
nb-2021-03-11

March 11, 2021

1 Supplementary notes for 2021-03-11

[1]: using LinearAlgebra
using Plots

1.1 Consider constraints
So far, we have considered unconstrained optimization problems. The constrained problem is

minimize ϕ(x) s.t. x ∈ Ω

where Ω ⊂ Rn. We usually define x in terms of a collection of constraint equations and inequalities:

Ω = {x ∈ Rn : ci(x) = 0, i ∈ E and ci(x) ≤ 0, i ∈ I}.

We will suppose throughout our discussions that both ϕ and all the functions c are differentiable.

If x∗ is a solution to the constrained minimization problem, we say constraint i ∈ I is active if
ci(x) = 0. Often, the hard part of solving constrained optimization problems is figuring out which
constraints are active. From this perspective, the equality constrained problem sits somewhere in
difficulty between the unconstrained problem and the general constrained problem.

Our treatment of constrained optimization is necessarily brief; but in the next two lectures, I hope
to lay out some of the big ideas. Today we will focus on formulations; next time, algorithms.

1.2 Three recipes
Most methods for constrained optimization involve a reduction to an unconstrained problem (or
subproblem). There are three ways such a reduction might work:

• We might remove variables by eliminating constraints.

• We might keep the same number of variables and try to fold the constraints into the objective
function.

• We might add variables to enforce constraints via the method of Lagrange multipliers.

These approaches are not mutually exclusive, and indeed one often alternates between perspectives
in modern optimization algorithms.

1

1.3 Constraint elimination
The idea of constraint elimination is straightforward. Suppose we want to solve an optimization
problem with only equality constraints: ci(x) = 0 for i ∈ E , where |E| < n and the constraints
are independent – that is, the |E| × n Jacobiam matrix ∂c/∂x has full row rank. Then we can
think (locally) of x satisfying the constraints in terms of an implicitly defined function x = g(y)
for y ∈ Rn−|E|. If this characterization can be made global, then we can solve the unconstrained
problem

minimize ϕ(g(y))

over all y ∈ Rn−|E|.

The difficulty with constraint elimination is that it requires that we find a global parameterization
of the solutions to the constraint equations. This is usually difficult. An exception is when the
constraints are linear:

c(x) = ATx− b

In this case, the feasible set Ω = {x : ATx − b = 0} can be written as x ∈ {xp + z : z ∈ N (A)},
where xp is a particular solution and N (A) is the null space of A. We can find both a particular
solution and the null space by doing a full QR decomposition on A:

A =
[
Q1 Q2

] [R1

0

]
.

Then solutions to the constraint equations have the form

x = A†b+Q2y = Q1R
−T
1 b+Q2y

where the first term is a particular solution and the second term gives a vector in the null space.

For problems with linear equality constraints, constraint elimination has some attractive properties.
If there are many constraints, the problem after constraint elimination may be much smaller. And
if the original problem was convex, then so is the reduced problem, and with a better-conditioned
Hessian matrix. The main drawback is that we may lose sparsity of the original problem. Con-
straint elimination is also attractive for solving equality-constrained subproblems in optimization
algorithms for problems with linear inequality constraints, particularly if those constraints are sim-
ple (e.g. elementwise non-negativity of the solution vector).

For problems with more complicated equality constraints, constraint elimination is hard. Moreover,
it may not be worthwhile; in some cases, eliminating constraints results in problems that are smaller
than the original formulation, but are harder to solve.

The idea of constraint elimination is not limited to equality constraints: one can also sometimes use
an alternate parameterization to convert simple inequality-constrained problems to unconstrained
problems. For example, if we want to solve a non-negative optimization problem (all xi ≥ 0), we
might write xi = y2i , or possibly xi = exp(yi) (though in this case we would need to let yi → −∞
to exactly hit the constraint). But while they eliminate constraints, these re-parameterizations can
also destroy nice features of the original problem (e.g. convexity). So while such transformations
are a useful part of the computational arsenal, they should be treated as one tool among many,
and not always as the best tool available.

2

1.4 Penalties and barriers
Constraint elimination methods convert a constrained to an unconstrained problem by changing
the coordinate system in which the problem is posed. Penalty and barrier methods accomplish the
same reduction to the unconstrained case by changing the function.

As an example of a penalty method, consider the problem

minimize ϕ(x) +
1

2µ

∑
i∈E

ci(x)
2 +

1

2µ

∑
i∈I

max(ci(x), 0)2.

When the constraints are violated (ci > 0 for inequality constraints and ci ̸= 0 for equality con-
straints), the extra terms (penalty terms) beyond the original objective function are positive; and
as µ → 0, those penalty terms come to dominate the behavior outside the feasible region. Hence
as we let µ → 0, the solutions to the penalized problem approach solutions to the original (true)
problem. At the same time, as µ → 0 we have much wilder derivatives of ϕ, and the optimization
problems become more and more problematic from the perspective of conditioning and numerical
stability. Penalty methods also have the potentially undesirable property that if any constraints
are active at the true solution, the solutions to the penalty problem tend to converge from outside
the feasible region. This poses a significant problem if, for example, the original objective function
ϕ is undefined outside the feasible region.

