
7 RC Simulates RA.

We now show that DRC (and hence TRC) is at least as expressive as RA. That
is, given an RA expression E that mentions at most C, there is an equivalent
DRC expression E′ that mentions at most C.

Just as in the previous section, we must deal with the technical issue that DRC
is defined by recursion on formulas rather than on expressions. We show that
for every RA expression E there exists a DRC formula F that simulates E in
the sense that, when F is embedded in a simple DRC expression E′, then E
and E′ are equivalent.

To simplify the presentation, we assume the set of variables names usable in
DRC expressions includes all the attribute names usable in RA expressions.

Lemma: For every RA expression E(A1 . . . Ak) there exists a DRC formula
F with FV (F) = {A1, . . . , Ak} and

(∀r) [[E]](r) = [[{〈A1 : A1, . . . , Ak : Ak〉 | F}]](r)

Proof: We use induction on the structure of E.

Case E = E1 ∪ E2: Inductively there exist E1 and E2 such that

[[E1]](r) = [[{〈. . . Ai : Ai . . .〉 | F1]](r)
[[E2]](r) = [[{〈. . . Ai : Ai . . .〉 | F2]](r)

Note the attributes on which E1 and E2 are defined are the same. Let F be
F1 ∨ F2; then

[[E1 ∪ E2]](r) = [[{〈. . . Ai : Ai . . .〉 | F1 ∨ F2]](r)

as desired.

Case E = E1 − E2: This case is similar to ∪, with F = F1 ∧ ¬F2.

Case E = E1(A1 . . . Aj) × E2(Aj+1 . . . Ak): Note that the sets {A1 . . . Aj}
and {Aj+1 . . . Ak} are disjoint (the × operator is Cartesian product, not join).
As usual the formulas F1 and F2 exist by induction. Let F = F1 ∧ F2; then

[[E1 × E2]](r) = [[{〈A1 : A1 . . . Ak : Ak〉 | F1 ∧ F2}]](r)

as required.

22

Case E = ρA1 "→BE1: We may assume without loss of generality that the
renamed attribute appears first. Also, note that B does not occur among A2,
. . . , Ak. Inductively there exists F1 such that

[[E]](r) = [[{〈A1 : A1 . . . Ak : Ak〉 | F1]](r)

We must construct a formula equivalent to F1 but with the free variable A1

replaced by B. This can be accomplished with an existential and an equality
conjunct. Let

F = (∃A1)((A1 = B) ∧ F1)

The free variables of F are {B,A2, . . . , Ak}, and

[[E]](r) = [[{〈B,A2 : A2 . . . Ak : Ak〉 | F}]](r)

as required.

Case E = πA1...Aj E1(A1 . . . Ak): This case is similar to renaming. Induc-
tively, the usual formula F1 exists, and we eliminate free variables Aj+1 through
Ak by existential quantification. Let

F = (∃Aj+1 . . .∃Ak)(F1)

Then

[[E1 × E2]](r) = [[{〈A1 : A1 . . . Aj : Aj〉 | F}]](r)

as required.

Case E = σpE1: Inductively, the usual formula F1 exists such that

[[E1]](r) = [[{〈. . . Ai : Ai . . .〉 | F1]](r)

The select condition p is a propositional formula with free variables among A1

through Ak, and so can be interpreted as a DRC formula in the same free
variable environment used for F1. Let

F = (F1 ∧ p)

23

Then

[[σpE1]](r) = [[{〈A1 : A1 . . . Aj : Aj〉 | (F1 ∧ p)}]](r)

as required.
!

This demonstrates that DRC (or TRC) is at least as expressive as RA. The
possibility remains that DRC/TRC is strictly more expressive. We deal with
this next.

8 Domain Independence (Safety)

Our ultimate goal is to show that RA and RC are in some sense equally expres-
sive. There is an easy technical issue we must dispose of first.

Let R be the database scheme {R1(A)}, a single relation with a single column.
Consider the following simple example query in DRC.

[[{〈B : x〉 | x = c}]](r) = {〈B : c〉}

This holds whether or not the value c occurs anywhere in the instance r, because
the quantified variable x ranges over all values in D. Thus, the theorem

D([[E]](r)) ⊆ Dr

which we proved earlier for RA expressions, fails for RC expressions.

