12

Motivation (cont.)

 Separate protection from management, mgmt in user space

 Apps should use domain specific knowledge to influence OS services

 Small and simple kernel – adaptable and maintainable

13

Exokernel

 Kernel only multiplexes hardware resources (Aegis)
 Higher-level abstractions in Library OS (ExOS)
 Secure binding, Visible resource revocation, Abort
 Apps link with the LibOS of their choice

Presenter
Presentation Notes
Extensibility, Safety and Performance

14

OS Component Layout

Exokernel

Exokernel main ideas

 Kernel
 Resource sharing, not policies

 Library Operating System
 Responsible for the abstractions
 IPC
 VM
 Scheduling
 Networking

16

Lib OS and the Exokernel

 Lib OS (untrusted) can implement traditional OS abstractions
(compatibility)

 Efficient (Lib OS in user space)

 Apps link with Lib OS of their choice

 Kernel allows LibOS to manage resources, protects LibOss

Exokernel vs Microkenels vs VM

 Exokernel defines only a low-level interface.
 A microkernel also runs almost everything on user-level, but has fixed

abstractions.
 A VM emulates the whole machine, doesn’t provide direct access.

Design
19

 Application-level resource management
 Exports hardware resources
 Multiplexes access between processes
 Separates policy from management

 avoid resource management!

What problems do we solve?
20

 High-level abstractions
 hurt application performance
 Hide information
 Limit functionality

 Existing monolithic kernels
 Encourage stable (archaic) interfaces
 Difficult to extend with modern techniques

How do we solve them: Design
21

 Secure bindings
 Downloading code
 Visible resource revocation
 The abort protocol

How do we solve them: Design
22

 Secure bindings

 Downloading code
 Visible resource revocation
 The abort protocol

Secure bindings
23

 Decouples authorization from use
 Authorize once, at “bind time”
 Use transferable “capabilities” to check access
 Cache bindings in-kernel to decrease binding frequency

 Example: huge software-based TLB

How do we solve them: Design
24

 Secure bindings
 Downloading code

 Visible resource revocation
 The abort protocol

Downloading code
25

 Userspace application produces kernel space code
 Access checks at download time
 Code is verified before being run, with JIT for speed

How do we solve them: Design
26

 Secure bindings
 Downloading code
 Visible resource revocation

 The abort protocol

Visible resource revocation
27

 Revocation traditionally invisible (or transparent)
 Expensive: have to save entire state

 Try visible instead!
 Save only the state you need
 Kernel gives you a few microseconds to do it

How do we solve them: Design
28

 Secure bindings
 Downloading code
 Visible resource revocation
 The abort protocol

29

 Revocation: kernel asks process for resource
 “relinquish page 5 please”
 Process tracks state and returns resource

 Abort: kernel demands resource
 “page 5 in 50 microseconds”
 Takes resource “by force”
 Invalidates credentials and bindings.
 Notifies library operating system

Exokernel

 DEC MIPS
 Aegis: actual exokernel

 Processor
 Physical memory
 TLB
 Exceptions, Interrupts

 ExOS: library operating system
 Processes, IPC, Virtual Memory, Network protocols

Microbenchmark results

32

ExOS Virtual Memory

+ Fast Sys call.
- Half the time in
look-up (vector).

Repeated
access to Aegis
STLB and ExOS

PageTable

Presenter
Presentation Notes
Dirty – query if the page is dirty (user level)
Prot1 – change the protection of 1 page
100 – read [un]protect 100 pages
Trap – time to handle page-protection trap
Appel1 – access random protected page – prot (some other) + trap + unprot (faulting page)
Appel2 – prot100 + trap + unprot

Perspective

 Extensible kernels are actually fast.
 End-to-end arguments.
 Efficient implementations.
 Extensibility without loss of security or performance

 Exokernels
 Safely export machine resources
 Decouple protection from management

Containers

‣ Grouping of processes

‣ Provide isolation between groups

‣ Containers cannot customize operating systems

‣ Isn’t this similar to the problem exokernels tried to solve?