As an example of a barrier method, consider the purely inequality constrained case, and approxi-
mate the original constrained problem by the unconstrained problem

minimize ϕ(x)− µ
∑
i∈I

log(−ci(x)).

As ci(x) approaches zero from below, the barrier term −µ log(−ci(x)) grows rapidly; but at any
fixed x in the interior of the domain, the barrier goes to zero as µ goes to zero. Hence, as µ → 0
through positive values, the solution to the barrier problem approaches the solution to the true prob-
lem through a sequence of feasible points (i.e. approximate solutions that satisfy the constraints).
Though the feasibility of the approximations is an advantage over penalty based formulations, inte-
rior formulations share with penalty formulations the disadvantage that the solutions for µ > 0 lie
at points with increasingly large derivatives (and bad conditioning) if the true solution has active
constraints.

There are exact penalty formulations for which the solution to the penalized problem is an exact
solution for the original problem. Suppose we have an inequality constrained problem in which the
feasible region is closed and bounded, each constraint ci has continuous derivatives, and ∇ci(x) ̸= 0
at any boundary point x where constraint i is active. Then the solution to the problem

minimize ϕ(x) +
1

µ

∑
i

max(ci(x), 0)

is exactly the solution to the original constrained optimization problem for some µ > 0. In this
case, we used a nondifferentiable exact penalty, but there are also exact differentiable penalties.

1.5 Lagrange multipliers
Picture a function ϕ : Rn → R; if you’d like to be concrete, let n = 2. Absent a computer, we might
optimize of ϕ by the physical experiment of dropping a tiny ball onto the surface and watching

3

it roll downhill (in the steepest descent direction) until it reaches the minimum. If we wanted to
solve a constrained minimization problem, we could build a great wall between the feasible and
the infeasible region. A ball rolling into the wall would still roll freely in directions tangent to the
wall (or away from the wall) if those directions were downhill; at a constrained miminizer, the force
pulling the ball downhill would be perfectly balanced against an opposing force pushing into the
feasible region in the direction of the normal to the wall. If the feasible region is {x : c(x) ≤ 0}, the
normal direction pointing inward at a boundary point x∗ s.t. c(x∗) = 0 is proportional to −∇c(x∗).
Hence, if x∗ is a constrained minimum, we expect the sum of the “rolling downhill” force (−∇ϕ)
and something proportional to −∇c(x∗) to be zero:

−∇ϕ(x∗)− µ∇c(x∗) = 0.

The Lagrange multiplier µ in this picture represents the magnitude of the restoring force from the
wall balancing the tendency to roll downhill.

More abstractly, and more generally, suppose that we have a mix of equality and inequality con-
straints. We define the Lagrangian

L(x, λ, µ) = ϕ(x) +
∑
i∈E

λici(x) +
∑
i∈I

µici(x).

The Karush-Kuhn-Tucker (KKT) conditions for x∗ to be a constrained minimizer are

∇xL(x∗) = 0

ci(x∗) = 0, i ∈ E equality constraints
ci(x∗) ≤ 0, i ∈ I inequality constraints

µi ≥ 0, i ∈ I non-negativity of multipliers
ci(x∗)µi = 0, i ∈ I complementary slackness

where the (negative of) the “total force” at x∗ is

∇xL(x∗) = ∇ϕ(x∗) +
∑
i∈E

λi∇ci(x∗) +
∑
i∈I

µi∇ci(x∗).

The complementary slackness condition corresponds to the idea that a multiplier should be nonzero
only if the corresponding constraint is active (a “restoring force” is only present if our test ball is
pushed into a wall).

Like the critical point equation in the unconstrained case, the KKT conditions define a set of
(necessary but not sufficient) nonlinear algebraic equations that must be satisfied at a minimizer.
Because of the multipliers, we have more variables than were present in the original problem.
However, the Jacobian matrix (KKT matrix)

J =

[
∇2

xL(x∗) ∇c
(∇c)T 0

]
has a saddle point structure even when ∇2

xϕ is positive definite. Also, unlike the penalty and barrier
approaches described before, the Lagrange multiplier approach requires that we figure out which
multipliers are active or not — an approach that seems to lead to a combinatorial search in the
worst case.

4

1.6 Lay of the Land
As we mentioned before, problems with inequality constraints tend to be more difficult than prob-
lems with equality constraints alone, because it involves the combinatorial subproblem of figuring
out which constraints are active (a constraint ci(x) ≤ 0 is active if ci(x) = 0 at the optimum). Once
we have figured out the set of active constraints, we can reduce an inequality-constrained problem
to an equality-constrained problem. Hence, the purely equality-constrained case is an important
subproblem for inequality-constrained optimizers, as well as a useful problem class in its own right.

For problems with only equality constraints, there are several standard options:

• Null space methods deal with linear equality constraints by reducing to an unconstrained
problem in a lower-dimensional space.

