CS630 Representing and Accessing Digital Information

Information Retrieval: Basics

Thorsten Joachims Cornell University

Based on slides from Prof. Jamie Callan and Prof. Claire Cardie

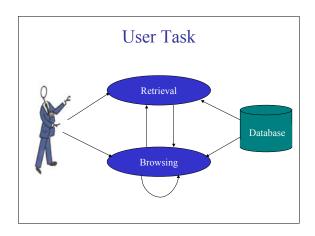
Information Retrieval

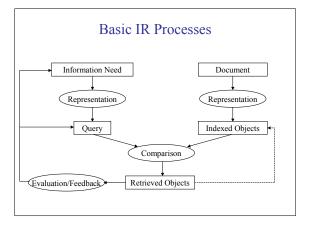
- Basics
- · Retrieval Models
- · Indexing and Preprocessing
- Data Structures
 - ~ 4 lectures

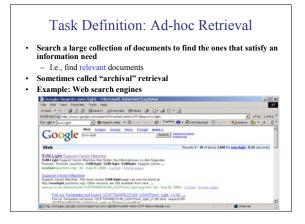
IR Basics

- · Task definition
- Evaluation
- Statistical properties of text

The field of information retrieval deals with the


representation,


storage,


organization of,

access to

information items.

Settings for Ad-hoc Retrieval

· Unranked ad-hoc retrieval

- Return an unordered set of documents that satisfies the query
- Usually used on in Boolean retrieval systems (which you'll hear about soon enough)
- Disadvantages:
 - Important to create a good query, so that the retrieved set is small
 - · Small set may not have enough relevant documents
 - 222
- Advantages???

Settings for Ad-hoc Retrieval

· Ranked ad-hoc retrieval

- Return a set of documents that satisfies the query ordered by (presumed) relevance
- Advantages
 - Large retrieved sets are not a problem
 - Less time spent crafting queries and reading documents
- Disadvantages
 - Good queries are still important
 - 222

Settings for Ad-hoc Retrieval

· Cross-lingual retrieval (CLIR)

- Query in one language (e.g. English)
- Return documents in other languages (e.g. Korean, Greek, Tamil)
- Sometimes called "translingual" retrieval

Settings for Ad-hoc Retrieval

· Distributed retrieval

- Ad-hoc retrieval in a distributed computing environment
 - · many text collections
 - · reside on different machines
 - · possibly different IR system for each machine
- Issues to address include
 - · Database selection
 - · Merging results from different databases

IR Basics

- · Task definition
- Evaluation
 - Issues
 - Test collections
 - Metrics
- · Statistical properties of text

Evaluation in IR: History

- Experimental methodology has been a prominent component of IR research since 1960's
- · Early work compared manual vs. automatic indexing

LIBRARY OF CONGRESS CLASSIFICATION OUTLINE

	E11-143	America
A GENERAL WORKS	E11-29	General
B PHILOSOPHY. PSYCHOLOGY. RELI		Elements in the population
C AUXILIARY SCIENCES OF HISTORY	E31-49.2	North America
D HISTORY (GENERAL) AND HISTORY	E51-73	Pre-Columbian America. The Indians
E HISTORY: AMERICA	E75-99	Indians of North America
F HISTORY: AMERICA	E81-83	Indian wars
G GEOGRAPHY. ANTHROPOLOGY. R	E99	Indian tribes and cultures
	E101-135	Discovery of America and early explora

Evaluation in IR: History

- · Manual vs. automatic indexing
 - Could automatic indexing approach manual quality?
 - Issue: Humans are not as consistent as they think!
- IR field developed methods of comparing overall system performance
 - Batch
 - Interactive
- · Until 1990s, problems of scale

Types of Evaluation

- · IR components that might be evaluated
 - Ability to assist formulating queries
 - Speed of retrieval
 - Computing resources required
 - Ability to find relevant documents
- · Evaluation generally comparative
 - System A vs. system B
 - System A vs. system A'
- · Most common evaluation measure
 - Retrieval effectiveness

Ad-hoc Retrieval Example

- · Query: ski areas in New York
- · Results:
 - GoSki New York New York ski areas, snow ...
 - NY ski areas on "I Love NY" tourism guide
 - Ski areas in the Adirondack region
 - Press Releases
 - Lake Placid
 - Ski areas in Central NY
 - Ski areas in Cortland County
 - Ski areas in the United States
 - Nordic skiing ski areas wrap up season
 - Greek Peek
 - AYH near ski areas

