
CS 6210: Matrix Computations
Hessenberg QR iteration

David Bindel

2025-10-29

Road map

Last lecture had two major themes:

1. We discussed power iteration and various ways of speeding it up through spectral
transformations, particularly shift-invert transformations. We also pointed out that
Rayleigh quotients make excellent shifts (albeit with extra factorization costs).

2. We discussed orthogonal iteration (aka simultaneous iteration).

This is a promising set of ingredients, but:

1. We are often as interested (or more) in eigenvalues as we are in eigenvectors, but our
iterations so far are focused on the vectors and subspaces.

2. One step of Rayleigh quotient iteration seems to cost 𝑂(𝑛3). So does one step of orthogonal
iteration. This is very expensive.

3. We know how to use shifts to accelerate the convergence of power iteration (with Rayleigh
quotients as a good source of shifts). But while this gives good local convergence, it’s
unclear how to get good global convergence. It’s also unclear what we should do to
converge to complex conjugate eigenpairs of real matrices.

In this lecture, we will treat each of these issues in turn.

1

Orthogonal iteration re-interpreted, take 1

Consider the orthogonal iteration as repeatedly applying a mapping 𝑄 ↦ 𝑄′ given by

𝐴𝑄 = 𝑄′𝑅.

Last time, we observed that
𝐴𝑄∶,1∶𝑘 = 𝑄′

∶,1∶𝑘𝑅1∶𝑘,1∶𝑘,

i.e. this is equivalent to doing orthogonal iteration with subspaces of size 𝑘 for 𝑘 = 1, 2, ….

When 𝑄 is a unitary matrix, we can take the inverse conjugate transpose of both sides to get
that

𝐴−∗𝑄 = 𝑄′𝑅−∗.

Now using the lower triangularity of 𝑅−∗, we observe that

𝐴−∗𝑄∶,𝑘∶𝑛 = 𝑄′
∶,𝑘∶𝑛𝑅−∗

𝑘∶𝑛,𝑘∶𝑛

for 𝑘 = 1, 2, …. That is, just as the first 𝑘 columns are undergoing subspace iteration with 𝐴,
the last 𝑘 columns are undergoing subspace iteration with 𝐴−∗. In particular, the last column
of 𝑄 is undergoing power iteration with a (conjugate) inverse transform! And if we want to
apply a (conjugtate) shift-invert transform, we need only consider iteration with

𝑄 ↦ 𝑄′ via (𝐴 − 𝜎𝐼)𝑄 = 𝑄′𝑅.

Orthogonal iteration re-interpreted, take 2

Recall the Rayleigh quotient
𝜌𝐴(𝑢) = 𝑢∗𝐴𝑢

𝑢∗𝑢
.

When 𝑢 is an eigenvector, the Rayleigh quotient is the associated eigenvalue. The block
analogue of the Rayleigh quotient for 𝑈 with orthonormal columns is

𝑃𝐴(𝑈) = 𝑈 ∗𝐴𝑈,

and f the columns of 𝑈 span an invariant subspace, we have 𝐴𝑈 = 𝑈𝑃𝐴(𝑈). If 𝑈 is the unitary
factor in the Schur form 𝐴𝑈 = 𝑈𝑇, then we have 𝑃𝐴(𝑈) = 𝑇 is the upper triangular factor.

Now, consider one step of orthogonal iteration (aka subspace iteration aka simultaneous
iteration) as a mapping 𝑄 ↦ 𝑄′ given by 𝐴𝑄 = 𝑄′𝑅, and let 𝑄 be such that 𝑄′ = 𝑄𝑄. As
the iteration proceeds, the columns of 𝑄 converge to nested invariant subspaces for eigenvalues
of different magnitude. What happens to the associated block Rayleigh quotients? Observe
that

𝑃𝐴(𝑄) = 𝑄∗𝐴𝑄 = (𝑄∗𝑄′)𝑅 = 𝑄𝑅
𝑃𝐴(𝑄′) = 𝑄′∗(𝐴𝑄𝑄∗)𝑄′ = 𝑅𝑄

2

Therefore, we can get from 𝑃𝐴(𝑄) to 𝑃𝐴(𝑄′) via

𝑃𝐴(𝑄) = 𝑄𝑅, 𝑃𝐴(𝑄′) = 𝑅𝑄.

This mapping, where we compute a QR factorization and then multiply the factors in the
reverse order, is the basic QR iteration.

Hessenberg matrices and QR steps in 𝑂(𝑛2)

A matrix 𝐻 is said to be upper Hessenberg if it has nonzeros only in the upper triangle and the
first subdiagonal. For example, the nonzero structure of a 5-by-5 Hessenberg matrix is

⎡
⎢
⎢
⎢
⎣

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

⎤
⎥
⎥
⎥
⎦

.