• Projected gradient methods deal with simple equality constraints by combining a (scaled)
gradient step and a projection onto a constraint set.

• Penalty methods approximately solve an equality-constrained problem through an uncon-
strained problem with an extra term that penalizes proposed soutions that violate the con-
straints. That is, we use some constrained minimizer to solve

minimize ϕ(x) +
1

µ

∑
i∈E

ci(x)
2.

As µ → 0, the minimizers to these approximate problems approach the true minimizer,
but the Hessians that we encounter along the way become increasingly ill-conditioned (with
condition number proportional to µ−1).

• KKT solvers directly tackle the first-order optimality conditions (the KKT conditions), si-
multaneously computing the constrained minimizer and the associated Lagrange multipliers.

• Augmented Lagrangian methods combine the advantages of penalty methods and the advan-
tages of the penalty formulation. In an augmented Lagrangian solver, one finds critical points
for the augmented Lagrangian

L(x, λ;µ) = ϕ(x) +
1

µ

∑
i∈E

ci(x)
2 + λT c(x)

by alternately adjusting the penalty parameter µ and the Lagrange multipliers.

In the inequality-constrained case, we have

• Active set methods solve (or approximately solve) a sequence of equality-constrained subprob-
lems, shuffling constraints into and out of the proposed working set along the way. These
methods are particularly attractive when one has a good initial estimate of the active set.

• Projected gradient methods deal with simple inequality constraints by combining a (scaled)
gradient step and a projection onto a constraint set.

• Barrier methods and penalty methods add a term to the objective function in order to penalize
constraint violations or near-violations; as in the equality-constrained case, a parameter µ
governs a tradeoff between solution quality and conditioning of the Hessian matrix.

• Interior point methods solve a sequence of barrier subproblems using a continuation strategy,
where the barrier or penalty parameter µ is the continuation parameter. This is one of the

5

most popular modern solver strategies, though active set methods may show better perfor-
mance when one “warm starts” with a good initial guess for the solution and the active set
of constraints.

As with augmented Lagrangian strategies in the equality-constrained case, state-of-the art strategies
for inequality-constrained problems often combine approaches, using continuation with respect to
a barrier parameters as a method of determining the active set of constraints in order to get to
an equality-constrained subproblem with a good initial guess for the solution and the Lagrange
multipliers.

The sequential quadratic programming (SQP) approach for nonlinear optimization solves a sequence
of linearly-constrained quadratic optimization problems based on Taylor expansion of the objective
and constraints about each iterate. This generalizes simple Newton iteration for unconstrained
optimization, which similarly solves a sequence of quadratic optimization problems based on Taylor
expansion of the objective. Linearly-constrained quadratic programming problems are hence an
important subproblem in SQP solvers, as well as being an important problem class in their own
right.

1.7 Quadratic programs with equality constraints
We begin with a simple case of a quadratic objective and linear equality constraints:

ϕ(x) =
1

2
xTHx− xTd

c(x) = ATx− b = 0,

where H ∈ Rn×n is symmetric and positive definite on the null space of AT (it may be indefinite or
singular overall), A ∈ Rn×m is full rank with m < n, and b ∈ Rm. Not only are such problems useful
in their own right, solvers for these problems are also helpful building blocks for more sophisticated
problems — just as minimizing an unconstrained quadratic can be seen as the starting point for
Newton’s method for unconstrained optimization.

[2]: # Set up a test problem for linearly-constrained QP (2D so that we can plot)
H = [4.0 1.0 ;

1.0 4.0]
d = [0.5 ; -2.0]
A = [1.0 ; 1.0]
b = [1.0]

�1(xy) = xy'*H*xy/2 - xy'*d
c1(xy) = A'*x - b

xx = range(-3, 3, length=100)
plot(xx, xx, (x,y) -> �1([x; y]), st=:contour, legend=false)
plot!(xx, 1.0 .- xx, linewidth=2)

[2]:

6

1.7.1 Constraint elimination (linear constraints)

As discussed last time, we can write the space of solutions to the constraint
equations in terms of a (non-economy) QR decomposition of A:

A =
[
Q1 Q2

] [R1

0

]
where Q2 is a basis for the null space of AT. The set of solutions satisfying
the constraints ATx = b is

Ω = {u+Q2y : y ∈ R(n−m), u = Q1R
−T
1 b};

here u is a particular solution to the problem. If we substitute this
parameterization of Ω into the objective, we have the unconstrained problem

minimize ϕ(u+Q2y).

