1 Introduction

In this lecture, we finished off the low rank + sparse recovery topic from last class and laid the groundwork for fast Laplacian solvers.

2 Low Rank + Sparse

Suppose we are given a matrix A which has a low rank plus sparse decomposition $A = L + S$ with suitable low rank matrix L and sparse matrix S. In Lecture 25, we discussed methods and theory for the recovery of L and S via Principle Component Pursuit (PCP),

$$\min_{L,S} \|L\|_* + \lambda \|S\|_1,$$

subject to $A = L + S$.

Interestingly, this approach can be extended to situations in which a portion of the entries of A are missing or unknown. This is of great importance for recommender systems, which seek to use incomplete sets of user rankings to predict user preferences [1]. For a more detailed discussion, see Section 1.2 on the Netflix Prize in Lecture 25.

Let Ω represent the set of known entries (i,j) of A and let P_Ω be the orthogonal projection onto the space supported on Ω,

$$(P_\Omega X)_{ij} = \begin{cases} X_{ij} & (i,j) \in \Omega \\ 0 & \text{otherwise.} \end{cases}$$

If we only have partial information about A and want to recover L and S, we may write

$$Y = P_\Omega A = P_\Omega (L + S) = P_\Omega L + S'.$$

To recover the low rank component L of A using this incomplete data, we can reformulate [1] by relaxing the constraint on L and S:

$$\min_{L,S} \|L\|_* + \lambda \|S\|_1,$$

subject to $P_\Omega (L + S) = Y$.

Here, $Y = P_\Omega A$ represents the known entries of A. For example, in the Netflix Prize example, Y corresponds to a set of video rankings by a subset of users. Thus, the observation
operator P_Ω describes what data is visible to us, e.g. what movies have actually been ranked by which users. In this way, (2) seeks minimizers L and S that agree with the known entries of A.

In Lecture 25, Theorem 1, we saw that (1) enjoyed strong theoretical guarantees for the recovery of L and S. A similar result holds for (2). Before we present this theorem, we recall the definition of an incoherence condition.

Definition 1 (Lecture 25, Def 3) Let $L = U\Sigma V^T = \sum_{i=1}^{k} \sigma_i u_i v_i^T$ be the singular value decomposition of L. L satisfies an incoherence condition with parameter μ if the following conditions are satisfied.

1. $\max_i \|U^T e_i\|^2 \leq \frac{\mu k}{n}.$
2. $\max_i \|V^T e_i\|^2 \leq \frac{\mu k}{n}.$
3. $\|U V^T\|_\infty = \max_{ij} |(U V^T)_{ij}| \leq \sqrt{\frac{\mu k}{n^2}}.$

Speaking loosely, the incoherence condition ensures that L is not too sparse, so as to avoid an identifiability issue between L and S. Provided that the identifiability issue is avoided, we obtain a strong theoretical guarantee for the recovery of L and S, even when our knowledge of A is incomplete.

Theorem 1 (Candes et al. 2011 [1]) Suppose that L is $n \times n$ and satisfies an incoherence condition with μ, and Ω is uniformly distributed among all sets of cardinality $p = \frac{n^2}{10}$. Now, suppose each observation is corrupted with probability τ independently. Then, there is a constant c such that with probability $1 - cn^{-10}$, (2) with $\lambda = \frac{1}{\sqrt{n/10}}$ is exact. That is, if \hat{L} is a minimizer of (2), then $\hat{L} = L$ provided that

$$\text{rank}(L) \leq c_1 n \mu^{-1} (\log n)^{-2} \quad \text{and} \quad \tau \leq c_2$$

Above, c_1 and c_2 are positive numerical constants.

Note the similarities and differences between the recovery guarantees for the case where A is known fully, although some subset of data may be arbitrarily corrupted (Lecture 25, Theorem 1), and the case where A is known only partially and, again, contains some corrupted data (Theorem 1 above). They both require only modest demands on the rank of L, which grows linearly with n (apart from a log factor). In both cases, the constant c in the probability of successful recovery depends on the constants c_1 and c_2. However, note that the size of the set of corrupted entries is fixed in the complete data case and the probability of successful recovery depends (through c) on this size. In the incomplete case above, the corruption is probabilistic across the known entries and the probability of successful recovery depends (through c) on the likelihood τ that an entry is corrupted. Remarkably, in both cases the probability of failure decreases rapidly as the size n of the data increases. Finally, the choice $p = \frac{n^2}{10}$ in Theorem 1 is somewhat arbitrary. Similar statements could be proved for other choices of p, although the probability of success, the multiplier λ, and the constants $c_1, c_2,$ and c would be impacted.
3 Introduction to Laplacian Matrices

We now change topics to discuss a certain class of linear systems that can be solved in approximately linear time. These systems are described by Laplacian matrices, which we will introduce in this section.

