(CS632 Notes on Relational Query Languages [

A. Demers

6 Feb 2003

1 Introduction

Here we define relations, and introduce our notational conventions, which are
taken almost directly from [AD93].

We begin with a data domain D, an (infinite) set from which all data values will
be taken. Thus, while it is conventional to use distinct types for distinct fields
of a data record (e.g. the SSNO field is an integer, while the NAME field is a
character string), we assume the single domain D is rich enough to represent
any values we might be interested in. None of the technical results below is
afffected by this decision, and it simplifies some of the arguments.

Assume a countable set A of attributes which we denote by upper case Roman
letters near the beginning of the alphabet (A, B,C,...). Upper case Roman
letters near the end of the alphabet (Z,Y, X, ...) denote finite sets of attributes.
We use concatenation of these symbols for union of the corresponding sets of
names. Thus ABC denotes the set {A, B,C}, while X A is the set (X U{A4}),
which may be equal to X (if X contains A).

A relational tuple is a function ¢t : X — D, where X = A; ... Ay is a finite set
of attributes which we sometimes call Atr(t). We refer to k (that is, | Attr(¢t)|) as
the arity of t. We write a tuple by enumeration (it is after all a finite function),
either

(A1 1, Ag)
or, more often,
<A1 :’Ul,...,Aki'Uk >

by analogy with the usual notation for ordered k-tuples.

A relation is a set r of tuples, all over the same set of attributes Aftr(r). In the
sequel we deal almost exclusively with finite relations, so you should assume a
relation is finite unless explicitly told otherwise.

A relation scheme is a relation name R together with a set X of attributes,
typically written R(X). We write X = Affr(R). A relation scheme is an inten-
sional notion: it is not itself a relation; rather, it is a description of the relation
values that (a named table in) a database can contain. This is analogous to a
variable declaration in a computer program, which is not itself a value, but is a
description of the values that can be assigned to the variable.

A database scheme is a finite sequence
R = (Ri(X1),...,R.(X)))

of relation schemes with distinct names.
An instance of relation scheme R is a relation r such that Atr(r) = Atr(R).

An instance of database scheme R = (Ry1(Xy),...,R.(X,)) is a finite se-
quence

(r)y = (r1,...,m0)

of relations where, for each 4, r; is an instance of R;.

When we use a name like “R;” or “R'” for a relation scheme, we will use the
b2 [P

corresponding lower case name (“r;” or “r’”) for the relation that instantiates
it, often without explicitly mentioning this.

Finally, we use U to represent the set of all (finite) relations with attributes
over A and data values over D; and we use U™ to represent the set of all finite
sequences of relations in . Note that every relation r is an element of U/, and
every database instance r is an element of U™.

Given a database instance r, we define its active domain D,. to be the set of
all values in D that actually occur in (some tuple in some relation in) r. In
general D is an infinite set; for finite instances D,. is finite. This is useful for
some of the results below.

A query is a function Q : UT — U, mapping each instance of a database scheme
R to a relation. Below we present several query languages, and prove theorems
relating their expressive power.

We present a language by giving its syntax, essentially in BNF. We also give its
semantics, that is a function [e] that maps a query expression and a database
instance to the result of evaluating the query against the instance.

2 Relational Algebra (RA)

The first query language we consider is relational algebra (RA). RA is a query
language based on relation-valued expressions. Thus, in some sense each RA
expression is a “recipe” for computing a result relation from a database instance.
Below we define (by simultaneous induction) the set of legal RA expressions E,
the “type” Allr(E)which gives the set of attributes over which the query result
is defined, and the semantics — the result of evaluating an RA expression E over

a database instance r.

Union

E = FEi U Ey

where Atr(Ey) = Atrr(Es)
Air(E) = Altr(Ey)
[El(r) = [EA](r) U [E2](r)

Difference

FE = FE, — Es

where Attr(E;) = Attr(E>)
Atir(E) = Atir(En)
[El(r) = [EA](r) — [E2](r)

Cartesian Product

E = FE; x Ey
where Atrr(Ey) N Atr(E2) =
Atr(E) = Ar(Ey) U Atr(E»)
[E](r) = {t:(Ar(E1)U Attr(E2) — D) |
(tlatr(my) € [EA](r)) A (Hlaw(z) € [E2](7)) }

Renaming

E = pa-p(E)

where (A € Attr(Ey)) N (B ¢ Atr(Ey))
Ar(E) = Afr(Er) — {A}u{B}
[E](r) = {t:(Ar(E)— D) |