While we can substitute directly to get a quadratic objective in terms of y,
it is easier (and a good exercise in remembering the chain rule) to compute the
stationary equations

0 = ∇yϕ(u+Q2y) =

(
∂x

∂y

)T

∇xϕ(u+Q2y)

= QT
2 (H(Q2y + u)− d) = (QT

2 HQ2)y −QT
2 (d−Hu).

7

In general, even if A is sparse, Q2 may be dense, and so even if H is dense, we
find that QT

2 HQ2 is dense.

[3]: # Solve the 2-by-2 problem via a null-space approach

F = qr(A)
Q = F.Q * I
Q1 = Q[:,[1]]
Q2 = Q[:,[2]]

u = Q1*(F.R'\b)
H22 = Q2'*H*Q2
r2 = Q2'*(d-H*u)
y = H22\r2
x = u + Q2*y

xx = range(-3, 3, length=100)
plot(xx, xx, (x,y) -> �1([x; y]), st=:contour, legend=false)
plot!(xx, 1.0 .- xx, linewidth=2)
plot!([u[1]], [u[2]], markercolor=:white, marker=true)
plot!([x[1]], [x[2]], marker=true)

[3]:

Finding a particular solution and a null space basis via QR is great for
numerical stability, but it may not be ideal when the matrices involved are

8

sparse or structured. An alternative is to use a sparse LU factorization of AT:

PATQ = L
[
U1U2

]
.

where the U1 submatrix is upper triangular. A particular solution is then

x = Q

[
U−1
1 L−1Pb

0

]
and the null space is spanned by

QT

[
−U−1

1 U2

I

]
This reformulation may be particularly attractive if A is large, sparse, and
close to square. Note that pivoting on rectangular constraint matrices needs to
be done carefully, e.g. using so-called rook pivoting strategies that maintain
numerical stability on full-rank matrices with rank-deficient submatrices.

1.7.2 Projected gradient and conjugate gradients

The projected gradient is a variant of gradient descent for constrained problem.
One assumes that we have a projection operator P such that P (x) is the closest
point to x satisfying the constraint; the iteration is then

xk+1 = P (xk − αk∇ϕ(xk)) .

That is, we take an (unconstrained) gradient descent step, then project back to
satisfy the constraint. It's an easy enough method to code, provided you have the
projection P.

For our linear equality constraints the projection can be computed by a least
squares type of solve:

P (x) = x+A(ATA)−1(b−ATx)

= (AT)†b+ (I −AA†)x

= (AT)†b+ (I −Π)x

Note that (AT)†b is the minimal norm solution to the constraint equation, and the
range space of I − Π = I − AA† is the null space of AT, so this is similar to
the picture we saw with the constraint elimination approach. And, of course, the
gradient in this case is just the residual rk = Hxk − d.

If we start with a point x0 that is consistent with the constraints, then each
successive point remains on our linear constraint surface; in this case, we can
simplify the iteration to

xk+1 = xk − αk(I −Π)rk

This is a stationary iteration for the underdetermined consistent equation

(I −Π)(Hxk − d) = 0.

Unfortunately, the projected gradient iteration may converge rather slowly.
A tempting thought is to use a scaled version of the gradient, but the naive

9

version of this iteration will in general converge to the wrong point unless the
projection operator is re-defined in terms of the distance associated with the
same scaling matrix.

If the relevant projection is available, a potentially more attractive route for
this problem is to write x = u + z for some particular solution u (as in the null
space approach) and then use a method like conjugate gradients on the system

(I −Π)H(I −Π)z = (I −Π)(d−Hu)

It turns out that the Krylov subspace generated by this iteration remains
consistent with the constraint, and so -- somewhat surprisingly at first glance
-- the method continues to work even though (I −Π)H(I −Π) is singular.

1.7.3 Penalties and conditioning

Now consider a penalty formulation of the same equality-constrained optimization
function, where the penalty is quadratic:

minimize ϕ(x) +
1

2µ
∥ATx− b∥2.

In fact, the augmented objective function is again quadratic, and the critical
point equations are

(H + µ−1AAT)x = d+ µ−1Ab.

If µ is small enough and the equality-constrained quadratic program (QP) has a
minimum, then H+µ−1AAT is guaranteed to be positive definite. This means we can
solve via Cholesky; or (if the linear system is larger) we might use conjugate
gradients.

We can analyze this more readily by changing to the Q basis from the QR
decomposition of A that we saw in the constraint elimination approach:[

QT
1 HQ1 + µ−1R1R

T
1 QT

1 HQ2

QT
2 HQ1 QT

2 HQ2

]
(QTx) =

[
QT

1 d+ µ−1R1b
QT

2 d

]
Taking a Schur complement, we have

(µ−1R1R
T
1 + F)(QT

1 x) = µ−1R1b− g

where
F = QT

1 HQ1 −QT
1 HQ2(Q

T
2 HQ2)

−1QT
2 HQ1

g = [I −QT
1 HQ2(Q

T
2 HQ2)

−1QT
2]d

As µ → 0, the first row of equations is dominated by the µ−1 terms, and we are
left with

R1R
T
1 (Q

T
1 x)−R1b → 0

i.e. Q1Q
T
1 x is converging to u = Q1R

−T
1 b, the particular solution that we saw

in the case of constraint elimination. Plugging this behavior into the second
equation gives

(QT
2 HQ2)(Q

T
2 x)−QT

2 (d−Hu) → 0,

10

i.e. QT
2 x asymptotically behaves like y in the previous example. We need large

µ to get good results if the constraints are ill-posed or if QT
2 HQ2 is close to

singular. But in general the condition number scales like O(µ−1), and so large
values of µ correspond to problems that are numerically unattractive, as they may
lead to large errors or (for iterative solvers) to slow convergence.

