
MICROKERNELS: MACH AND L4
Hakim WeatherspoonCS6410

1

 Different Types of Kernel Designs
 Monolithic kernel
 Microkernel
 Hybrid Kernel
 Exokernel
 Virtual Machines?

Introduction to Kernels

 All OS services operate in kernel space
 Good performance
 Disadvantages

 Dependencies between system component
 Complex & huge (millions(!) of lines of code)
 Larger size makes it hard to maintain

 E.g. Multics, Unix, BSD, Linux

Monolithic Kernels

 Minimalist approach
 IPC, virtual memory, thread scheduling

 Put the rest into user space
 Device drivers, networking, file system, user interface, even the pager for virtual memory

 More stable with less services in kernel space
 Disadvantages

 Lots of system calls and context switches

 E.g. Mach, L4, AmigaOS, Minix, K42

Microkernels

Monolithic Kernels VS Microkernels

 Combine the best of both worlds
 Speed and simple design of a monolithic kernel
 Modularity and stability of a microkernel

 Still similar to a monolithic kernel
 Disadvantages still apply here

 E.g. Windows NT, NetWare, BeOS

Hybrid Kernels

 Follows end-to-end principle
 Extremely minimal
 Fewest hardware abstractions as possible
 Just allocates physical resources to apps

 Disadvantages
 More work for application developers

 E.g. Nemesis, ExOS
 Next Tuesday!

Exokernels

 How big should it be?

 Big debate during the 1980’s

The Microkernel Debate

 Monolithic kernels
 Advantages: performance
 Disadvantages: difficult to debug and maintain

 Microkernels
 Advantages: more reliable and secure
 Disadvantages: more overhead

 Hybrid Kernels
 Advantages: benefits of monolithic and microkernels
 Disadvantages: same as monolithic kernels

 Exokernels
 Advantages: minimal and simple
 Disadvantages: more work for application developers

Summary: Kernels

1ST GENERATION MICROKERNELS

 USENIX Summer Conference 1986
 Mike Accetta, Robert Baron, William Bolosky, David Golub,

Richard Rashid, Avadis Tevanian, and Michael Young

 Richard Rashid
 Lead developer of Mach
 Microsoft Research

 William Bolosky
 Microsoft Research

 Avadis Tevanian
 Primary figure in development of Mac OS X
 Apple Computer (former VP and CTO)

Mach: A New Kernel Foundation For UNIX Development

 1st generation microkernel
 Based on Accent
 Memory object

 Mange system services like network paging and file system

 Memory via communication

Mach

 Task
 Basic unit of resource allocation
 Virtual address space, communication capabilities

 Thread
 Basic unit of computation

 Port
 Communication channel for IPC

 Message
 May contain port capabilities, pointers

 Memory Object

Mach Abstractions

 No kernel-based file system
 Kernel is just a cache manager

 Memory object
 AKA “paging object”

 Pager
 Task that implements memory object

External Memory Management

 E.g. consistent network shared memory
 Each client maps X with shared pager
 Use primitives to tell kernel cache what to do
 Locking
 Flushing

Lots of Flexibility

 External data manager failure looks like communication failure
 E.g. need timeouts

 Opportunities for data manager to deadlock on itself

Problems of External Memory Management

 Does not prohibit caching
 Reduce number of copies of data occupying memory

 Copy-to-use, copy-to-kernel
 More memory for caching

 “compiling a small program cached in memory…is twice as fast”
 I/O operations reduced by a factor of 10
 Context switch overhead?