For any square matrix 𝐴, we can find a unitarily similar Hessenberg matrix 𝐻 = 𝑄∗𝐴𝑄 by
applying Householder transformations on the left and right in a symmetric fashion.

A Hessenberg matrix 𝐻 is very nearly upper triangular, and is an interesting object in its
own right for many applications. For example, in control theory, one sometimes would like to
evaluate a transfer function

ℎ(𝑠) = 𝑐𝑇(𝑠𝐼 − 𝐴)−1𝑏 + 𝑑

for many different values of 𝑠. Done naively, it looks like each each evaluation would require
𝑂(𝑛3) time in order to get a factorization of 𝑠𝐼 − 𝐴; but if 𝐻 = 𝑄∗𝐴𝑄 is upper Hessenberg,
we can write

ℎ(𝑠) = (𝑄𝑐)∗(𝑠𝐼 − 𝐻)−1(𝑄𝑏) + 𝑑,

and the Hessenberg structure of 𝑠𝐼 − 𝐻 allows us to do Gaussian elimination on it in 𝑂(𝑛2)
time. Note that this also means that we can do shift-invert power method steps on 𝐻 in 𝑂(𝑛2)
time!

Just as it makes it cheap to do Gaussian elimination, the special structure of the Hessenberg
matrix also makes the Householder QR routine very economical. The Householder reflection
computed in order to introduce a zero in the (𝑗 + 1, 𝑗) entry needs only to operate on rows 𝑗
and 𝑗 + 1. Therefore, we have

𝑄∗𝐻 = 𝑊𝑛−1𝑊𝑛−2 … 𝑊1𝐻 = 𝑅,

where 𝑊𝑗 is a Householder reflection that operates only on rows 𝑗 and 𝑗 + 1. Computing 𝑅
costs 𝑂(𝑛2) time, since each 𝑊𝑗 only affects two rows (𝑂(𝑛) data). Now, note that

𝑅𝑄 = 𝑅(𝑊1𝑊2 … 𝑊𝑛−1);

3

that is, 𝑅𝑄 is computed by an operation that first mixes the first two columns, then the second
two columns, and so on. The only subdiagonal entries that can be introduced in this process
lie on the first subdiagonal, and so 𝑅𝑄 is again a Hessenberg matrix. Therefore, one step of
QR iteration on a Hessenberg matrix results in another Hessenberg matrix, and a Hessenberg
QR step can be performed in 𝑂(𝑛2) time.

Shifting gears

Henceforth, we consider Hessenberg iterates 𝐴(𝑘) that we are trying to drive toward the
quasi-triangular factor in a real Schur form.

The connection from inverse iteration to orthogonal iteration (and thus to QR iteration) gives
us a way to incorporate the shift-invert strategy into QR iteration: simply run QR on the
matrix 𝐴 − 𝜎𝐼, and the (𝑛, 𝑛) entry of the iterates (which corresponds to a Rayleigh quotient
with an increasingly-good approximate row eigenvector) should start to converge to 𝜆 − 𝜎,
where 𝜆 is the eigenvalue nearest 𝜎. Put differently, we can run the iteration

𝑄(𝑘)𝑅(𝑘) = 𝐴(𝑘−1) − 𝜎𝐼
𝐴(𝑘) = 𝑅(𝑘)𝑄(𝑘) + 𝜎𝐼.

If we choose a good shift, then the lower right corner entry of 𝐴(𝑘) should converge to the
eigenvalue closest to 𝜎 in fairly short order, and the rest of the elements in the last row should
converge to zero.

The shift-invert power iteration converges fastest when we choose a shift that is close to the
eigenvalue that we want. We can do even better if we choose a shift adaptively, which was the
basis for running Rayleigh quotient iteration. The same idea is the basis for the shifted QR
iteration:

𝑄(𝑘)𝑅(𝑘) = 𝐴(𝑘−1) − 𝜎𝑘𝐼
𝐴(𝑘) = 𝑅(𝑘)𝑄(𝑘) + 𝜎𝑘𝐼.

This iteration is equivalent to computing

𝑄(𝑘)𝑅(𝑘) =
𝑛

∏
𝑗=1

(𝐴 − 𝜎𝑗𝐼)

𝐴(𝑘) = (𝑄(𝑘))∗𝐴(𝑄(𝑘))

𝑄(𝑘) = 𝑄(𝑘)𝑄(𝑘−1) … 𝑄(1).