[4]: # Demonstrate the solve with a moderate penalty

� = 1e-4
xhat = (H+A*A'/�)\(d+A*b[1]/�)
println("Error at �=$�: $(xhat-x)")

xx = range(-3, 3, length=100)
plot(xx, xx, (x,y) -> �1([x; y]), st=:contour, legend=false)
plot!(xx, 1.0 .- xx, linewidth=2)
plot!([u[1]], [u[2]], markercolor=:white, marker=true)
plot!([xhat[1]], [xhat[2]], marker=true)

Error at �=0.0001: [-0.00016245938500225598, -0.0001624593853049583]
[4]:

[5]: # Vary penalty to illustrate issues -- uniform improvement with smaller penalty␣
↪→until ill-conditioning kills us

�s = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11,␣
↪→1e-12, 1e-13, 1e-14]

11

errs = []
for � in �s

xhat = (H+A*A'/�)\(d+A*b[1]/�)
push!(errs, norm(xhat-x))

end
plot(�s, errs, xscale=:log10, yscale=:log10)

[5]:

1.7.4 Lagrange multipliers and KKT systems

The KKT conditions for our equality-constrained problem say that the gradient of

L(x, λ) = ϕ(x) + λT (ATx− b)

should be zero. In matrix form, the KKT system (saddle point system)[
H A
AT 0

] [
x
λ

]
=

[
d
b

]
.

If A and H are well-conditioned, then so is this system, so there is no bad
numerical behavior. The system also retains whatever sparsity was present in
the original system matrices H and A. However, adding the Lagrange multipliers
not only increases the number of variables, but the extended system lacks any
positive definiteness that H may have.

When there are relatively few constraints and a fast solver with H is available,
an attractive way to solve this KKT system is the so-called range-space method,

12

which we recognize as just block Gaussian elimination:

ATH−1Aλ = ATH−1d− b

x = H−1(d−Aλ)

Rewritten as we might implement it, we have

Hx0 = d

HY = A

(ATY)λ = ATx0 − b

x = x0 − Y λ

The KKT system is closely related to the penalty formulation that we saw in
the previous subsection, in that if we use Gaussian elimination to remove the
variable λ in [

H A
AT −µI

] [
x̂
λ

]
=

[
d
b

]
,

we have the Schur complement system

(H + µ−1AAT)x̂ = d+ µ−1Ab,

which is identical to the stationary point condition for the quadratically
penalized objective.

[6]: x� = [H A; A' 0.0] \ [d; b]
println("Error: $(x-x�[1:end-1])")
println("� = $(x�[end])")
println("��(x) = $(H*x�[1:end-1]-d)")
println("� × �c(x) = $(x�[end]) × $A = $(x�[end]*A)")

Error: [-2.220446049250313e-16, -6.938893903907228e-17]
� = -3.25
��(x) = [3.25, 3.25]
� × �c(x) = -3.25 × [1.0, 1.0] = [-3.25, -3.25]

Note that the constrained stationarity condition

∇ϕ(x∗) + λ∇c(x∗) = 0,

and we can use this to estimate the Lagrange multipliers from an approximation
via a penalty method.

[7]: � = 1e-4
xhat = (H+A*A'/�)\(d+A*b[1]/�)
r = H*xhat-d
println("� � $(-norm(r)^2/(A'*r))")

� � -3.2491877030742313

13

1.7.5 Uzawa iteration

Block Gaussian elimination is an attractive approach when we have a fast solver
for H and there are not too many constraints. When there are a relatively large
number of constraints, we might seek an alternate method. One such method is the
Uzawa iteration

Hxk+1 = d−Aλk

λk+1 = λk + ω(ATxk+1 − b)

where ω > 0 is a relaxation parameter. We can eliminate xk+1 to get the iteration

λk+1 = λk + ω(ATH−1(d−Aλk)− b) = (I − ωATH−1A)λk + ω(ATH−1d− b),

which is a Richardson iteration on the Schur complement equation (ATH−1A)λ =
ATH−1d − b. We can precondition and accelerate the Uzawa iteration in a variety
of ways, as you might guess from our earlier discussion of iterative methods for
solving linear systems.

1.7.6 Augmenting the Lagrangian

From a solver perspective, the block 2-by-2 structure of the KKT system looks
highly attractive. Alas, we do not require that H be positive definite, nor even
that it be nonsingular; to have a unique global minimum, we only need positive
definiteness of the projection of H onto the null space (i.e. QT

2 HQ2 should be
positive definite). This means we cannot assume that (for example) H will admit
a Cholesky factorization.

The augmented Lagrangian approach can be seen as solving the constrained system

minimize
1

2
xTHx− dTx+

1

2µ
∥ATx− b∥2 s.t. ATx = b.

The term penalizing nonzero ∥ATx − b∥ is, of course, irrelevant at points
satisfying the constraint ATx = b. Hence, the constrained minimum for this
augmented objective is identical to the constrained minimum of the original
objective. However, if the KKT conditions for the modified objective take the
form [

H + µ−1AAT A
AT 0

] [
x
λ

]
=

[
d+ µ−1Ab

b

]
.