(3s € [E1](r)((t atr(m)— (B} = Sl awr(2)—(B})

A (t[B] = s[A]) }
Projection
E = 7nx(Ey)
where X C Attr(E)
Ar(E) = X

[E1(r) = {tlx [t [EA](r)})

E := op(E)

where FV(P) C Atrr(E)
Mr(E) = Aw(By)
[E1(r) = {telBEl() | PI®})

This last clause requires the definition of a selection predicate P and its free
variables FV (P), as well as the semantics of P applied to a tuple. Informally,
selection predicates are just propositional (quantifier-free) Boolean formulas de-
fined over the attributes of a tuple, and their “free variables” are the attributes
they mention. Formally:

P = A=c
FV(P) = {A}
[PI(t) = (4] = v)
where v € D is the value denoted by c.

P = A=DB
FV(P) = {A B}

FV(P) = FV(P)
[PI@) = -[A]@®)

P = P1 VAN P2
FV(P) = FV(P) U FV(P)
[PIt) = ([P](2) A ([P2](2))

Other propositional connectives (e.g. V, =) can be defined as usual in terms of
the ones given above.

3 Characterization Theorem

In this section we give a theorem that characterizes the relations that can be
produced as the result of RA queries.

Intuitively, we show that the result of evaluating a RA query expression on
a database instance contains only information already present in the instance.
More formally, we show that a relation s can be the result of evaluating some
RA query on a database instance r if and only if s is invariant under all au-
tomorphisms of r. The automorphisms of r are a class of functions claimed
to characterize the distinctions among data values that can be justified using
information in . This will be explained in more detail below.

First, you should note the strange form of this characterization. We fix on a
database instance 7, then look at all the (infinitely many) RA query expressions
and ask what the possible results are. This says nothing about the expressiveness
of RA in terms of the functions it is able to compute. As a preview of something
we’ll return to later, consider the transitive closure r* of a binary relation r.
Both the following are true:

(vr) 3E) [E](r) = T
and
~(EE) (vr) [E](r) = r*

That is, for every relation r there is a RA query expression F, that produces its
transitive closure. But E, depends critically on r. There is no single RA query
that computes the transitive closure of every relation.

Before attacking the Characterization Theorem, we give an important technical
result: informally, that the result of an RA query applied to a database instance
cannot contain any scalar values that are not already present in the database
instance. Formally, we have

Let E be an RA expression. Then
Digyry S D
for any database instance 7.

The proof is a straightforward induction on the structure of F, and is left as an
exercise. Note this result holds even if some selection predicates in £ mention
constants whose values are not in D,..

O

By this theorem, the result of a RA query cannot contain any values that are
not already present in the database instance to which the query is applied. In
fact our characterization result is somewhat stronger than this. It says that a
RA query result cannot make distinctions (between values) that are not already
present, either in the database instance or in the query itself. We now proceed
to formalize the notion of “distinctions between values.”

Consider a function h: D — D. We can extend h in a straightforward way to
tuples, relations and relation instances:

h(t) = t': A h(t][a]) for any tuple ¢

h(r) = {h(t) | ter} for any relation r

h((r)) = (R1:h(r1),...,Rp:h(ry))
where (r) = (Ry:71,...,Rp:mp)

Now, we say h is an automorphism of v if h((r)) = ». That is, r is invariant
under h. We denote by H(r) the set of all automorphisms of 7.

Since D, comprises exactly those values that occur in r, it follows that any
automorphism of must be a permutation (bijection) of D,..

Intuitively, if there is an automorphism of = that maps u +— v’ then w and u’
are in some sense indistinguishable in 7. You should be careful not to rely too
heavily on this intuition, however. It may be that the every automorphism
mapping u — » must also map v +— v'. For example suppose r contains a
relation consisting of the two tuples (A:wu,B:v) and (A:u/,B:v') . The
relation contains (A : u, B : v) but not (A : w/, B : v), which is somewhat at odds
with the intuition that u and u’ are indistinguishable. Anyway ...

There is one final technical consideration before we can state and prove the
characterization theorem. In the example above, we gave a relation that was
invariant under the function h that exchanges u with u’ and v with v’. But
suppose we apply the selection 04—, to that relation. The result consists of
a single tuple (A : u, B :v), and is obviously not invariant under h. After a
little thought we should not find this surprising: a query expression that explic-
itly mentions u in a selection predicate is of course able to distinguish u from
other values. Thus, we need to enhance our definition of automorphism to deal
explicitly with constants that might be mentioned in selection predicates.