Next consider the two examples

[[{〈B : x〉 | x = x}]](r) = {〈B : v〉 | v ∈ D}

and

[[{〈B : x〉 | ¬(〈A : x〉 ∈ R1)}]](r) = {〈B : v〉 | v ∈ (D −Dr)}

The result in the first example is a complete copy of D; in the second case
it is the complement of relation r1 in D. Thus, both finiteness and domain-
independence, which we proved earlier for RA expressions, fail for RC expres-
sions. A domain-dependent expression like the examples above is sometimes
called unsafe.

24

Relation Constants For the problem illustrated by the first example above
there is a simple technical fix. We augment RA expressions with relation con-
stants as follows:

E ::= {〈A1 : c1, . . . , Ak : ck〉}
Attr(E) = A1 . . . Ak

[[E]](r) = {〈A1 : c1, . . . , Ak : ck〉}

Since RA includes a union operator, expressions for relations with only a single
tuple are sufficient. We then augment the definition of “E mentions at most
C” in a straightforward way to include constants appearing in relation-valued
expressions as well as those appearing in select conditions. It is easy to see that
the revised theorem

D[[E]](r) ⊆ (Dr ∪ C)

holds, where E is a RA expression that mentions at most C.

Domain Independence Having added relation constants to the RA lan-
guage, we shall now argue that the only remaining issue is domain dependence,
illustrated by the second and third examples above.

We showed above that for every DRC expresison E(D) there is an equivalent
TRC expression E(T), and vice versa. Since domain-independence is a seman-
tic notion, E(T) is domain-independent if and only if E(D) is. Let DRC-DI
be the language consisting of just the domain-independent DRC expressions;
and let TRC-DI be the domain-independent TRC expressions. Ignore for the
moment the question of how to decide whether a particular expression is domain-
independent or not. Clearly DRC-DI and TRC-DI are equivalent. Moreover,
both languages are at least as expressive as RA: we showed above that for every
RA expression E(A) there is an equivalent TRC expression E(T) and an equiv-
alent DRC expression E(D); since E(A) is domain-independent, E(T) and E(D)

must be domain-independent also.

We shall complete the argument to show that DRC-DI (TRC-DI) and RA have
exactly the same expressive power, by showing that for every DRC-DI expression
there is an equivalent RA expression. Formally, we show:

Theorem: For any DRC formula F on free variables {X1, . . . , Xk} mentioning
at most C, there exists an RA expression E with attributes {X1, . . . , Xk} and
mentioning at most C such that

[[E]](r) = [[{〈X1 : X1 . . . Xk : Xk〉} | F]]Dr∪C(r)

25

for all instances r. Note that F and E mention at most C; the case that C
includes some constants not mentioned in E or F is explicitly allowed. In fact,
it is necessary to make the inductive hypothesis apply to subformulas in the
proof below.

Proof: As usual, we assume all DRC variable names can be used as attribute
names, and proceed by induction on F .

First we make an observation. Given the set of constants C and a any attribute
name A, we can construct an RA expression

EDC,A = {〈A : c1〉} ∪ . . . ∪ {〈A : cn〉} ∪ (
⋃

R∈R

⋃
B∈U

ρB "→A(πB(R)))

Then

[[EDC,A]](r) = { 〈A : v〉 | v ∈ (Dr ∪ C) }

That is, the value of EDC,A is just the active domain of r together with the
constants in C. This is the domain appearing in the statement of the theorem.
It is the smallest domain over which the DRC formula F can be evaluated.

Now we show by induction on F how to construct the equivalent RA expression
E:

Case F = (〈. . . Bi : Xi . . .〉 ∈ R): This “basis” case requires a bit of thought.
Relation R is defined over attributes B1, . . . , Bk, but the free variables of F are
actually X1, . . . , Xk, and the attributes of the required result expression must
be the free variables of F . Thus, let

E = ρ...Bi "→Xi...(R)

and the desired result follows.

Case F = (X1 = a): Let

E = σX1=a(EC,X1)

and the desired result follows. Of course there are simpler choices for E, but
this choice is correct and establishes a pattern that continues in the remaining
cases.

26

Case F = (X1 = X2): Let

E = σX1=X2(EC,X1 × EC,X2)

and the desired result follows.

Case F = ¬F1: Note the free variables of F and F1 are the same. Inductively,
there exists an RA expression E1 equivalent to F1. Let

E = (EC,X1 × . . .× EC,Xk) − E1

and the desired result follows.