Now we do not necessarily need to drive µ to zero to obtain a good solution; but
by choosing µ small enough, we can ensure that H + µ−1AAT is positive definite
(assuming that the problem is convex subject to the constraint). This can be
helpful when we want to use a Cholesky factorization or a method like CG, but the
original H matrix is indefinite or singular.

[8]: # Set up a non-positive-definite problem for linearly-constrained QP (2D so␣
↪→that we can plot)

H = [4.0 1.0 ;
1.0 -1.0]

d = [0.5 ; -2.0]
A = [1.0 ; 1.0]

14

b = 1.0

�2(xy) = xy'*H*xy/2 - xy'*d
c2(xy) = A'*xy - b
�3(xy) = �2(xy) + 3*norm(c2(xy))^2
xy_sol = [H A; A' 0.0] \ [d; b]

xx = range(-3, 3, length=100)
plot(xx, xx, (x,y) -> �2([x; y]), st=:contour, legend=false)
plot!(xx, xx, (x,y) -> �3([x; y]), st=:contour, linestyle=:dash)
plot!(xx, 1.0 .- xx, linewidth=2)
plot!([xy_sol[1]], [xy_sol[2]], marker=true)

[8]:

[9]: # Sanity check: do we have a constrained min (vs max or saddle)?
plot(xx, [�2([x; 1.0-x]) for x in xx], legend=false)
plot!(xx, [�3([x; 1.0-x]) for x in xx], linestyle=:dash)

[9]:

15

[10]: # Find the solution via method of Lagrange multipliers
x� = [H A; A' 0.0] \ [d; b]

[10]: 3-element Array{Float64,1}:
0.5
0.5

-2.0

[11]: # Augment the Lagrangian so the (1,1) submatrix is positive definite
� = 2.0
x�_augmented = [H+A*A'/� A; A' 0.0] \ [d+A*b[1]/�; b]

[11]: 3-element Array{Float64,1}:
0.4999999999999999
0.5

-1.9999999999999996

1.8 Quadratic programs with inequality constraints
We now consider a quadratic objective with linear inequality constraints:

ϕ(x) =
1

2
xTHx− xTd

c(x) = ATx− b ≤ 0,

16

where H ∈ Rn×n is symmetric and positive definite, A ∈ Rn×m with m < n, and b ∈
Rm. The KKT conditions for this problem are

Hx− d+Aλ = 0

ATx− b ≤ 0

λ ≥ 0

λi(A
Tx− b)i = 0.

The active set is the set of i such that (ATx − b)i = 0. We assume that the active
columns of A are always linearly independent (e.g. 0 ≤ xi and xi ≤ 1 can co-exist,
but it is not OK to have both xi ≤ 1 and xi ≤ 2).

Examples are always good, as are pictures. We will borrow the following 2D
example from Nocedal and Wright (Example 16.3).

[12]: # Objective in Nocedal and Wright: �(x) = (x[1]-1.0)^2 + (x[2]-2.5)^2
We will get rid of a constant term to get it to our usual form (and scale␣
↪→by 1/2)

#
H = [1.0 0.0; 0.0 1.0]
d = [1.0; 2.5]

Constraints per Nocedal and Wright -- we rewrite so the inequality goes the␣
↪→other way

x1 - 2 x2 + 2 � 0
-x1 - 2 x2 + 6 � 0
-x1 + 2 x2 + 2 � 0
x1 � 0
x2 � 0
#
A = [-1.0 2.0 ;

1.0 2.0 ;
1.0 -2.0 ;

-1.0 0.0 ;
0.0 -1.0]'

b = [2.0; 6.0; 2.0; 0.0; 0.0]

Draw a plot of the quadratic and the constraints
function plot_ex16_3()

q(x,y) = (x-1.0)^2 + (y-2.5)^2
corners = [0.0 0.0 ;

2.0 0.0 ;
4.0 1.0 ;
2.0 2.0 ;
0.0 1.0]

xx = range(-1.0, 4.0, length=101)
p = plot(corners[:,1], corners[:,2], st=:shape)
plot!(xx, xx, q, st=:contour, legend=false)

17

p
end

plot_ex16_3()
[12]:

1.8.1 An active set approach

At the kth step in an active set QP solver, we update an iterate xk approximating
the constrained minimizer and we update a corresponding working set Wk

approximating the active set. A step of this solver looks like:

1. Choose a step pk by minimizing the quadratic form assuming the constraints
in Wk are the active constraints. This gives an equality-constrained
subproblem.

2. If pk is zero, then

1. Compute the Lagrange multipliers associated with the set Wk.

2. If all the multipliers are non-negative, terminate.

3. Otherwise, let λj be the most negative multiplier, and set Wk+1 = Wk \
{j}

3. Otherwise pk ̸= 0.

18

1. Advance xk+1 = xk + αkp
k where the step length αk is the largest allowed

value (up to one) such that xk+1 is feasible.

