Papers Covered:

Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman:

Implementing Data Cubes Efficiently.

SIGMOD Conf. 1996: 205-216

Sunita Sarawagi, Rakesh Agrawal, Nimrod Megiddo:

Discovery-Driven Exploration of OLAP Data Cubes.

EDBT 1998: 168-182
The problem: SQL is manager unfriendly

Decision support applications:

· Used by managers.

· Users do not know predicate logic, statistics or other advanced math

· Read mostly, long queries of huge datasets

· Performance requirements

· Little need for concurrency control, or real-time data

· Queries are simple calculations such as
SUM, AVG, MAX, of a set of numeric Measures.
· Selections or aggregations based on a number of hierarchical Dimensions.

Example query:

“Show me Total Sales for the year broken down by salesmen’s territory”.

RDBMSs are unsuitable:

· SQL rather than point-and-click.

· Optimized for transaction processing short writes to small datasets

· Not easy to do calculations.

· No hierarchical data types

A Solution: OLAP

OLAP databases built for decision support

· Familiar interface like spreadsheet

· Results table can be arranged with grouping dimensions along X, Y axes

· Point and click navigation for slicing, drill down,
roll-up, pivoting

· Drag and drop interface for defining simple formulae

· Native support for hierarchical dimensions

· Optimized for large aggregate queries

OLAP interface rolled up

	Product
	(All)

	Region
	(All)

	Sum of
Sales
	Month
	
	
	
	
	
	
	
	
	
	
	

	
	Jan
	Feb
	Mar
	Apr
	May
	Jun
	Jul
	Aug
	Sep
	Oct
	Nov
	Dec

	Total
	
	2%
	0%
	2%
	2%
	4%
	3%
	0%
	-8%
	0%
	-3%
	-4%

OLAP interface drilled down

	Region
	(All)

	Avg Sales
	Month
	
	
	
	
	
	
	
	
	
	
	

	Product
	Jan
	Feb
	Mar
	Apr
	May
	Jun
	Jul
	Aug
	Sep
	Oct
	Nov
	Dec

	Birch B
	
	10%
	-7%
	3%
	-4%
	15%
	-12%
	-3%
	1%
	42%
	-14%
	-10%

	Chery S
	
	1%
	1%
	4%
	3%
	5%
	5%
	-9%
	-12%
	1%
	-5%
	5%

	Cola
	
	-1%
	2%
	3%
	4%
	9%
	4%
	1%
	-11%
	-8%
	-2%
	7%

	Cream S
	
	3%
	1%
	6%
	3%
	3%
	8%
	-3%
	-12%
	-2%
	1%
	10%

	Diet B
	
	1%
	1%
	-1%
	2%
	1%
	2%
	0%
	-6%
	-1%
	-4%
	2%

	Diet C
	
	3%
	2%
	5%
	2%
	4%
	7%
	-7%
	-12%
	-2%
	-2%
	8%

	Diet S
	
	2%
	-1%
	0%
	0%
	4%
	2%
	4%
	-9%
	5%
	3%
	0%

	Grape S
	
	1%
	1%
	0%
	4%
	5%
	1%
	3%
	-9%
	-1%
	-8%
	4%

	Jolt C
	
	-1%
	-4%
	2%
	2%
	0%
	-4%
	2%
	6%
	-2%
	0%
	0%

	Kiwi S
	
	2%
	1%
	4%
	1%
	-1%
	3%
	-1%
	-4%
	4%
	0%
	1%

	Old B
	
	4%
	-1%
	0%
	1%
	5%
	2%
	7%
	-10%
	3%
	-3%
	1%

	Orang S
	
	1%
	1%
	3%
	4%
	2%
	1%
	-1%
	-1%
	-6%
	-4%
	9%

	Sasprla
	
	-1%
	2%
	1%
	3%
	-3%
	5%
	-10%
	-2%
	-1%
	1%
	5%

User Interface OK now, But…

“Show me Total Sales for the year broken down by sales territory”.

Requires all the data for the whole year to be process. Company database may be terabytes in size, so trying to do this on line will be slow.

Solution: Precompute the “cube”… all aggregates queries for all measures at all possible combinations of dimensions

But – database explosion…

[image: image1.png]OLAP Benchmark Results

Lines of Code

Hyperion 49

orncie N 1,176

Disk Space Requi

Hyperion g 331
oracie [<s0

d in)

B Hyporion Essbase s
B Oracie Expross 6.1

“Implementing Data Cubes Efficiently”

Main Point Of Paper

· Can trade off space for speed

· Materialize parts of cube, compute others on the fly

· Can speed up computation of a view if it depends on another

e.g. Can compute

SELECT SUM(costs) FROM my cube

GROUP BY customer

From

SELECT SUM(costs) FROM my cube

GROUP BY customer, parts

We abbreviate this to: “ (c) depends on from (cp)”
(c) depends on cp because the group by clause of (c)

is a subset of the group by clause of (cp)

Rule for hierarchies:

View A depends on View B iff

For every dimension, A’s position is at a higher level

Than B’s position in the corresponding dimension, SO:

selection of total costs grouped by year and state

does not depend on

selection of total costs grouped by month and country

BUT

selection of total costs grouped by year and country

does depend on

selection of total costs grouped by month and state

Dependency Lattice Diagram

psc: 6M

pc: 6M
ps: 0.8M
sc: 6M

p: 0.2M
s: 0.01M
c: 0.1M

none: 1

Key:

C means Customers in group by

S means Suppliers in group by

P means Parts in group by

Lattice

1. Shows in what order to materialize views

2. Shows how user will query cube

Greedy Search

S = {top view}

For i = 1 to k do begin

Select that view v not in S such that Benefit(v,S) is maximized;

S = S union {v}

End;

Resulting S is the greedy selection

Benefit(v,S)

B = 0

For Each view w that depends on v,

B = B + Improvement(w,v,S)

End;

Resulting B is the Benefit

Improvement(w,v,S)

Let u be the view of least cost in S such that

w depends on u

If Cost(v) < Cost(u) then i = C(v) – C(u)
Otherwise i = 0.

Good Example for Greedy Search(k=3)

	
	Choice 1
	Choice 2
	Choice 3

	B
	50x5 = 250
	already taken
	already taken

	C
	25x5 = 125
	25x2 = 50
	25x2 = 50

	D
	80x2 = 160
	30x2 = 60
	30x2 = 60

	E
	70x3 = 210
	20x3 = 60
	2x20+10 = 50

	F
	60x2 = 120
	60+10 = 70
	already taken

	G
	99x1 = 99
	49x1 = 49
	49x1 = 49

	H
	90x1 = 90
	40x1 = 40
	30x1 = 30

Hence choose B D and F

– reduces total cost of views from 800 to 420

Optimal.

Bad Example for Greedy Search(k=2)

Hence choose C then B for total benefit of 6241

Instead of B and D for total benefit of 8200.

Algorithm Assumptions

Assumption 1:

Time to process query proportional to size of data it was calculated from

Reality:

Depends on index & data locality by a small amount

Assumption 2:

Benefit of materializing a view based on queries you can calculate from it

Reality:

Can weight by on frequency of access of the query

Assumption 3:

Space cost of materializing all views equal

Reality:

Variation with number of records in view.

Boundary cases.

[image: image2.wmf]Time/space Tradeoff vs

of materialized views

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

8.E+07

1

2

3

4

5

6

7

8

9

10

11

12

Materialized Views

Records

Time

Space

“Discovery-driven exploration of OLAP data cubes”

Insight Of Paper

The idea of an Exception:

a value out of place given the other known values

at that context
· Interesting data can be obscured in a table
even though it is visible
· Drilling down an innocuous value may yield

Interesting data

· Automatically guide user’s discovery process

Note that the system must be automated because the average OLAP user is not a statistician; we can’t expect sophisticated instructions from him

So: highlight the Exceptions.

The more exceptional the value,

the more it should stand out.

Need to:

Be able to calculate how “exceptional” a value is.

So:

Use heuristics that

1. Match assumptions about statistical distributions

2. Work well under subjective assessment

3. Are computationally feasible

Surprise

(Assume Gaussian distribution, Exceptions fall outside 99% probability)

SurpriseCell
= S, if S >2.5

SurpriseCell
= 0, if S <2.5

Where

[image: image3.wmf]SD

Estimate

Measure

S

-

=

SurpriseDrillCell
= maximum SurpriseCell of all cells

that can be reached from this cell

SurpriseDim
= maximum SurpriseCell of all cells

that can be reached from this cell

by drilling down this dimension

Estimating the Measure

Estimate M is found by Log M =
[image: image4.wmf]å

G

ContributionG

Where G is a possible Group-By and

· ContributionNone
= mean of all values

· ContributionDrIr
= ADrIr - ContributionNone
where ADrIr = mean over values along Irth member of dimension Dr
Thus, this denotes how much ADrIr differs from overall average

· ContributionDrIrDsIs
= ADrIrDsIs - CDrIr - CDsIs - CNone
where C = Contribution
And so on.

· Coefficients corresponding to any group-by G obtained by subtracting from the average A value all the coefficients from higher level group-bys than G.

· Very hard to compute (short cuts for this in paper)

· Assume logarithms of measure are distributed as a Gaussian all with the same variance.

· These expressions use ‘trimmed’ mean; exclude 25% outliers

Estimating the Measure

Other approaches

(from expanded version of paper):

1. Extreme values in a set. No context. Too many hits.
2. Clustering. Discards exceptions as noise.
3. Regression. Only works for numeric data;
Can’t use for dimension hierarchies.
Estimating the Standard Deviation

Estimated standard deviation SD given by

[image: image5.wmf](

)

å

å

-

=

Estimate

Estimate

Estimate

Estimate

Actual

P

log

log

2

for some P Where EstimateP = SD2
(Assume Gaussian distribution, using Maximum Likelihood criterion)

· Tried using Poisson distribution

· Tried using SD = root mean square
of Actual - Estimate

OLAP interface rolled up with highlighting

	Product
	(All)

	Region
	(All)

	Sum of
Sales
	Month
	
	
	
	
	
	
	
	
	
	
	

	
	Jan
	Feb
	Mar
	Apr
	May
	Jun
	Jul
	Aug
	Sep
	Oct
	Nov
	Dec

	Total
	
	2%
	0%
	2%
	2%
	4%
	3%
	0%
	-8%
	0%
	-3%
	-4%

More intense color means greater surprise.