Relevance

- · Relevance is difficult to define satisfactorily
- A relevant document is one judged useful in the context of a query
 - Who judges?
 - What is "useful"?
 - Issue of serendipitous utility
 - Humans aren't consistent in their judgments
 - Judgment depends on more than the document and query
- With real collections, the full set of relevant documents is never known
- All retrieval models include an implicit definition of relevance

Test Collections

- Retrieval performance is compared using a test collection
 - Set of documents, set of queries, set of relevance judgments
- · To compare two techniques
 - Each technique is used to evaluate queries
 - Results (set or ranked list) compared using some metric
 - Most common measures: precision, recall
- Usually use multiple measures to get different perspectives
- Usually test with multiple test collections because performance is collection-dependent to some extent

Sample Test Collections

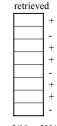
	Cranfield	CACM	ISI	TREC2
Size (documents)	1,400	3,204	1,460	742,611
Size (MB)	1.5	2.3	2.2	2,162
Year created	1968	1983	1983	1991
Word stems	8,226	5.493	5,448	1,040,415
Stem occurrences	123,200	117,578	98,304	243,800,000
Avg DocLen (words)	88	37	67	328
Queries	225	50	35	100

Finding Relevant Documents

- For small test collections, can review all documents for a query
- · Not practical for large collections
- Pooling
 - Retrieve documents using several techniques
 - Judge top n documents for each technique
 - Relevant set is union of relevant documents from each technique
 - Relevant set is a subset of the true relevant set
- · Possible to estimate size of true relevant set by sampling
- · When testing:
 - How should unjudged documents be treated?
 - How might this affect the results?

Evaluation Metrics: Precision and Recall

· Recall


 Percentage of all relevant documents that are found by a search

$$R = \frac{\text{\# of relevant items retrieved}}{\text{\# of relevant items in collection}}$$

Precision

Percentage of retrieved documents that are relevant

$$P = \frac{\text{# of relevant items retrieved}}{\text{# of items retrieved}}$$

$$R = 5/10 = 50\%$$

$$P = 5/8 = 62.5\%$$

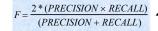
Evaluation Metrics: Precision and Recall

Precision and recall are well-defined for unranked retrieval

- Unranked retrieval produces a set of documents

· For ranked retrieval

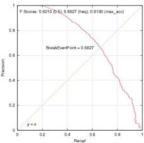
- The entire collection is ranked (in theory)
 - Compute P at fixed recall points (e.g. precision at 20% recall)
 - Compute P at fixed rank cutoffs (e.g. precision at rank 20)


Recall Method A Method B 0 88.20 90.8 (+2.9) 10 82.40 86.1 (+4.5) 20 77.00 79.8 (+3.6) 30 77.10 75.6 (+5.4) 40 65.10 68.7 (+5.4) 50 60.30 64.1 (+6.2) 60 53.30 55.6 (+4.4) 70 44.00 47.3 (+7.5) 88 37.20 39.0 (+4.6) 99 23.10 26.6 (+15.1) 100 12.70 14.2 (+11.4) Average 555.90 58.9 (+5.3) Recall Recall Recall Recall

Precision at Fixed Rank Cutoffs

Precision	Method A	Method B
at 5 docs	84.3	88.2
at 10 docs	79.3	84.5
at 15 docs	75.1	77.3
at 20 docs	68.2	70.5
at 30 docs	59.3	60.1
at 100 docs	35.4	34.2

F-measure


harmonic average of precision and recall

- rewards results that keep recall and precision close together
 - R=40, P=60. R/P average = 50. F-measure= 48
 - R=45, P=55. R/P average = 50. F-measure= 49.5

BreakEvenPoint

break even point is the point at which recall equals precision

IR Basics

- Task definition
- Evaluation
- Statistical properties of text
 - Zipf's Law
 - Collocations and Co-occurrences

Statistical Properties of Text

- There are stable, language-independent patterns in how people use natural language
 - A few words occur very frequently; most occur rarely

most common words from Tom Sawyer

- In general

- Top 2 words ~ 10-15% of all word occurrences
- Top 50 words ~ 50% of all word occurrences