What should we use for the shift parameters 𝜎𝑘? A natural choice is to use 𝜎𝑘 = 𝑒∗
𝑛𝐴(𝑘−1)𝑒𝑛,

which is the same as 𝜎𝑘 = (𝑄(𝑘)𝑒𝑛)∗𝐴(𝑄(𝑘)𝑒𝑛), the Rayleigh quotient based on the last column
of 𝑄(𝑘). This simple shifted QR iteration is equivalent to running Rayleigh iteration starting
from an initial vector of 𝑒𝑛, which we noted before is locally quadratically convergent.

4

Double trouble

The simple shift strategy we described in the previous section gives local quadratic convergence,
but it is not globally convergent. As a particularly pesky example, consider what happens
if we want to compute a complex conjugate pair of eigenvalues of a real matrix. With our
simple shifting strategy, the QR iteration never produce a complex iterate, a complex shift,
or a complex eigenvalue. The best we can hope for is that our initial shift is closer to both
eigenvalues in the conjugate pair than it is to anything else in the spectrum; in this case, we
will most likely find that the last two columns of 𝑄(𝑘) are converging to a basis for an invariant
row subspace of 𝐴, and the corresponding eigenvalues are the eigenvalues of the trailing 2-by-2
sub-block.

Fortunately, we know how to compute the eigenvalues of a 2-by-2 matrix! This suggests the
following shift strategy: let 𝜎𝑘 be one of the eigenvalues of 𝐴(𝑘)(𝑛−1 ∶ 𝑛, 𝑛−1 ∶ 𝑛). Because this
2-by-2 problem can have complex roots even when the matrix is real, this shift strategy allows
the possibility that we could converge to complex eigenvalues. On the other hand, if our original
matrix is real, perhaps we would like to consider the real Schur form, in which 𝑈 is a real matrix
and 𝑇 is block diagonal with 1-by-1 and 2-by-2 diagonal blocks that correspond, respectively, to
real and complex eigenvalues. If we shift with both roots of 𝐴(𝑘)(𝑛 − 1 ∶ 𝑛, 𝑛 − 1 ∶ 𝑛), equivalent
to computing

𝑄(𝑘)𝑅(𝑘) = (𝐴(𝑘−1) − 𝜎𝑘+𝐼)(𝐴(𝑘−1) − 𝜎𝑘−)
𝐴(𝑘) = (𝑄(𝑘))∗𝐴(𝑘−1)𝑄(𝑘).

There is one catch here: even if we started with 𝐴(0) in Hessenberg form, it is unclear how to
do this double-shift step in 𝑂(𝑛2) time!

The following fact will prove our salvation: if we 𝑄 and 𝑉 are both orthogonal matrices and
𝑄𝑇𝐴𝑄 and 𝑉 𝑇𝐴𝑉 are both (unreduced) Hessenberg1) and the first column of 𝑄 is the same
as the first column of 𝑉, then all successive columns of 𝑄 are unit scalar multiples of the
corresponding columns of 𝑉. This is the implicit Q theorem. Practically, it means that we can
do any sort of shifted QR step we would like in the following way:

1. Apply as a similarity any transformations in the QR decomposition that affect the leading
submatrix (1-by-1 or 2-by-2).

2. Restore the resulting matrix to Hessenberg form without further transformations to the
leading submatrix.

In the first step, we effectively compute the first column of 𝑄; in the second step, we effectively
compute the remaining columns. Certainly we compute some transformation with the right
leading column; and the implicit Q theorem tells us that any such transformation is basically
the one we would have computed with an ordinary QR step.

1An unreduced Hessenberg matrix has no zeros on the first subdiagonal.

5

Last time, we discussed the Wilkinson strategy of choosing as a shift one of the roots of the
trailing 2-by-2 submatrix of 𝐴(𝑘) (the one closest to the final entry). We also noted that if we
want to convert to real Schur form, the Wilkinson shift has the distinct disadvantage that it
might launch us into the complex plane. The Francis shift strategy is to simultaneously apply
a complex conjugate pair of shifts, essentially computing two steps together:

𝑄(𝑘)𝑅(𝑘) = (𝐴(𝑘−1) − 𝜎𝑘𝐼)(𝐴(𝑘−1) − 𝜎̄𝑘𝐼)
= (𝐴(𝑘−1))2 − 2ℜ(𝜎𝑘)𝐴(𝑘−1) + |𝜎𝑘|2𝐼

𝐴(𝑘) = (𝑄(𝑘))∗𝐴(𝑘−1)(𝑄(𝑘)).