Consider a weighted, undirected simple graph G with vertex set V, edge set E, and weights $w_{u,v} > 0$ on each edge $(u, v) \in E$. The adjacency matrix A of G is defined by

$$A_{u,v} = \begin{cases} w_{u,v} & \text{if } (u, v) \in E \\ 0 & \text{else} \end{cases}.$$

As an example, consider the graph in Figure 1. For this graph, the adjacency matrix is

$$A = \begin{pmatrix} w_{1,2} & 0 \\ w_{1,2} & w_{2,4} \\ 0 & w_{3,4} \end{pmatrix}.$$

For node $u \in V$, the degree of u is defined

$$d(u) = \sum_{v \in V} w_{u,v},$$

which is equivalent to a row sum of A. Define D to be the diagonal matrix of node degrees in G.

The Laplacian matrix of G is then $L = D - A$. It can equivalently be defined via a quadratic form: for $x \in \mathbb{R}^{|V|}$,

$$x^T L x = \sum_{(u,v) \in E} w_{u,v} (x(u) - x(v))^2.$$

In general, we can think of a Laplacian matrix L as any matrix with the following properties:

26: Low Rank + Sparse and Fast Laplacian Solvers -3
• row sums = 0
• non-positive entries off the diagonal.

Notice that $L e = (D - A) e = 0$, where e is the all ones vector. Thus the null space of L is nontrivial, and L has a 0 eigenvalue. We will generally be interested in solutions with prescribed entries of the pseudo-inverse.

Now that we’ve introduced Laplacian matrices, when do we actually want to solve systems of this type? We provide three common instances of these systems as motivation.

1. **Solving max-flow problems.** In this case, we have a weighted network that describes flow capacity over any given edge. We are interested in the maximum flow that is achievable from a given source node to a given target node. We can write this problem as a linear program. When solved with an interior point method, this requires many solutions of restricted Laplacian systems.

2. **Resistor networks.** In this case, edges are resistors with weights $\frac{1}{\text{resistance}}$. Then if i_{ext} defines a current flow in and out of given nodes, solving $L p = i_{\text{ext}}$ gives a potential value for each node. If i_{ext} describes unit flow into u and unit flow out of v, then $p(u) - p(v)$ describes the effective resistance between u and v.

3. **Solving PDEs.** Laplacian matrices often arise when discretizing PDEs. For instance, solving general elliptic PDEs with finite element methods yield Laplacian systems.

Note that the graphs in the last case have a lot of structure (e.g., lattice). We will be concerned with more general graphs, where we don’t assume anything about graph structure.

4 Fast Laplacian Solvers

In this section, we will introduce ingredients necessary for solving Laplacian systems ‘fast’. I.e., in time similar to $O\left(\text{nonzeros}(A) \log \left(\frac{1}{\varepsilon}\right) \log^c n\right)$.

Say we want to solve $L x = b$. We can do this with a Cholesky decomposition in the following way:

1. Compute $L = CC^T$, where C is lower triangular.
2. Solve $Cy = b$.
3. Solve $C^Tx = y$.

Note here that L is symmetric positive semi-definite. It has non-trivial null space, but if G is connected, it only has one 0 eigenvalue, which Cholesky can handle. On the other hand, if the graph is not connected, then L is block diagonal and can be decomposed into separate smaller Laplacian systems that describe connected subgraphs.

Steps 2 and 3 above can be solved in $O(\text{nonzeros}(C))$ time. Thus if we want to use the Cholesky decomposition in a fast solver, we need to control the sparsity of C. The following example illustrates how this can be a problem.
Example 1

Consider the matrix L corresponding to a star graph, in which the 1st column, 1st row, and diagonal are the only nonzeros.

$$
L = \begin{bmatrix}
\times & \times & \times & \cdots & \times \\
\times & \times & & & \\
\times & & \times & & \\
\vdots & & & \ddots & \\
\times & & & & \times \\
\end{bmatrix}
$$

The sparsity of L is $O(n)$ where n is the number of nodes. Now consider one “step” into the Cholesky factorization, which yields the following matrix

$$
\begin{bmatrix}
\times & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & & \text{Dense} \\
0 & & & \\
\end{bmatrix}
$$

In just one step we have returned to something with $O(n^2)$ nonzero entries.

If L is sparse, we would like to preserve this sparsity in a Cholesky factorization. One idea is to reorder the rows and columns of L in a way such that the Cholesky factorization is sparse. I.e., for a permutation matrix P, we want PLP^T to have sparse Cholesky factors. As we will see in the next lecture, one way to get to a fast solver is to

1. Compute an approximate Cholesky factorization with controlled sparsity. I.e., a Cholesky factorization of something close to L: $L \approx PCC^T P^T$. We will see how to do this by randomly throwing some stuff away at each step of the factorization.

2. Use this as a preconditioner in an iterative method in order to bound the number of iterations required.

The end algorithm requires covering both fronts: maintaining sparsity of a Cholesky factorization and bounding the number of steps in an iterative method.

References