
4 Domain Relational Calculus

We now present two relational “calculi” that we will compare to RA. First, what
is the difference between an “algebra” and a “calculus?”

The usual story is that the algebra RA is operational – a RA expression de-
scribes a step-by-step procedure for computing a result relation. A calculus, on
the other hand, is declarative – it is essentially a language of predicates which
describe whether a tuple value (or a collection of scalar values) is contained in
the result. Thus, in principle, a database management system has more free-
dom implementing a calculus based query language than an algebraic one. Of
course, RA is a side-effect-free expression language, which in the programming
languages community probably would not be considered operational. So the
distinction is slightly dubious . . .

Nevertheless, we present the first of our two calculi, the Domain Relational
Calculus (DRC). Informally, this is a language of predicates whose variables
range over scalar values in the data domain D. A query expression can construct
a tuple and ask (with a predicate) whether it is present in a given relation in
the database instance. A DRC expression has the following form:

E ::= { 〈A1 : x1, . . . An : xn〉 | F }
where FV (F ) ⊆ {x1, . . . , xn}

All the work is done in F , which is a first-order formula (formulas are described
below). With each formula F we associate a set FV (F ) of its free variables. The
truth value of a formula is determined using values assigned to its free variables.
The assignment of values to free variables is given by a substitution, formally a
function that maps the (countably infinite) set of variable names into the data
domain D. Putting this together, the meaning of a formula F is given as

[[F ]](s, r)

where r is a database instance (as in the semantics of RA) and s is a substitution
(which supplies values for the free variables of F ).

We define formulas, free variables, and the semantics of formulas simultaneously
as follows:

Atomic Formulas

F ::= 〈B1 : x1, . . . , Bn : xn〉 ∈ Ri)

where Ri(B1 . . . Bn) ∈ R
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FV (F ) = {x1, . . . , xn}
[[F ]](s, r) = ( (t : ∀i : Bi &→ s[xi]) ∈ ri )

F ::= x1 = x2

FV (F )(s, r) = {x1, x2}
[[F ]](s, r) = (s[x1] = s[x2])

F ::= x = c

FV (F ) = {x}
[[F ]](s, r) = (s[x] = v)

where v ∈ D is the value denoted by c.

Compound Formulas

F ::= ¬F1

FV (F ) = FV (F1)

[[F ]](s, r) = ¬[[F1]](s, r)

F ::= F1 ∧ F2

FV (F ) = FV (F1) ∪ FV (F2)

[[F ]](s, r) = [[F1]](s, r) ∧ [[F1]](s, r)

F ::= ∃xF1

FV (F ) = FV (F1)− {x}
[[F ]](s, r) = ∃v ∈ D ( [[F1]](s[x ← v], r)

The notation s[x ← v] denotes a substitution that agrees with s on every argu-
ment except x, and returns v on argument x. In the semantics, the value of x
ranges over the infinite set D; hence x necessarily takes on values that are not
in Dr.

Now we can give the semantics of a DRC expression E:

[[ {〈A1 : x1, . . . An : xn〉 | F} ]](r)

= { t : A1 &→ v1, . . . , An &→ vn |
[[F ]](s0[x1 ← v1, . . . , xn ← vn, . . .], r) = true }
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This is the set of tuples over D for which F is true, given the proper variable
bindings. Since the free variables of F are included in {x1, . . . , xn}, and the
initial environment s0 is updated on all of these variables, this definition is
actually independent of s0. Just as in quantified formulas, the variables range
over the infinite set D, and so can take on values that are not in Dr. Thus,
the result can contain values that are not in Dr, and may even be an infinite
relation. This is technically important, as will be seen below.

5 Tuple Relational Calculus

We now describe our second relational calculus, the Tuple Relational Calculus
(TRC). Here variables range over tuple values. A query expression can select
attributes from a tuple and can apply predicates. Since variables represent
tuples, each variable must be “typed” with the set of attributes over which it
is defined, and uses of variables must be consistent with their types. We follow
the convention that the type is part of the variable name, and write variables
as

x(X) or x(A1 . . . Ak)

in the definitions below.

The syntax of a TRC expression is as follows:

E ::= { x(X) | F }
where FV (F ) = {x}

As in the definition of DRC above, all the work is done in the formula F , and we
give the semantics of F with respect to a substitution and a database instance:

[[F ]](s, r)

In TRC, substitutions map variables to tuple values. We require substitutions
to be well typed : a substitution applied to variable x(X) yields a tuple value
defined on exactly the attributes X. You can verify that this invariant holds of
every substitution occurring in the semantics below.

Atomic Formulas

F ::= x(X) ∈ Ri

where Ri(X) ∈ R
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FV (F ) = {x(X)}
[[F ]](s, r) = ( s[x(X)] ∈ ri )

F ::= x1(X1).A1 = x2(X2).A2

where A1 ∈ X1 and A2 ∈ X2

FV (F )(s, r) = {x1(X1), x2(X2)}
[[F ]](s, r) = ((s[x1(X1)])[A1] = (s[x2(X2)])[A2])

F ::= x1(X1).A1 = c

where A1 ∈ X1

FV (F )(s, r) = {x1(X1)}
[[F ]](s, r) = (s[x1(X1)])[A1] = v

where v ∈ D is the value denoted by c.