OS

Container Container Container

Hypervisor

MySQL Web Server

Web Server

MySQL

Web Server

Presenter
Presentation Notes
Operating system may not be good for all groupings.

Unikernel: Library Operating
Systems for the Cloud

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Ralraj Singh,
ThomasGazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft

University of Cambridge, University of Nottingham, Citrix Systems Ltd, OCamlPro SAS

In Proceedings of the 18th International Conference on Architectural Support for Programming Languages and
Operating Systems pg. 461–472.

Unikernel slides from Shannon Joyner

Unikernel = EXOKERNEL + CONTAINERs

‣ Run one application per virtual machine

‣ One process per application

‣ Everything compiled into a VM image

‣ Do not compile unused code

Unikernel, Figure 1

Unikernel

‣ Run directly on top of standard hypervisor

‣ Can run multiple unikernels on the same hypervisor

Hypervisor

Unikernel

Application

OS

Unikernel

Application

OS

Unikernel

Application

OS

Mirage

‣ Produces unikernels
‣ Compiles OCaml code to Xen VM image
‣ 4 main components
‣ Text + Data segment
‣ Foreign Grants
‣ Minor Heap
‣ Major Heap

Unikernel, Figure 2

Presenter
Presentation Notes
Chose OCaml because of flexibility (implement imperative, functional, and OOP). Brevity. High performance. Xen is implemented in OCaml, so integration is easy.

PV Boot - Way to initialize VM with a single virtual CPU and multiple Xen event channels.

Text and Data

‣ OCaml Runtime

‣ PVBoot

‣ Initializes VM

Unikernel, Figure 2

Presenter
Presentation Notes
Initializes VM that application runs in

HEAP

‣Minor Heap

‣ Short lived values in VM

‣ Fast

‣Major Heap

‣ Long lived values

Unikernel, Figure 2

Foreign Grants

‣ Used for VM communication

‣Write data to a grant table

‣ Exchange table between VM address spaces

Unikernel, Figure 2

ApACHE BENCHMARK

‣ Mirage unikernel improvements result in better
performance than having multiple cores

Unikernel, Figure 2

Exokernel versus Unikernel

‣ Exokernel

‣ All applications on same system

‣ Poor isolation

‣ Unikernel

‣ Single application per system

‣ Better isolation

Next Time

 Read and write review:
 The Origin of the VM/370 Time-Sharing System, R. J. Creasy, In IBM

Journal of Research and Development, 25(5):483-490, September 1981.
 Xen and the Art of Virtualization, Paul Barham, Boris Dragovic, Keir

Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
Andrew Warfield. 19th ACM symposium on Operating systems principles
(SOSP), October 2003, page 164--177.

Next Time

 MP1 part 2 due Friday

 Project Survey Paper proposals due next week

 Presentation schedule

 Check website for updated schedule

	Modern systems:�Extensible Kernels and Containers
	Motivation
	Motivation
	Motivation
	Motivation
	Context for these papers
	Motivation
	Motivation
	Exokernel
	Exokernels - Motivation
	Motivation (cont.)
	Exokernel
	OS Component Layout
	Exokernel main ideas
	Lib OS and the Exokernel
	Exokernel vs Microkenels vs VM
	Design
	What problems do we solve?
	How do we solve them: Design
	How do we solve them: Design
	Secure bindings
	How do we solve them: Design
	Downloading code
	How do we solve them: Design
	Visible resource revocation
	How do we solve them: Design
	Slide Number 29
	Exokernel
	Microbenchmark results
	ExOS Virtual Memory
	Perspective
	Containers
	Unikernel: Library Operating Systems for the Cloud
	Unikernel = EXOKERNEL + CONTAINERs
	Unikernel
	Mirage
	Text and Data
	HEAP
	Foreign Grants
	ApACHE BENCHMARK
	Exokernel versus Unikernel
	Next Time
	Next Time