1	The	3332
	And	2972
	A	1775
	To	1725
	Of	1440
14	Tom	679
	With	preposition

Statistical Properties of Text

- The most frequent words in one corpus may be rare words in another corpus
 - Example: "computer" in CACM vs. National Geographic
- Each corpus has a different, fairly small "working vocabulary"

These properties hold in a wide range of languages

Zipf's Law

- · Zipf's Law relates a term's frequency to its rank

 - There is a constant k such that frequency * rank = k
 - Rank the terms in a vocabulary by frequency, in descending order

 f_r : frequency of term at rank r

N: total number of word occurrences

$$p_r = f_r / N$$
 and $\sum_{r=1}^{V} p_r = 1$

- Empirical observation: $p_r = A/r$, $A \approx 0.1$
- Hence: $p_r = \frac{f_r}{N} = \frac{A}{r} \rightarrow rf_r = AN$
- $k \approx N/10$ for English

Zipf's Law

Word	Frequency	$r \times p_r$	Word	Frequency	$r \times p_e$
the	1,130,021	0.059	by	118.863	0.081
of	547,311	0.058	as	109,135	0.080
to	516,635	0.082	at	101,779	0.080
a	464,736	0.098	mr	101,679	0.086
in	390,819	0.103	with	101,210	0.091
and	387,703	0.122	from	96,900	0.092
that	204,351	0.075	he	94,585	0.095
for	199,340	0.084	million	93,515	0.098
is	152,483	0.072	year	90,104	0.100
said	148,302	0.078	its	86,774	0.100
it	134,323	0.078	be	85,588	0.104
on	121,173	0.077	was	83,398	0.105

WSJ87 collection (46,449 articles, 19 million term occurrences, 132 MB)

Predicting Occurrences of Frequencies

- A word that occurs *n* times has rank $r_n = \frac{AN}{n}$
 - Example: n=50, A=0.1, N=100,000

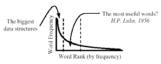
$$r_n = 0.1*100,000/50 = 200$$

- Several words may occur n times; assume rank r_n applies to last word that occurs n times
- $-r_n$ words occur more than n times
- $-r_{n+1}$ words occur more than n+1 times

Predicting Occurrences of Frequencies

- The number of words that occur exactly n times is:

$$I_n = r_n - r_{n+1} = AN/n - AN/(n+1) = AN/(n(n+1))$$


- Highest ranking term occurs once and has rank r_{max} =AN/1
- Proportion of words with frequency 1 is:

$$I_n/r_{\text{max}} = 1/(n(n+1))$$
 (independent of text length and A)

- Proportion of words occurring once is 1/2

Statistical Properties of Text

- · Summary:
 - Term usage is highly skewed, but in a predictable pattern
- · Why is it important to know the characteristics of text?
 - Optimization of data structures
 - Statistical retrieval algorithms depend on them

6 201. heir Offi

Statistical Profiles

- · Can act as a summarization device
 - Indicate what a document is about
 - Indicate what a collection is about

1987 WSJ (132 MB)	1991 Patent (254 MB)	1989 AP (267 MB)
stobb (1)	sto (1)	sto (7)
stochast (1)	stochast (21)	sto1 (4)
stock (46704)	stochiometr (1)	sto3 (1)
stockad (5)	stociometr (1)	stoaker (1)
stockard (3)	stock (1910)	stoand (1)
stockbridg (2)	stockbarg (30)	stober (6)
stockbrok (351)	stocker (211)	stocholm (1)
stockbrokag (1)	stockholm (1)	stock (28505)
stockbrokerag (101)	stockigt (4)	stock* (6)
stockdal (8)	stockmast (3)	stockad (35)
stockhold (970)	stockpil (7)	stockard (12)

Collocations and Co-occurrences

- A collocation is an expression consisting of two or more words that occur in a particular order and correspond to some conventional way of saying things
 - Noun phrases (e.g. a stiff breeze, weapons of mass destruction)
 - Phrasal verbs (e.g. to make up)
 - Stock phrases (e.g. the rich and famous, vim and vigor)
- Two words co-occur if they appear in the same context (in general) or the same text (in IR)
 - Co-occurrence patterns
 - · doctor with nurse, honorary, dentist, treat, examined, bills, etc.
 - · people and companies
 - Ted Turner with Turner Broadcasting, Atlanta Braves, etc.