Case F = (F1 ∧ F2): This case also requires some thought, because there
is no reason to expect the free variables of F1 and F2 to be the same. Without
loss of generality, choose 1 ≤ m ≤ n ≤ k and let the free variables be

FV (F1) = { X1, . . . , Xm, Xn+1, . . . , Xk }
FV (F2) = { Xm+1, . . . , Xk }

Inductively, there exist RA expressions E1 and E2 over these sets of attributes
that are equivalent to F1 and F2 respectively. We can easily extend both ex-
pressions to the free variables of F :

E′
1 = (EC,Xm+1 × . . .× EC,Xn) × E1

E′
2 = (EC,X1 × . . .× EC,Xm) × E2

We can also easily define the “universe” over these free variables:

E∗ = EC,X1 × . . .× EC,Xk

Now the desired expression is simply the intersection of E′
1 and E′

2, which can
be expressed by

E = E∗ − ((E∗ − E′
1) ∪ (E∗ − E′

2))

as desired.

27

Case F = (∃Y F1): Without loss of generality, the free variables of F1 are
X1, . . . , Xk, Y ; and by induction there exists an RA expression E1 such that

[[E1]](r) = [[{〈X1 : X1, . . . Xk : Xk, Y : Y 〉 | F1}]]Dr∪C(r)

Now let

E = πX1,...,XkE1

and the result follows.
!

Range Declarations

We can augment DRC expressions with “Range Declarations” to get a language
DRC-RD that is equivalent to RA.

The syntax of a Range Declaration is just

RD ::= (c1, . . . , cm, Ri1(Ai1), . . . , Rin(Ain))

that is, a finite list of constants and relation columns.

A range declaration describes an obvious set of values: the explicitly enumerated
constants, plus all the values that occur in the specified columns of the database
instance. If constants appearing in a range declaration are considered to be
“mentioned,” it should be clear that a range declaration describes a subset of
Dr ∪ C.

Now, to define DRC-RD, we simply add a range declaration wherever a variable
is introduced in an expression.

E ::= { 〈A1 : x1 : RD1, . . . An : xn : RDn〉 | F }
F ::= (∃x : RD) F1

Variables are allowed to range only over values defined by the associated range
declarations.

By arguments very similar to those used in our discussion of DRC-DI, we can
show that every DRC-RD expression can be simulated by an RA expression,
and vice versa.

28

The situation is not so nice with TRC. Here the “obvious” way to define TRC-
RD would allow each tuple-valued variable to range over a relation in the
database schema. This would be inadequate for a number of reasons. For
example, the result of anyTRC-RD query would necessarily have the same set
of attributes as one of the relations in the schema.

Here is a syntax for TRC-RD that is stronger than simply allowing variables to
range over tables, though it still lacks the full power of TRC-DI. This syntax is
important because of its relation to the SQL query language used in commercial
database systems, as we discuss below. In this syntax, each tuple variable ranges
over a single table of the database instance, but there is special mechanism for
constructing a result relation with attributes that do not match any of the tables
in the database schema.

E ::= { A1 : x1[B1] . . . Am : xm[Bm] |
y1(Y1) : Ri1 . . . yn(Yn) : Rin | F }

F ::= (∃z(Z) : Ri) F1

Variable yj is allowed to range only over tuples contained in the relation named
Rij in r; which must have attributes Yj . Similarly, the variable z(Z) introduced
in a quantified formula ranges over the specified relation Ri, which must have
attributes Z. The result tuples have attributes A1 . . . Am and are constructed
from yj values for which formula F is satisfied.

With this TRC-RD syntax, tuple-valued variables are constrained to range over
individual relations in the instance, but it is possible for a query result to be
a relation over an arbitrary set of attributes. However, the language is still
strictly weaker than TRC-DI or RA. Consider the RA example:

R = (R1(A), R2(A))

E = (R1 ∪ R2)

which simply takes the union of two relations. It is clear that a TRC-RD
expression has the property that every column of its result relation is entirely
contained in some column of some relation of the input database instance. Since
union does not have this property, no TRC-RD expression can be equivalent to
the above RA expression.