Let C be a collection of constants in D,.. We say RA expression E mentions (at
most) C if every constant occurring (in a selection predicate) in E is an element

of C.

I am actually being a bit sloppy here. As in the semantics above,
I ought to talk about a set of constants, which are symbols that
appear in query expressions, and the set of values in D that are the
denotations of those constants. But that would be just too pedantic,
so I assume that any value in D can be used as a constant in a
query selection predicate. It is also worth pointing out that selection
predicates are the only place in an RA expression where constants
can be used.

An automorphism h of r is C-fized if h(v) = v for every v € C. We let H(C,r)
denote the set of all C-fized automorphisms of r.

We are now in a position to state the Characterization Theorem precisely.

Theorem: Let r be any database instance. A relation s, where Dy C D,., can
be obtained as a result of a RA expression F mentioning C' if and only if s is
invariant under every C-fixed automorphism of 7.

Before giving the proof, we consider a few limiting cases.

Suppose C' =). Then the theorem says s must be invariant under every auto-
morphism of r. If we think of automorphisms as describing the ability to make
distinctions among values, this says s can make no distinctions not made by .

Suppose C' = D,.. Then every C-fixed automorphism is the identity on all of D,.,
so the invariance requirement of the theorem becomes trivial, and any relation
over D, is a possible query result.

Note that any values in C' — D,. are unimportant. You should convince yourself
that, since s contains only values in D,., invariance of s with respect to C-
fixed automorphisms is the same as invariance with respect to(C' U D,.)-fixed
automorphisms.

Proof (=): Given E, which mentions C, we need to show
h(IEN(r)) = [EI(r) (VheH(C,r))

This is done by induction on the structure of E. We present the interesting
cases:

Case E = R;: Here E is the name of one of the relations in the database; the
desired result

MIEL(r) = h(ri)

is immediate since h is an automorphism of r, which must leave each r; € r
unchanged. This case is in some sense the “basis” of the induction.

Case F = E1UFEs: This case is proved by symbol-pushing, using the fact that
application of h distributes over set union:

h([E1 U E](r))
= h([Ex](r) U [E2](r))
= h([Er](r)) U R([E:](r))
= [Eil(r) U [E2](r)
(by induction hypothesis used twice)

[[El U EQ]] (T‘)

as desired.

Case F = E; — Fy, E = FE; X Ey: These cases are similar to the preceding
one.

Case E = pp(F1), E =7x(E1): These cases are straightforward: renaming
and projection do not interact with application of the automorphism.

Case E =o04-p(F1): This case is a slightly subtle computation:

= {p@®) [(¢t € [EAl(r)) A (R(B)A] = h(B)[B]) }

(This step follows because h is a bijection on D,, so x =y if and only if

h(z) = h(y))-
= {t [(" e([Ed](r)) N (#'[A]=7[B]) }

(This step is a renaming of h(t) to #'; think carefully about it).
= {t [e[El(r) A #[A]=¢[B]) }

(This step uses the induction hypothesis, at last).
= [oa=p(E)](r)

as required.

Case E = o04-.(F1): We proceed as in the previous case:

h([oa=c(E1)](r))
= h({t|EelB]@) A (A=) })
{n®) | (te[Ea](r)) A (HA] =c
= {p@®) [(¢ €[EAl(r)) A (RB)[A] =¢) }

(In the previous case this step followed because h is a bijection on D,., and thus
treats the two sides of the equation identically. In this case, it follows because
h is a C-fixed automorphism and ¢ € C. Since h(c) = ¢ it follows that h(z) = ¢
if and only if z = ¢).

= {t" | en[Es](r) A '[A] =¢) }
(This step is the same renaming of h(t) to t'used in the previous case).

= { | elB]() A {W[A]=c}
[oa=B(ED](r)

as desired.

Note the last case is the only one in which we use the fact that h is C-fixed.
O

Proof («<): The idea of the proof in this direction is fairly simple; the details
are not. So we sketch the idea, and leave filling in the details to the motivated
reader.

Suppose we are given a relation s(A; ... Ay) over D, that is invariant under ev-
ery C-fixed automorphism h € H(C,r). We need to construct a RA expression
FE, whose result, when applied to r, is s.

Define ar¢, the C-fixed automorphism relation for r, as follows. The columns
are labeled by attributed names

By,Bs,...,B, where D, = {v1,...,0m}

That is, there is an attribute for each distinct value in D,.. There is a tuple
(row) for each h € H(C,r). For the tuple ¢ corresponding to automorphism h,
we have

(VI <i<m) t[B] = h(v;)

That is, tuple ¢ is just an enumeration of th applied to each value in D,.. Assume
for now we have a RA expresssion E,.. whose result is ar¢. This assumption

will be discharged below.

