
Haoyuan Li
CS 6410 Fall 2009

10/15/2009

  U-Net: A User-Level Network Interface for
Parallel and Distributed Computing
◦  Thorsten von Eicken, Anindya Basu, Vineet Buch,

and Werner Vogels

  Active Messages: a Mechanism for Integrated
Communication and Computation
◦  Thorsten von Eicken, David E. Culler, Seth Copen

Goldstein, and Klaus Erik Schauser

  Thorsten von Eicken

  Werner Vogels

  David E. Culler

  Seth Copen Goldstein

  Klaus Erik Schauser

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Processing Overhead
◦  Fabrics bandwidth vs. Software overhead

  Flexibility
◦  Design new protocol

  Small Message
◦  Remote object executions
◦  Cache maintaining messages
◦  RPC style client/server architecture

  Economic driven
◦  Expensive multiprocessors super computers with custom

network design
◦  vs.
◦  Cluster of standard workstations connected by off-the-

shelf communication hardware

  Provide low-latency communication in local
area setting

  Exploit the full network bandwidth even with
small message

  Facilitate the use of novel communication
protocols

  All built on CHEAP hardware!

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Communication 
Segments

  Send queue
  Receive Queue
  Free Queue

  Send and Receive packet
  Multiplexing and demultiplexing messages
  Zero-copy vs. true Zero-copy
  Base-Level U-Net
  Kernel emulation of U-Net
  Direct-Access U-Net

networ
k

  Prepare packet and place it in the
Communication segment

  Place descriptor on the Send queue
  U-Net takes descriptor from queue
  transfers packet from memory to network

packet U-Net
NI

From Itamar Sagi

networ
k

  U-Net receives message and decide which Endpoint
to place it

  Takes free space from Free Queue
  Place message in Communication Segment
  Place descriptor in receive queue
  Process takes descriptor from receive queue

(polling or signal) and reads message

packet
U-Net

NI

From Itamar Sagi

  Channel setup and memory allocation
  Communication Channel ID
  Isolation Protection

  True Zero-copy: No intermediate buffering
◦  Direct-Access U-Net
  Communication segment spans the entire process

address space
  Specify offset where data has to be deposited

  Zero-copy: One intermediate copy into a
networking buffer
◦  Base-Level U-Net
  Communication segment are allocated and pinned to

physical memory
  Optimization for small messages
◦  Kernel emulation of U-Net
  Scarce resources for communication segment and

message queues

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  SPARCstations
  SunOS 4.1.3
  Fore SBA-100 and Fore SBA-200 ATM interfaces by

FORE Systems, now part of Ericsson

  AAL5

  Onboard processor
  DMA capable
  AAL5 CRC generator
  Firmware changed to implement U-Net NI on the

onboard processor

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  Active Messages
◦  A mechanism that allows efficient overlapping of

communication with computation in
multiprocessors

  Implementation of GAM specification over U-
Net

  Split C based on UAM
  Vs.
  CM-5
  Meiko CS-2

  Block matrix multiply
  Sample sort (2 versions)
  Radix sort (2 versions)
  Connected component algorithm
  Conjugate gradient solver

TCP max bandwidth UDP max bandwidth

  Motivation
  Design
  Implementation
◦  SBA-100
◦  SBA-200

  Evaluation
◦  Active Messages
◦  Split-C
◦  IP Suite

  Conclusion

  U-Net main objectives achieved:
◦  Provide efficient low latency communication
◦  Offer a high degree of flexibility

  U-Net based round-trip latency for messages
smaller than 40 bytes: Win!

  U-Net flexibility shows good performance on
TCP and UDP protocol

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Minimize communication overhead
  Allow communication to overlap computation
  Coordinate the two above without sacrificing

processor cost/performance

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Mechanism for sending messages
◦  Message header contains instruction address
◦  Handler retrieves message, cannot block, and no

computing
◦  No buffering available

  Making a simple interface to match hardware
  Allow computation and communication

overlap

  Sender asynchronous sends a message to a
receiver without blocking computing

  Receiver pulls message, integrates into
computation through handler
◦  Handler executes without blocking
◦  Handler provides data to ongoing computation, but

not does any computation

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  3-Phase Protocol
  Simple
  Inefficient
  No buffering needed

  Communication can have overlap with
computation

  Buffer space allocated throughout
computation

  Extension of C for SPMD Programs
◦  Global address space is partitioned into local and

remote
◦  Maps shared memory benefits to distributed

memory
◦  Split-phase access

  Active Messages serve as interface for Split-C

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  To support languages with dynamic
parallelism

  Integrate communication into the processor
  Computation is driven by messages, which

contain the name of a handler and some data
  Computation is within message handlers
  May buffer messages upon receipt
◦  Buffers can grow to any size depending on amount

of excess parallelism
  Less locality

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Network Interface Support
◦  Large messages
◦  Message registers
◦  Reuse of message data
◦  Single network port
◦  Protection
◦  Frequent message accelerators

  Processor Support
◦  Fast polling
◦  User-level interrupts
◦  PC injection
◦  Dual processors

  Large-scale multiprocessors design’s key
challenges

  Active messages
  Message passing architectures
  Message driven architectures
  Potential hardware support
  Conclusions

  Asynchronous communication
  No buffering
  Improved Performance
  Handlers are kept simple

