CS 6410: ADVANCED SYSTEMS

PROF. HAKIM WEATHERSPOON

Fall 2018



Systems Research

The study of tradeoffs
Functionality vs performance

E.g. where to place error checking

Are there principles or rules of thumb that can help
with large systems design?



What is System Design: Science, Art,

Puzzle?
)

Required
Functionality
“LogiC”

Expected
Workload
“User Load”

Available
Resources

“Environme
nf"

Required

Performance
“SLA”




Something to do with “Abstraction”

INTERFACE IMPLEMENTATION GOES HERE
(HIDES IMPLEMENTATION)




Also, “Layering” (layered modules)

From: http://www.tutorialspoint.com/operating_system/os_linux.htm



Any problem in computer science can be

-solved with another level of indirection
X

0 Attributed to David Wheeler (by Butler Lampson)



Functionality vs Assurance

]
G‘:‘L

-E‘ L 7/ Assurance
. -551“"? 7’ == Required Performance (Speed, Fault
"o © / Tolerance)

= y. 4 == Service Level Agreement (SLA)
E Ve 1?.:5'

D 4-""# i}..:,,'z-'

= i {fﬂ'
= 1,7 &

'I:_F

dssurance



End-to-End arguments in System Design —
Jerry H. Saltzer, David P. Reed, David D. Clark (MIT)

Jerry H. Saltzer
A leader of Multics, key developer of the Internet, and a L

(local area network) ring topology, project Athena g

David P. Reed
Early development of TCP/IP, designer of UDP

David D. Clark

|/O of Multics, Protocol architect of Internet
“We reject: kings, presidents and voting.
We believe in: rough consensus and running code.”



Presenter
Presentation Notes
Project Athena was a joint project of MIT, Digital Equipment Corporation, and IBM to produce a campus-wide distributed computing environment for educational use


End-to-End argument

Helps guide function placement among modules of a distributed
system

Argument

implement the functionality in the lower layer only if

a large number of higher layers / applications use this functionality and
implementing it at the lower layer improves the performance of many of them,
AND

does not hurt the remaining applications


Presenter
Presentation Notes
The principle states that, whenever possible, communications protocol operations should be defined to occur at the end-points of a communications system, or as close as possible to the resource being controlled.

According to the end-to-end principle, protocol features are only justified in the lower layers of a system if they are a performance optimization, 


Example : File Transfer (A to B)
—

4. Pass msg/packet down the
A protocol stack B
5. Send the packet over the network

8 1. Read File Data blocks 8
2. App buffers File Data

3. Pass (copy) data to the
network subsystem




Example : File Transfer (A to B)
—

T ™
S o

Y
7. Receive packet and buffer msg.
A 8. Send data to the application B

@ E Store file data b‘%




Possible failures

Reading and writing to disk

Transient errors in the memory chip while buffering
and copying

network might drop packets, modify bits, deliver
duplicates

OS buffer overflow at the sender or the receiver

Either of the hosts may crash



Solution: make the network reliable?

Packet checksums, sequence numbers, retry, duplicate
elimination

Example: TCP
Solves only the network problem
What about the other problems listed?

Not sufficient and not necessary



Solution: end-to-end retransmission?@
—

7 Introduce file checksums and verify once transfer
completes — end-to-end check.

On failure — retransmit file
Works! (modulo rotting bits on disk)



Is network-level reliability useful?

Per-link retransmission leads to faster recovery from dropped
packets than end-to-end

Seems particularly useful in wireless networks or very high
latency networks

But this may not benefit all applications

Huge unnecessary overhead for, say, Real-Time speech transmission



TCP/IP

Transmission Control Protocol (TCP)

It is a transport protocol providing error detection,
retransmission, congestion control, and flow control
TCP is almost-end-to-almost-end

kernel-to-kernel, socket-to-socket, but not app-to-app

Internet Protocol (IP)

IP is a simple ("dumb"), stateless protocol that moves
datagrams across the network

The network itself (the routers) needs only to support the
simple, lightweight IP; the endpoints run the heavier TCP on
top of it when needed.



Other end-to-end examples
N

1 End-to-end authentication
o TLS, SSL

-1 Duplicate msg suppression



Is argument complete?

E.g. congestion control

TCP leaves it to the ends

Should the network trust the ends?
RED

In a wireless setting

packet loss |= congestion

performance problems may appear in end-end systems under
heavy load

Performance enhancing Proxies


Presenter
Presentation Notes
Performance enhancing proxies


“Hints for Computer System Design”

--- Butler Lampson, 1983
—

-1 Based on author’s experience in systems desig
1 Founding member of Xerox PARC (1970)

01 Currently Technical Fellow at MSR and adjunct prof. at
MIT

7 Winner of ACM Turing Award (1994). IEEE Von
Neumann Medal (2001)

7 Woas involved in the design of many famous systems,
including databases and networks



Some Projects & Collaborators

Charles Simonyi - Bravo: WYSIWYG editor (MS Office)

Bob Sproull - Alto operating system, Dover: laser printer,
Interpress: page description language (VP Sun/Oracle)

Mel Pirtle - 940 project, Berkeley Computer Corp.