Compound Formulas

F ::= ¬F1

FV (F ) = FV (F1)

[[F ]](s, r) = ¬[[F1]](s, r)

F ::= F1 ∧ F2

FV (F ) = FV (F1) ∪ FV (F2)

[[F ]](s, r) = [[F1]](s, r) ∧ [[F1]](s, r)

F ::= ∃x(X)F1

FV (F ) = FV (F1)− {x(X)}
[[F ]](s, r) = (∃v ∈ U)((Attr(v) = X) ∧ ( [[F1]](s[x(X) ← v], r))

Just as in DRC formulas, a quantified variable ranges over an infinite set – all
compatibly typed tuples over the infinite data domain D (variable x(X) ranges
over all tuples with attributes X). Now we can give the semantics of a TRC
expression E:

[[ {x(X) | F} ]](r)

= { t ∈ U | (Attr(t) = X) ∧
([[F ]](s0[x(X) ← t], r) = true) }
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As for DRC, this is the set of correctly typed tuples over D for which F is true.
Since the only free variables of F is x(X), this definition is independent of s0.
Just as in quantified formulas, the variable ranges over an infinite set, and so
the result can contain values that are not in Dr, and can even be an infinite
relation.

6 Equivalence of DRC and TRC

We now show the equivalence of DRC and TRC. In the spirit of the Charac-
terization Theorem for RA that we proved earlier, you might expect a result of
the form “for every DRC expression E and every instance r, there is a TRC
expression E′(E, r) that computes the same result:

[[E′(E, r)]](r) = [[E]](r)

and vice versa. While this is true, we prove a much stronger equivalence: for
every DRC expression E there is a TRC expression E′(E) that computes the
same function:

(∀r) ([[E′(E)]](r) = [[E]](r))

and vice versa..

Recall we proved the Characterization Theorem by induction on the structure of
a RA expression. We cannot quite achieve this for relational calculus, because
DRC and TRC expressions are not defined recursively. A RC expression E is
just some bound variables and a formula F . It is the formula that is defined
recursively, not the expression. To prove equivalence of DRC and TRC, we first
define a sense in which a TRC formula F and a DRC formula F ′ can be con-
sidered equivalent, and then prove the equivalence of the expression languages
by induction on the structure of formulas.

Roughly, we shall say F (a TRC formula) and F ′ (a DRC formula) are equivalent
if the expressions

E = { x(. . . Ai . . .) | F } and E′ = { 〈. . . Ai : xi . . .〉 | F ′ }
are equivalent (i.e. yield the same result when applied to any database instance).

In more detail, suppose the free variables of F are

FV (F ) = {. . . , xi(Ai,1 . . . Ai,m, . . .}.
and the free variables of F ′ are

FV (F ′) = {. . . , yi,1 . . . yi,m, . . .}
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with the obvious correspondence between yi,j and xi[Ai,j ]. A TRC substitution
s and a DRC substitution s′ are similar (for F and F ′) if

(∀i, j)( (s(xi))[Ai,j ] = s′(yi,j)

That is, s and s′ represent the same values, reorganized to reflect the difference
between the tuple-valued variables that occur free in F and the simple variables
that occur free in F ′.

Now, the sense in which F and F ′ are equivalent is this:

[[F ]](s, r) = [[F ′]](s′, r)

(for all rand all substitutions (s, s′) similar for (F, F ′))

It should be clear that a TRC expression and a DRC expression are equivalent
exactly when their top-level formulas are equivalent by the above definition. So
it suffices to show the following:

Lemma: For every TRC formula F there is an equivalent DRC formula F ′.

Proof: We show how to construct F ′ by induction on the structure of F .

Case F = xi(Ai,1 . . . Ai,m) ∈ R:

Let

F ′ = 〈Ai,1 : yi,1, . . . , Ai,m : yi,m〉 ∈ R

and the equivalence follows from the definition of similar substitutions.

Case F = xi(Ai,j) = xk(Ak,l):

Let

F ′ = yi,j = yk,l

and again the equivalence follows from the definition of similar substitutions.

Case F = xi(Ai,j) = c:

This is similar to the previous case.

19



Case F = ¬F1:

Let

F ′ = ¬F ′
1

The equivalence of F and F ′ follows from the equivalence of F1 and F ′
1, together

with the observation that all substitution pairs (s, s′) that are equivalent for F
and F ′ are equivalent for F1 and F ′

1 (since FV (F ) and FV (F1) are identical).

Case F = F1 ∧ F2:

Let

F ′ = F ′
1 ∧ F ′

2

This is similar to the previous case. Since

FV (F ) = FV (F1) ∪ FV (F2)

it again follows that all substitution pairs (s, s′) that are equivalent for F and
F ′ are equivalent for F1 and F ′

1, and for F2 and F ′
2.

Case F = ∃xi(Xi)F1:

Let

F ′ = ∃xi,1, . . . ,∃xi,mF ′
1

where Xi = Ai,1 . . . Ai,m

The desired equivalence is

(∃v ∈ U)((Attr(v) = Xi) ∧ ( [[F1]](s[xi(Xi) ← v], r ) )

iff (∃vi,1, . . . , vi.m ∈ D) ( [[F ′
1]](s′[yi,j ← vi.j ], r) )

Since

FV (F1) ⊆ FV (F ) ∪ {xi(Ai,1, . . . , Ai.m)}
it follows that all substitution pairs (s, s′) that are equivalent for F and F ′ gen-
erate substitution pairs that are equivalent for F1 and F ′

1, as required.
!

A similar construction works for the other direction:
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Lemma: for every DRC formula F there is an equivalent TRC formula F ′.

This proof is quite similar to the previous one, and is left as an exercise.
!

Together, these two lemmas yield the promised equivalence theorem:

Theorem: TRC and DRC are equivalent in expressive power.
!
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