Within formulas, the inability to have a variable range over the union of several
tables is not a fundamental limitation. It is easy to see that the equivalence

((∃z(Z) : (Ri ∪Rj)) F) ⇔ ((∃z(Z) : Ri) F) ∨ ((∃z(Z) : Rj) F)

29

is always valid, so a union in a range declaration of a TRC-RD formula could
always be transformed away, at the cost of increasing the size of the formula. But
there is no way to simulate this transformation “at top level,” in constructing
the result relation. One can show the following:

Theorem: TRC-RD is equivalent to an algebraic language that has all the
RA operators except union and does not include relation-valued constants.

The proof is left as an exercise.
!

It turns out union is the only weakness of the TRC-RD language. One can show
that the language of expressions defined by

E ::= E1 ∪ . . . ∪ Ek

where Ei is a TRC-RD expression

is equivalent to RA. This result is of some “practical” significance, since some
early versions of SQL (without aggregation operators or very general subquery
mechanisms) were exactly equivalent to TRC-RD – they were, in fact, just slight
syntactic variants on it. So this result explains why it was necessary to augment
SQL with set-theoretic operators at top level: it made the language relationally
complete.

9 Undecidability of Domain Independence

We now know that the domain-independent TRC (DRC) expressions are equiv-
alent to RA in expressiveness. Unfortunately, however, there is no algorithm to
decide which TRC (DRC) expressions are domain-independent. Here we sketch
the proof of this fact for TRC.

We shall actually show that satisfiability of TRC formulas is undecidable, that
is, given a TRC formula F (even one with range declarations) it is undecidable
whether there exists a database instance r such that [[E]](r) is true. This is
sufficient for our purposes, since, if F is a (closed) TRC formula, the expression

E = { x(A) | F }
is domain-independent iff it is the empty relation – that is, iff F is false for
every instance r. Thus, satisfiability of TRC formulas is reducible to domain-
independence of TRC expressions; so if we show satisfiability is undecidable it
follows that domain-independence must be undecidable as well.

30

Here is a sketch of an elementary proof that satisfiability is undecidable. We
start from the undecidable problem: given M , a 2-counter machine, does M
accept on blank input? A configuration of M can be represented as a triple
〈q, c1, c2〉 consisting of the state and the two counter values; and we may assume
without loss of generality that to accept its input the machine loops in a unique
accepting state. We show how to construct a TRC formula FM that is satisfiable
exactly if M accepts the empty input.

If the data domain were the natural numbers the construction would be easy.
We would use the schema

R = (R1(step, state, cntr1, cntr2))

and express each of the following as TRC formulas:

step is a superkey for r1

〈0, q0, 0, 0〉 ∈ r1

(∃〈n, q, c1, c2〉 ∈ r1) s.t. q accepts

(∀〈i, q, c1, c2〉 ∈ r1) (∃〈i′, q′, c′1, c′2〉 ∈ r1)
where (q, c1, c2) .M (q′, c′1, c′2)

For the last of these formulas, we can assume without loss of generality that

c′1 = c or c′1 = (c1 + 1) or (c′1 + 1) = c1

and similarly for c2; and we can encode the next-state function of M in a query
whose size depends only on M . Also, we use the standard trick of encoding

(∀x)F /→ ¬((∃x)(¬F))

to eliminate universal quantifiers.

It should be clear that an input instance satisfies the conjunction of these for-
mulas if and only if it represents an accepting computation of M . So, if the
data domain were the natural numbers, we would be done.

We can avoid reliance on the natural numbers by adding a second relation to
the schema, and instantiating it with a relation value that is “close enough” to
the successor function for our needs. Let

R = (R1(step, state, cntr1, cntr2), R2(num, suc))

31

We express as TRC formulas the following:

num is a superkey for r2

suc is a superkey for r2

We now introduce a new constant k0 and change the above formulas constraining
r1 as follows:

0 /→ k0

((∃i)F) /→ ((∃t)(t ∈ r2 ∧ F ′) where F ′ is F with t[num] replacing i

y = (x + 1) /→ ((∃t)(t ∈ r2 ∧ t[num] = x ∧ t[suc] = y)

We claim the new formula is satisfiable if and only if M halts. One direction is
obvious: if M halts within n steps, we can simply encode the successor relation
on the natural numbers up through n in r2 (using an arbitrary set of n + 1
distinct data values) and then encode an accepting computation of M in r1

consistently.

For the other direction, observe that the constraints on r2 guarantee that its
two columns are a permutation. If the formula is satisfied, then confining our
attention to the cycle of the permutation that contains k0 we can identify an
accepting computation of M .

This completes the proof sketch, and we are done.
!

32