Peter Deutsch - 940 operating system, QSPL: system
programming language (founder of Ghostscript)

Chuck Geschke, Jim Mitchell, Ed Satterthwaite - Mesa: system
programming language



Some Projects & Collaborators (cont.)

Roy Levin - Wildflower: Star workstation prototype, Vesta:
software configuration

Andrew Birrell, Roger Needham, Mike Schroeder - Global
name service and authentication

Eric Schmidt - System models: software configuration

(CEQ/Chairman of Google /Executive Chairman of Alphabet)

Rod Burstall - Pebble: polymorphic typed language



System Design Hints organized along

two axes: Why and Where
_

7 Why:
Functionality: does it work?
Speed: is it fast enough?

Fault-tolerance: does it keep working?

- Where:

Completeness
Interface

Implementation



Hints for Computer System Design - Butler Lampson

Why? Functionality Speed Fault-tolerance
Does it work? Is it fast enough? Does it keep working?
Where?
Completeness Separate normal and—I: Shed load
worst case End-to-end End-to-end
Safety first
Interface Do one thing well: Make it fast End-to-end
Don’t generalize Split resources Log updates
Get it right Static analysis Make actions atomic
Don’t hide power Dynamic translation
Use procedure arguments
Leave it to the client
Keep basic interfaces stable
Keep a place to stand
Implementation | Plan to throw one away Cache answers Make actions atomic

Keep secrets
Use a good idea again
Divide and conquer

Use hints Tse hints
Use brute force
Compute in background

Batch processing

Figure 1: Summary of the slogans



FUNCTIONALITY

Interface
Between user and implementation of an abstraction

Contract, consisting of a set of assumptions about participants
Assume-Guarantees specification

Same interface may have multiple implementations
Requirements:

Simple but complete

Admit efficient implementation

Examples: Posix File System Interface, Network Sockets, SQL, ...

Lampson: “Interface is a small programming language”
Do we agree with this?



Keep it Simple Stupid (KISS Principle)

Attributed to aircraft engineer Kelly Johnson (1910—1990)
Based on observation: systems work best if they are kept
simple

Related:

Make everything as simple as possible, but not simpler (Einstein)

It seems that perfection is reached not when there is nothing left to
add, but when there is nothing left to take away (Antoine de Saint
Exupéry)

If in doubt, leave it out (Anon.)
Complexity is the Enemy: Exterminate Features (Charles Thacker)

The unavoidable price of reliability is simplicity (Tony Hoare)



Do one thing at a fime, and do It well
Don’t generalize
mm Get it right!

A complex interface is hard to implement correctly, efficiently
Don’t penalize all for wishes by just a few

Basic (fast) operations rather than generic/powerful (slow) ones

O O O O

Good interface admits implementation that is
Correct
Efficient
Predictable Performance

1 Simple does not imply good

A simple but badly designed interface makes it hard to build applications that perform
well and/or predictably



Make it Fast

Leave it to the Client
Don't Hide Power
Keep Secrets

1 Design basic interfaces that admit implementations that are fast
Consider monolithic O.S. vs. microkernels

1 Clients can implement the rest

1 Abstraction should hide only undesirable properties

What are examples of undesirable?
® Non-portable

1 Don’t tell clients about implementation details they can exploit
Leads to non-portability, applications breaking when modules are updated, etc.

Bad example: TCP



Use procedure arguments

High-level functions passed as arguments
Requires some kind of interpreter within the abstraction

Hard to secure

Requires safe language or sandboxing



Keep basic interfaces stable

Keep a place to stand
— PP

7 Ideally do not change interfaces

Extensions are ok

o If you have to change the interface, provide a
backward compatibility option

Good example: Microsoft Windows



Plan to throw one away
Use a good idea again

Prototyping is often a good strategy in system
design
You end up building a series of prototypes

The same good idea may be usable in multiple
confexts

Example: Unix developed this way, leading to Linux,
Mac OS X, and several others



Divide and Conquer

Several forms:

Recursion

Stepwise Refinement

Modularization
Lampson only talks about recursion
Stepwise refinement is a useful technique to contain
complexity of systems

Modules contain complexity

Principle of “Separation of Concerns” (Edsger Dijkstra)



Handle normal and worst case
separately

Use a highly optimized code path for normal case

Just try to implement handling the worst case
correctly

Sometimes optimizing normal case hurts worst case
performance!

And sometimes good worst case performance is more
important than optimal normal case performance

Example: normal case in TCP/IP highly optimized



SPEED

Lampson talks mostly about making systems fast

Other, perhaps more subtle considerations include
Predictable performance
Meeting service-level objectives

Cheap to run in terms of resources



Split resources
Safety first

Partitioning may result in better performance than
sharing

but not always..

for example: a shared cache would result in better overall
utilization typically than a partitioned cache

but a partitioned cache may give more predictable
performance to any particular user

most low-level resources these days tend to be
shared...

