
MICROKERNELS: MACH AND L4
Hakim WeatherspoonCS6410

1

 Different Types of Kernel Designs
 Monolithic kernel
 Microkernel
 Hybrid Kernel
 Exokernel
 Virtual Machines?

Introduction to Kernels

 All OS services operate in kernel space
 Good performance
 Disadvantages

 Dependencies between system component
 Complex & huge (millions(!) of lines of code)
 Larger size makes it hard to maintain

 E.g. Multics, Unix, BSD, Linux

Monolithic Kernels

 Minimalist approach
 IPC, virtual memory, thread scheduling

 Put the rest into user space
 Device drivers, networking, file system, user interface, even the pager for virtual memory

 More stable with less services in kernel space
 Disadvantages

 Lots of system calls and context switches

 E.g. Mach, L4, AmigaOS, Minix, K42

Microkernels

Monolithic Kernels VS Microkernels

 Combine the best of both worlds
 Speed and simple design of a monolithic kernel
 Modularity and stability of a microkernel

 Still similar to a monolithic kernel
 Disadvantages still apply here

 E.g. Windows NT, NetWare, BeOS

Hybrid Kernels

 Follows end-to-end principle
 Extremely minimal
 Fewest hardware abstractions as possible
 Just allocates physical resources to apps

 Disadvantages
 More work for application developers

 E.g. Nemesis, ExOS
 Next Tuesday!

Exokernels

 How big should it be?

 Big debate during the 1980’s

The Microkernel Debate

 Monolithic kernels
 Advantages: performance
 Disadvantages: difficult to debug and maintain

 Microkernels
 Advantages: more reliable and secure
 Disadvantages: more overhead

 Hybrid Kernels
 Advantages: benefits of monolithic and microkernels
 Disadvantages: same as monolithic kernels

 Exokernels
 Advantages: minimal and simple
 Disadvantages: more work for application developers

Summary: Kernels

1ST GENERATION MICROKERNELS

 USENIX Summer Conference 1986
 Mike Accetta, Robert Baron, William Bolosky, David Golub,

Richard Rashid, Avadis Tevanian, and Michael Young

 Richard Rashid
 Lead developer of Mach
 Microsoft Research

 William Bolosky
 Microsoft Research

 Avadis Tevanian
 Primary figure in development of Mac OS X
 Apple Computer (former VP and CTO)

Mach: A New Kernel Foundation For UNIX Development

 1st generation microkernel
 Based on Accent
 Memory object

 Mange system services like network paging and file system

 Memory via communication

Mach

 Task
 Basic unit of resource allocation
 Virtual address space, communication capabilities

 Thread
 Basic unit of computation

 Port
 Communication channel for IPC

 Message
 May contain port capabilities, pointers

 Memory Object

Mach Abstractions

 No kernel-based file system
 Kernel is just a cache manager

 Memory object
 AKA “paging object”

 Pager
 Task that implements memory object

External Memory Management

 E.g. consistent network shared memory
 Each client maps X with shared pager
 Use primitives to tell kernel cache what to do
 Locking
 Flushing

Lots of Flexibility

 External data manager failure looks like communication failure
 E.g. need timeouts

 Opportunities for data manager to deadlock on itself

Problems of External Memory Management

 Does not prohibit caching
 Reduce number of copies of data occupying memory

 Copy-to-use, copy-to-kernel
 More memory for caching

 “compiling a small program cached in memory…is twice as fast”
 I/O operations reduced by a factor of 10
 Context switch overhead?