Performance

2ND GENERATION MICROKERNELS

 SOSP 1997
 Herman Hartig, Michael Hohmuth, Jochen Liedtke, Sebastian

Schonberg, Jean Wolter

 Herman Hartig
 Prof at TU Dresden

 Jochen Liedtke
 Worked on microkernels Eumel, L3
 Is the “L” in L3 and L4

The Performance of Micro-Kernel-Based Systems

 Evaluates the L4 microkernel
 Ports Linux to run on top of L4
 Suggests improvements

The Performance of Micro-Kernel-Based Systems

 2nd generation microkernel
 Similar to Mach

 Started from scratch, rather than monolithic
 Even more minimal

 Uses user-level pages
 Tasks, threads, IPC

L4

 Linux source has two cleanly separated parts
 Architecture dependent
 Architecture independent

 In L4Linux
 Architecture dependent code is modified for L4
 Architecture independent part is unchanged
 L4 not specifically modified to support Linux

L4Linux

 Linux kernel as L4 user service
 Runs as an L4 thread in a single L4 address space
 Creates L4 threads for its user processes
 Maps parts of its address space to user process threads (using L4 primitives)
 Acts as pager thread for its user threads
 Has its own logical page table
 Multiplexes its own single thread (to avoid having to change Linux source code)

L4Linux

 The statically linked and shared C libraries are modified
 Systems calls in the lib call the Linux kernel using IPC

 For unmodified native Linux applications, there is a “trampoline”
 The application traps
 Control bounces to a user-level exception handler
 The handler calls the modified shared library
 Binary compatible

L4Linux – System Calls

 A Translation Look-aside Buffer (TLB) caches page table lookups
 On context switch, TLB needs to be flushed
 A tagged TLB tags each entry with an address space label, avoiding

flushes
 A Pentium CPU can emulate a tagged TLB for small address spaces

A Note on TLBs

 Compared the following systems
 Native Linux
 L4Linux
 MkLinux (in-kernel)
 Linux ported to run inside the Mach microkernel

 MkLinux (user)
 Linux ported to run as a user process on top of the Mach microkernel

Performance - Benchmarks

Performance - Microbenchmarks

Performance - Macrobenchmarks

 L4Linux is 5% - 10% slower than native Linux for macrobenchmarks
 User mode MkLinux is 49% slower (averaged over all loads)
 In-kernel MkLinux is 29% slower (averaged over all loads)
 Co-location of kernel is not enough for good performance

Performance - Analysis

 Pipes can be made faster using L4 primitives
 Linux kernel was essentially unmodified

 Could be optimized for microkernel

 More options for extensibility

L4 is Proof of Concept

 Microkernels have attractive properties
 Extensibility benefits
 Minimal/simple

 Microkernels can have comparable performance

Perspective

 Project: next step is the Survey Paper

 MP1 part 1 due tomorrow, Friday

 Read and write a review:
 Exokernel: an operating system architecture for application-level resource

management, Dawson R. Engler, M. Frans Kaashoek, and James O'Toole, Jr.
15th ACM symposium on Operating systems principles (SOSP), December 1995,
pages 251–266.

 Unikernels: library operating systems for the cloud, Anil Madhavapeddy,
Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, Jon Crowcroft. 18th ACM
International Conference on Architectural support for programming languages and
operating systems (ASPLOS), March 2014, pages 461--472.

Next Time

	Microkernels: mach and L4
	Introduction to Kernels
	Monolithic Kernels
	Microkernels
	Monolithic Kernels VS Microkernels
	Hybrid Kernels
	Exokernels
	The Microkernel Debate
	Summary: Kernels
	1st Generation Microkernels
	Mach: A New Kernel Foundation For UNIX Development
	Mach
	Mach Abstractions
	External Memory Management
	Lots of Flexibility
	Problems of External Memory Management
	Performance
	2nd Generation Microkernels
	The Performance of Micro-Kernel-Based Systems
	The Performance of Micro-Kernel-Based Systems
	L4
	L4Linux
	L4Linux
	L4Linux – System Calls
	A Note on TLBs
	Performance - Benchmarks
	Performance - Microbenchmarks
	Performance - Macrobenchmarks
	Performance - Analysis
	L4 is Proof of Concept
	Perspective
	Next Time