White means no exception in this cell.

Dimension shading indicates SurpriseDim
Border shading indicates SurpriseDrillCell
Compare its clarity to that of interface without

highlighting, especially for working out which

way to drill!

OLAP interface drilled down with highlighting

	Region
	(All)

	Avg Sales
	Month
	
	
	
	
	
	
	
	
	
	
	

	Product
	Jan
	Feb
	Mar
	Apr
	May
	Jun
	Jul
	Aug
	Sep
	Oct
	Nov
	Dec

	Birch B
	
	10%
	-7%
	3%
	-4%
	15%
	-12%
	-3%
	1%
	42%
	-14%
	-10%

	Chery S
	
	1%
	1%
	4%
	3%
	5%
	5%
	-9%
	-12%
	1%
	-5%
	5%

	Cola
	
	-1%
	2%
	3%
	4%
	9%
	4%
	1%
	-11%
	-8%
	-2%
	7%

	Cream S
	
	3%
	1%
	6%
	3%
	3%
	8%
	-3%
	-12%
	-2%
	1%
	10%

	Diet B
	
	1%
	1%
	-1%
	2%
	1%
	2%
	0%
	-6%
	-1%
	-4%
	2%

	Diet C
	
	3%
	2%
	5%
	2%
	4%
	7%
	-7%
	-12%
	-2%
	-2%
	8%

	Diet S
	
	2%
	-1%
	0%
	0%
	4%
	2%
	4%
	-9%
	5%
	3%
	0%

	Grape S
	
	1%
	1%
	0%
	4%
	5%
	1%
	3%
	-9%
	-1%
	-8%
	4%

	Jolt C
	
	-1%
	-4%
	2%
	2%
	0%
	-4%
	2%
	6%
	-2%
	0%
	0%

	Kiwi S
	
	2%
	1%
	4%
	1%
	-1%
	3%
	-1%
	-4%
	4%
	0%
	1%

	Old B
	
	4%
	-1%
	0%
	1%
	5%
	2%
	7%
	-10%
	3%
	-3%
	1%

	Orang S
	
	1%
	1%
	3%
	4%
	2%
	1%
	-1%
	-1%
	-6%
	-4%
	9%

	Sasprla
	
	-1%
	2%
	1%
	3%
	-3%
	5%
	-10%
	-2%
	-1%
	1%
	5%

More intense color means greater surprise.

White means no exception in this cell.

Cell shading indicates SurpriseCell
Border shading indicates SurpriseDrillCell
Compare its clarity to that of interface without

highlighting!

Summary:

Relational model & SQL are not manager friendly.

Response time requirements for aggregate computations.

· OLAP interface resembling spreadsheet.

· Pre-compute OLAP cube for speed.

Problems:

1. Database explosion

2. Information overload

Paper 1 addresses problem 1
· Trade off query time and cube size.
Partially materialize cube.

· Determining what to materialize using Greedy Search.

· Benefit metric of view based on speed up in processing it and other views.

Paper2 addresses problem 2
· Calculate Surprise of Cell

· Highlight exceptions more strongly for higher
Surprise values

· User navigation guided by highlighting scheme

100

d

a

20

30

40

75

c

h

50

b

g

f

e

10

1

200

a

b

d

c

100

100

99

20

nodes

total 1000

20

nodes

total 1000

20

nodes

total 1000

20

nodes

total 1000

_1047313854.xls
TPC D Chart

		1		1

		2		2

		3		3

		4		4

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

		11		11

		12		12

Time

Space

Materialized Views

Records

Time/space Tradeoff vs
of materialized views

72000000

6000000

48000000

6000000

36000000

6000000

30100000

6100000

24300000

6300000

22300000

11300000

22300000

16300000

22300000

22300000

22300000

22300000

22300000

22300000

22300000

22300000

22300000

22300000

Sheet1

		Aggregates		Selection		Benefit		Time		Space

		1		cp		infinite		7.20E+07		6000000

		2		ns		24000000		4.80E+07		6000000

		3		nt		12000000		3.60E+07		6000000

		4		c		5900000		3.01E+07		6100000

		5		p		5800000		2.43E+07		6300000

		6		cs		1000000		2.23E+07		11300000

		7		np		1000000		2.23E+07		16300000

		8		ct		10000		2.23E+07		22300000

		9		t		small		2.23E+07		22300000

		10		n		small		2.23E+07		22300000

		11		s		small		2.23E+07		22300000

		12		none		small		2.23E+07		22300000

Sheet2

		

Sheet3

		

_1053918178.bin

_1053919148.unknown

_1045948655.unknown

_1045950904.unknown