2. If αk < 1, then there is (at least) one blocking constraint j such that
(ATxk+1 − b)j = 0 and j ̸∈ Wk. Update Wk+1 = Wk ∪ {j}.

If we do not attempt any particular efficiency, this is mostly straightforward to
code.

[13]: function qp_as(x0, H, d, A, b; ptol=1e-8, W0=[], nsteps=100, monitor=(x,␣
↪→W)->nothing)

n = length(x0)
m = length(b)
W = zeros(Bool, m)

x = copy(x0)
p = zeros(n)
� = zeros(m)
W[W0] .= true
monitor(x, W)

Compute Cholesky factorization for range space solver
F = cholesky(H)
L = F.L
Y = L\A
c = L\d

for k = 1:nsteps

Solve the equality constrained subproblem (range space method) ␣
↪→

�[:] .= 0.0
�[W] = (Y[:,W]'*Y[:,W])\(Y[:,W]'*c - b[W])
p[:] = L'\(c-Y[:,W]*�[W])-x

if norm(p) < ptol

Find most negative multiplier (if there is one)
min� = 0.0
j = 0
for k = 1:m

if �[k] < min�
min� = �[k]
j = k

end
end

19

if j == 0
return x # All multipliers non-negative, done!

else
W[j] = false # Release jth constraint

end

else

Figure out step (and any blocking constraint)
� = 1.0
r = b-A'*x
u = A'*p
blocking_idx = 0
for k = 1:m

if !(k in W) && (�*u[k] > r[k])
� = r[k]/u[k]
blocking_idx = k

end
end

Take step and update list of active constraints
x[:] += �*p
if blocking_idx > 0

W[blocking_idx] = true
end
monitor(x, W)

end
end
error("Did not converge after $nsteps steps")

end

[13]: qp_as (generic function with 1 method)

[14]: xhist = []
xsol = qp_as([2.0; 0.0], H, d, A, b, W0=[3 5], monitor=(x, W) -> push!(xhist,␣
↪→copy(x)))

println("x = $xsol")

p = plot_ex16_3()
plot!([x[1] for x in xhist], [x[2] for x in xhist], marker=true, linewidth=3,␣
↪→linestyle=:dash, color=:black)

x = [1.4, 1.7]
[14]:

20

A few remarks about this strategy are in order:

• The strategy is guaranteed not to cycle --- the working set at any given
iterate is distinct from the working set at any other iterate. Assuming the
steps are computed exactly (via Newton), the iteration converges in a finite
number of steps. That said, there are an exponential number of working sets;
and, as with the simplex method for linear programming, there are examples
where the algorithm may have exponential complexity because of the cost of
exploring all the working set. But, as with the simplex method, this is not
the common case.

• The strategy only changes the working set by adding or removing one
constraint at a time. Hence, if A is the true active set, the number of
steps required is at least |W0|+ |A|−2|W0∩A|. This is bad news if there are
many possible constraints and we lack a good initial guess as to which ones
will be active.

• If we compute the steps pk as described above, the cost per step (after
an initial factorization of the Hessian and triangular solves on the
constraints) would appear to be O(n2 + n|Wk|2). In practice, though, each
linear system differs from the previous system only through the addition
or deletion of a constraint. If we are clever with our numerical linear
algebra, and re-use the factorization work already invested through updating
and downdating, we can reduce the cost per step.

21

1.8.2 Barriers: hard and soft

Before we proceed, a word is in order about the relationship between Lagrange
multipliers and barriers or penalties. To be concrete, let us consider the
inequality-constrained problem

minimize ϕ(x) s.t. c(x) ≤ 0,

where c : Rn → Rm with m < n, and the inequality should be interpreted
elementwise. In a barrier formulation, we approximate the problem by problems
of the form

minimize ϕ(x)− µ
m∑
j=1

log(−cj(x)),

where the second term shoots to infinity as cj(x) → 0; but for any fixed cj(x) < 0
it becomes negligible once µ is small enough. Differentiating this objective
gives us the critical point equations

∇ϕ(x̂(µ))−
m∑
j=1

µ

cj(x̂(µ))
∇cj(x̂(µ)) = 0.

By way of comparison, if we were to try to exactly optimize this inequality
constrained problem, we would want to satisfy the KKT conditions

∇ϕ(x) +∇c(x)λ = 0

c(x) ≤ 0

λ ≥ 0

λj(x)cj(x) = 0.

Comparing the two, we see that the quantities λ̂j(µ) ≡ −µ/cj(x∗(µ)) should
approximate the Lagrange multipliers: they play the same role in the equation
involving the gradient of ϕ, they are always positive for µ > 0, and λ̂j(x∗(µ)) → 0
provided cj(x∗(µ)) ̸→ 0.