Performance

2ND GENERATION MICROKERNELS

 SOSP 1997
 Herman Hartig, Michael Hohmuth, Jochen Liedtke, Sebastian

Schonberg, Jean Wolter

 Herman Hartig
 Prof at TU Dresden

 Jochen Liedtke
 Worked on microkernels Eumel, L3
 Is the “L” in L3 and L4

The Performance of Micro-Kernel-Based Systems

 Evaluates the L4 microkernel
 Ports Linux to run on top of L4
 Suggests improvements

The Performance of Micro-Kernel-Based Systems

 2nd generation microkernel
 Similar to Mach

 Started from scratch, rather than monolithic
 Even more minimal

 Uses user-level pages
 Tasks, threads, IPC

L4

 Linux source has two cleanly separated parts
 Architecture dependent
 Architecture independent

 In L4Linux
 Architecture dependent code is modified for L4
 Architecture independent part is unchanged
 L4 not specifically modified to support Linux

L4Linux

 Linux kernel as L4 user service
 Runs as an L4 thread in a single L4 address space
 Creates L4 threads for its user processes
 Maps parts of its address space to user process threads (using L4 primitives)
 Acts as pager thread for its user threads
 Has its own logical page table
 Multiplexes its own single thread (to avoid having to change Linux source code)

L4Linux

 The statically linked and shared C libraries are modified
 Systems calls in the lib call the Linux kernel using IPC

 For unmodified native Linux applications, there is a “trampoline”
 The application traps
 Control bounces to a user-level exception handler
 The handler calls the modified shared library
 Binary compatible

L4Linux – System Calls

 A Translation Look-aside Buffer (TLB) caches page table lookups
 On context switch, TLB needs to be flushed
 A tagged TLB tags each entry with an address space label, avoiding

flushes
 A Pentium CPU can emulate a tagged TLB for small address spaces

A Note on TLBs

 Compared the following systems
 Native Linux
 L4Linux
 MkLinux (in-kernel)
 Linux ported to run inside the Mach microkernel

 MkLinux (user)
 Linux ported to run as a user process on top of the Mach microkernel

Performance - Benchmarks

Performance - Microbenchmarks

Performance - Macrobenchmarks

 L4Linux is 5% - 10% slower than native Linux for macrobenchmarks
 User mode MkLinux is 49% slower (averaged over all loads)
 In-kernel MkLinux is 29% slower (averaged over all loads)
 Co-location of kernel is not enough for good performance

Performance - Analysis

 Pipes can be made faster using L4 primitives
 Linux kernel was essentially unmodified

 Could be optimized for microkernel

 More options for extensibility

L4 is Proof of Concept

 Microkernels have attractive properties
 Extensibility benefits
 Minimal/simple

 Microkernels can have comparable performance

Perspective

 Project: next step is the Survey Paper

 MP1 part 1 due tomorrow, Friday

 Read and write a review:
 Exokernel: an operating system architecture for application-level resource

management, Dawson R. Engler, M. Frans Kaashoek, and James O'Toole, Jr.
15th ACM symposium on Operating systems principles (SOSP), December 1995,
pages 251–266.

 Unikernels: library operating systems for the cloud, Anil Madhavapeddy,
Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, Jon Crowcroft. 18th ACM
International Conference on Architectural support for programming languages and
operating systems (ASPLOS), March 2014, pages 461--472.

Next Time

	Microkernels: mach and L4
	Introduction to Kernels
	Monolithic Kernels
	Microkernels
	Monolithic Kernels VS Microkernels
	Hybrid Kernels
	Exokernels
	The Microkernel Debate
	Summary: Kernels
	1st Generation Microkernels
	Mach: A New Kernel Foundation For UNIX Development
	Mach
	Mach Abstractions
	External Memory Management
	Lots of Flexibility
	Problems of External Memory Management
	Performance
	2nd Generation Microkernels
	The Performance of Micro-Kernel-Based Systems
	The Performance of Micro-Kernel-Based Systems
	L4
	L4Linux
	L4Linux
	L4Linux – System Calls
	A Note on TLBs
	Performance - Benchmarks
	Performance - Microbenchmarks
	Performance - Macrobenchmarks
	Performance - Analysis
	L4 is Proof of Concept
	Perspective
	Next Time