When the Wilkinson shift is real, we let 𝜎𝑘 be the same as the Wilkinson shift; when the
Wilkinson strategy leads to a conjugate pair of possible shifts, we use both, maintaining
efficiency by doing the steps implicitly. Let’s now make this implicit magic a little more explicit
by building code for an implicit double-shift QR step.

Our first step will be to construct the polynomial associated with the Francis double-shift. In
the case where the trailing 2-by-2 submatrix (or 2-by-2 block Rayleigh quotient, if one prefers)
has a complex pair of eigenvalues, we just use its characteristic polynomial. Otherwise, we use
the polynomial associated with two steps with a Wilkinson shift.

The Francis double-shift strategy gives us coefficients 𝑏𝑘 and 𝑐𝑘 for a quadratic function
𝑠𝑘(𝑧) = 𝑧2 + 𝑏𝑘𝑧 + 𝑐𝑘. We now want to compute

𝑄(𝑘)𝑅(𝑘) = 𝑠𝑘(𝐴(𝑘−1)) = (𝐴(𝑘−1))2 + 𝑏𝑘𝐴(𝑘−1) + 𝑐𝑘𝐼
𝐴(𝑘) = (𝑄(𝑘))∗𝐴(𝑘−1)(𝑄(𝑘)).

The trick is to realize that all the iterates 𝐴(𝑘) are Hessenberg, and the Hessenberg form
for a matrix is usually unique (up to signs). Therefore, we compute the first Householder
transformation 𝑊 in a QR factorization of 𝑠𝑘(𝐴(𝑘) explicitly. The first column of 𝑄(𝑘) is the
same as the first column of 𝑊. The remaining columns of 𝑄(𝑘) can be determined by the
requirement that 𝐴(𝑘) is in Hessenberg form. We compute them implicitly by applying the
usual Hessenberg reduction algorithm to 𝐵 = 𝑊𝐴(𝑘−1)𝑊, taking advantage of the fact that 𝐵
has special structure to do 𝑂(𝑛2) work. Each step of the reduction moves a “bulge” down the
diagonal by one.

In the LAPACK codes, the Francis double-shift strategy is mixed with some “exceptional shifts”
that occur every few iterations. These exceptional shifts serve to keep the algorithm from
getting stuck in certain pathological situations (e.g. a cyclic permutation matrix).

Deflation

A sequence of implicit doubly-shifted QR steps with the Francis shift will usually give us rapid
convergence of a trailing 1-by-1 or 2-by-2 submatrix to a block of a Schur factorization. As

6

this happens, the trailing row (or two rows) becomes very close to zero. When the values in
these rows are close enough to zero, we deflate by setting them equal to zero. This corresponds
to a small perturbation to the original problem.

More careful deflation criteria are usually used in practice; see the book. This criterion at
least corresponds to small normwise perturbations to the original problem, but it may result
in less accurate estimates of small eigenvalues than we could obtain with a more aggressive
criterion.

Stability of the method

Each step of the implicitly double-shifted QR iteration changes the matrix only with orthogonal
transformations (which are perfectly conditioned) or deflations. Hence, the QR iteration is
backward stable. However, this is not the same as saying that the method is forward stable!
For forward stability, the conditioning of the eigenvalues is critical, and multiple (or nearly
multiple) eigenvalues of multiplicity 𝑚 usually inherit an 𝑂(𝜖1/𝑚) error, as we saw in our earlier
discussion of sensitivity.

The intermediate computations in the QR code as given above are prone to scaling problems,
and so the basic QR codes in LAPACK (dlahqr) uses a more careful construction of a scaled
copy of the first Householder transformation.

The state of the art

The current state of the art in QR iterations is the LAPACK code dgehqr written by Ralph
Byers, which is based on an award-winning set of papers by Braman, Byers, and Mathias. This
code uses the following general strategy:

1. Run the basic QR iteration to find the eigenvalues of a trailing 𝑏×𝑏 submatrix. Apply the
transformations to the whole matrix, resulting in a “spike” to the left of the triangularized
portion.

2. Look for converged eigenvalues in the trailing submatrix by analyzing the “spike” to find
small elements. Deflate any eigenvalues found (and there may be several). This is called
aggressive early deflation.

3. Use several of the remaining eigenvalues from the Rayleigh quotient block as a sequence of
successive shifts. These can be run simultaneously by chasing a sequence of closely-spaced
bulges down the main diagonal. The similarity transformations associated are applied in
a blocky way to get good cache performance.

7

	Road map
	Orthogonal iteration re-interpreted, take 1
	Orthogonal iteration re-interpreted, take 2
	Hessenberg matrices and QR steps in O(n^2)
	Shifting gears
	Double trouble
	Deflation
	Stability of the method
	The state of the art