I like to think of barriers and penalties in physical terms as being like
slightly flexible walls. In real life, when you push on a wall, however stiff,
there is a little bit of give. What we see as an opposing force generated by
a rigid wall is really associated with that little bit of elastic give. But a
good idealization is that of a perfectly rigid wall, which does not give at all.
Instead, it responds to conctact with exactly the amount of force normal to the
wall surface that is required to counter any force pushing into the wall. That
equal-and-opposite force is exactly what is captured by Lagrange multipliers,
where the very stiff elastic response is captured by the barrier or penalty
formulation, with the parameter µ representing the compliance of the barrier
(inverse stiffness).

The weakness of a penalty or barrier approach is two-fold: if µ is far from zero,
we have a thick and spongy barrier (a poor approximation to the infinitely rigid
case); whereas if µ is close to zero, we have a nearly-rigid barrier, but the
Hessian of the augmented barrier function becomes very ill-conditioned, scaling

22

like µ−1. In contrast, with a Lagrange multiplier formulation, we have a perfect
barrier and no problems with ill-conditioning, but at the cost of having to
explicitly determine whether the optimum is at one or more of the constraint
surfaces, and also what ``contact forces'' are needed to balance the negative
gradient of ϕ that pushes into the barrier.

Several modern algorithmic approaches, such as augmented Lagrangian and interior
point methods, get the best of both perspectives by combining a penalty or
barrier term with a Lagrange multiplier computation.

1.8.3 An interior point strategy

Having touched on the relation between Lagrange multipliers and logarithmic
barriers, let us now turn to an interior point method for quadratic programming.
We start by rewriting the constraints ATx−b ≤ 0 in terms of an extra set of slack
variables:

y = b−ATx ≥ 0.

With this definition, we write the KKT conditions as

Hx− d+Aλ = 0

ATx− b+ y = 0

λiyi = 0

yi, λi ≥ 0.

Interior point methods solve this system by applying Newton-like iterations to
the three equations, while at the same time ensuring that the inequalities are
enforced strictly at every step (that is, every step is interior to the feasible
domain).

Compare this to the critical point conditions for the barrier problem

minimize
1

2
xTHx− xTd− γ

m∑
j=1

log(yj)

for some small value of the barrier parameter γ, where we note that

∇x

−γ
n∑

j=1

log(yj)

 = Aλ̂, λ̂j =
γ

yj

and we can rewrite this system as

Hx− d+Aλ = 0

ATx− b+ y = 0

yiλi − γ = 0.

Typical interior point methods take guarded Newton steps (or Newton-like steps)
on this system of equations, which can be regarded as a relaxation of the KKT
conditions or as a critical point of a barrier formulation. The path traced out
as µ varies is known as the ``central path.''

23

[15]: function barrier_qp(x0, H, d, A, b, �; nsteps=20, ptol=1e-8)

n = length(d)
m = length(b)
� = 0.5

x = copy(x0)
y = b-A'*x
� = �./y

F(x, y, �) = [H*x - d + A*�;
A'*x - b + y;
y.*� .- �]

J(x, y, �) = [H zeros(n,m) A;
A' I zeros(m,m);
zeros(m,n) diagm(�) diagm(y)]

� = 1.0
p = -(J(x, y, �) \ F(x, y, �))
for k = 1:nsteps

xnew = x + �*p[1:n]
if all(A'*xnew-b .<= 0.0)

x = xnew
y += �*p[n+1:n+m]
� += �*p[n+m+1:end]
if � == 1.0 && norm(p) < ptol

return x, �
end
� = 1.0
p = -(J(x, y, �) \ F(x, y, �))

else
� /= 2.0

end
end

error("Did not converge in $nsteps steps")
end

[15]: barrier_qp (generic function with 1 method)

[16]: x = [2.0; 1.0]

p = plot_ex16_3()
plot!([x[1]], [x[2]], marker=true, color=:black)
for s = 1:10

x, � = barrier_qp(x, H, d, A, b, 2.0^(1-s))
plot!([x[1]], [x[2]], marker=true, color=:black)

24

end
p

[16]:

The parameter γ is adjusted dynamically during the solve, and is usually written
as γ = σµ where σ ∈ [0, 1] is the centering parameters and µ = yTλ/m is
the complimentarity measure, which should go to zero as we approach a problem
solution. Getting all the details right is somewhat complicated, though, and we
recommend using a package written by someone with some expertise.

Interior point methods avoid the problem of having to do a combinatorial search
to figure out the correct active set. At the same time, active set methods may
be more efficient for problems where we have a good initial guess at the active
set. Neither approach is universally preferable. Indeed, it is possible to take
a hybrid approach where an interior point method (or something similar) is used
to estimate which constraints are actually active, and then an active set method
serves to ``clean up'' the solution.

25

	Supplementary notes for 2021-03-11
	Consider constraints
	Three recipes
	Constraint elimination
	Penalties and barriers
	Lagrange multipliers
	Lay of the Land
	Quadratic programs with equality constraints
	Constraint elimination (linear constraints)
	Projected gradient and conjugate gradients
	Penalties and conditioning
	Lagrange multipliers and KKT systems
	Uzawa iteration
	Augmenting the Lagrangian

	Quadratic programs with inequality constraints
	An active set approach
	Barriers: hard and soft
	An interior point strategy