C

Recall the attributes of s are A; ... Ag, so the arity of s is k. We extend ar¢ to
arc,, which is similar except for having k distinct copies of each value. Formally,
the columns are labeled by attributed names

M ... BW WM B® . BY .. BWY
where D, = {v1,...,0m}

and there is a tuple for each C-fixed automorphism of 7, containing k copies of
each value. For the tuple ¢ corresponding to automorphism h, we have

(V1<i<m)(V1<j<k) ¢BY] = h(v)

?

As above, tuple t is just an enumerated representation of automorphism function
h, but with %k copies of each value.

Given Eg., we can easily construct a RA expression Eg.., for arcy. This
involves ©(mk) renamings, a k-fold Cartesian product, and ©(mk) selections to
enforce the property

(V1<i<m)(V1<j<k) t[BY] = ¢[BV*Y]

7

10

That is, the & “copies” of h(v;) in each tuple are all equal.
With E,

arc k
Consider any tuple

at hand, we can now construct F,, which generates s as desired.

t = (A vy, Ag v)
in s. Construct an RA expression E; that projects arc ; onto the attributes

B1 p®

(k)
iy By oo By,
and then renames according to

(¥i.j) B} — 4

Since the rows of arc corrsepond to the C-fixed automorphisms of r, it follows
that

[Ee](r) = {h(t)[heH(Cr)}
Consider an enumeration of all the (finitely many) tuples in s:

s = {tl, tg, ey tp}
Construct the RA expression

E, = E, UE, U ... UBE,

p

Now, for every h € H(C,r)

[E](r)
= (IB,I(r) U ... U (IB,](r)
Eyl(r) U ... U K(E,](r)

which is the desired result.

We now show how to construct E., as promised. For simplicity, assume there is
only a single relation scheme in R, named Ry (A4 ... Ay); corresponding instance
r contains a single relation r; (defined over attributes A; ... Ay) containing p
distinct tuples. The generalization to more relations is tedious but not concep-
tually difficult. We proceed as follows.

11

We construct relation s(...A;;...) where 1 <4<k and 1 <j <p, by taking
the p-fold Cartesian product of r1 with itself and renaming suitably. Intuitively
i ranges over the attributes of r; and j ranges over tuples of r1, and many (but
not all) of the tuples in s contain all of the tuples of 71 in some permutation.

Fix on one tuple ¢ in s that contains all of r1 in this way, and call it the “identity
permutation.”

Now select only those rows of s that “look like” t up to permuting the value
space. That is, construct a (huge) select predicate of conjunctions of the form

(Aij = Ar) if t[A; ;] = t[Aw,]

~(Aij = Agy) if t[A; ;] # t[Ak]
Now choose a set of attributes C1, ..., C, to select all the values of D,. from ¢;
that is,

D, = {t[C4], t[Cy], ..., t[Cy] }

and project onto this set of attributes. Interpret the resulting relation as repre-
senting functions over Dyoidsymborr, Where a tuple t' represents a function

h : t[C;] — t[C] (V1<i<mn)

The tuple ¢ represents the identity function. You should convince yourself that
this relation contains exactly the automorphisms of r. To restrict to C-fixed
automorphisms, we select those tuples ¢’ such that t'[C;] = ¢[C;] for all ¢ such
that t[C;] € C.

This is the desired construction of E,. ., and completes the proof of the Char-
acterization Theorem.

O

As we mentioned above, the Characterization Theorem tells us what relations
can be the result of RA queries applied to a fixed database instance r. It says
little about what functions are representable by RA expressions. Here are a few
properties of the functions representable by RA expressions E. The proofs are
straightforward exercises.

Strict:
[E]@) = 0

The result of a query applied to an empty relation instance is empty.

12

Monotonic:
v 2or = [E]() 2 [E](r)

provided E does not use the -” operator (set difference).

Active Domain:

Digjry & Dr

Finite:

[E](r) is finite

Domain Independence:
(VD1,Dy 2 Dy)[E]p,(r) = [E]p,(r)

This last one requires a bit of explanation. In our semantics for RA expressions,
there is essentially no reference to the data domain D. Domain Independence
just states this fact explicitly — the result of evaluating a RA query expression E
on an instance 7 is the same in any data domain (D7 or Dy above) as long as the
domain is “big enough” to contain r. This obvious (and important) property
of RA expressions fails for the relational calculi, which we discuss next.

13