Prioritize safety over optimality



Static analysis
Dynamic translation

No, this is not a PL course

If you know something about the workload, exploit
it!

For example, workload might exhibit locality,
periodicity, etc.

Related to “normal case” handling
Prefetching allows |/O and compute to overlap

Examples: paging and scheduling algorithms



Cache answers
Use hints

Caching answers to expensive computations trades
storage for other resources (CPU, network, etc.)

What does “expensive” mean in this context?
“Hints” are typically caches of potentially wrong
information

Example: DNS uses this extensively to provide
scalability

Should be easy to check if hint works, and correct for it
if not



When in doubt, use brute force

Related idea: don’t optimize blindly

build the system “stupidly”

identify bottlenecks through profiling

eliminate bottlenecks

go back to Step 2 if necessary
If the system is modular, such “adjustments” are
typically easy to make

If not, difficult refactoring might be necessary

Related: building series of prototypes



Compvute In background

Use batch processing
mm Shed load

11 “Compute in background” essentially means to do |/O and compute in
parallel

examples: paging, GC, ...
in this day and age, we do everything in parallel...

o1 Batching multiple small jobs into a larger one can significantly improve
throughput

although often at the expense of latency
example: TCP

1 Avoid overload by admission control
example: TCP



Fault Tolerance

We expect 24x7x365.25 reliability these days

In spite of what Lampson says, it’s pretty hard...



Log updates
Make actions atomic or restartable

Cheap: many storage devices optimal or optimized for
append-only

Useful: after a crash, state can be restored by
replaying log
helps if updates are “idempotent” or restartable
example: ARIES “WAL” (Write-Ahead Log)

Atomic (trans-)actions simplify reliable system design

group of low-level operations that either complete as a unit
or have no effect

Isolation and Durability are also very useful properties!



Concrete conclusions?

Lessons Learned
Pose your problem in a clean way
Next decompose into large-scale components

Think about the common case that will determine
performance: the critical path or the bottleneck points

Look for elegant ways to simultaneously offer structural
clarity and yet still offer fantastic performance

This can guide you towards very high-impact success



Next Time

Read and write review:

The UNIX time-sharing system, Dennis M. Ritchie and Ken
Thompson. Communications of the ACM Volume 17, Issue 7, July
1974, pages 365 — 375

http://dl.acm.org /citation.cfm2id=361011.361061

The structure of the "THE"-multiprogramming system, E.W. Dijkstra.
Communications of the ACM Volume 11, Issue 5, May 1968,
pages 341—346

http:/ /dl.acm.org /citation.cfm2id=363143

Need to be on campus, or use VPN to access some papers. Or,
change ".acm.org/" to ".acm.org.proxy.library.cornell.edu/" in the

URL

Check website for updated schedule



Before Next time

Rank-order papers to present

Read first papers below and write review

The UNIX time-sharing system, Dennis M. Ritchie and Ken
Thompson. Communications of the ACM Volume 17, Issue 7

(July 1974), pages 365--375.

The structure of the "THE"-multiprogramming system, E.W.
Dijkstra. Communications of the ACM Volume 11, Issue 5

(May 1968), pages 341--346.
MiniprojectO

Using Amazon’s EC2/S3 infrastructure
Check website for updated schedule



	CS 6410: Advanced Systems��Prof. Hakim Weatherspoon
	Systems Research
	What is System Design: Science, Art, Puzzle?
	Something to do with “Abstraction”
	Also, “Layering” (layered modules)
	Any problem in computer science can be solved with another level of indirection
	Functionality vs Assurance
	End-to-End arguments in System Design –�Jerry H. Saltzer, David P. Reed, David D. Clark (MIT)
	End-to-End argument
	Example : File Transfer (A to B)
	Example : File Transfer (A to B)
	Possible failures
	Solution: make the network reliable?
	Solution: end-to-end retransmission?
	Is network-level reliability useful?
	TCP/IP
	Other end-to-end examples
	Is argument complete?
	“Hints for Computer System Design”�--- Butler Lampson, 1983
	Some Projects & Collaborators
	Some Projects & Collaborators (cont.)
	System Design Hints organized along two axes: Why and Where
	Slide Number 23
	FUNCTIONALITY
	Keep it Simple Stupid (KISS Principle)
	Do one thing at a time, and do it well�Don’t generalize�Get it right!
	Make it Fast�Leave it to the Client�Don’t Hide Power�Keep Secrets
	Use procedure arguments
	Keep basic interfaces stable�Keep a place to stand
	Plan to throw one away�Use a good idea again
	Divide and Conquer
	Handle normal and worst case separately
	SPEED
	Split resources�Safety first
	Static analysis�Dynamic translation
	Cache answers�Use hints
	When in doubt, use brute force
	Compute in background�Use batch processing�Shed load
	Fault Tolerance
	Log updates�Make actions atomic or restartable
	Concrete conclusions?
	Next Time
	Before Next time

