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Power iteration

In most introductory linear algebra classes, one computes eigenvalues as roots of a characteristic
polynomial. For most problems, this is a bad idea: the roots of the characteristic polynomial
are often very sensitive to changes in the polynomial coefficients even when they correspond to
well-conditioned eigenvalues. Rather than starting from this point, we will start with another
idea: the power iteration.

Suppose A € C"*" is diagonalizable, with eigenvalues A,, ..., A\, ordered so that
Al = o] = = A,
Then we have A = VAV~ where A = diag(\, ..., \,,). Now, note that
AR = (VAV-H)(VAVY) L (VAV L) = VARV L
or, to put it differently,
ARV = VAP,

Now, suppose we have a randomly chosen vector z = VZ € C™, and consider

n

Akbg = AFVE = VARE =) "0 \kE
j=1

If we pull out a constant factor from this expression, we have

n A\ F B
AFz = N} (Z Ch ()\i) mj) .
j=1

If [A;] > |Ay], then (X;/X;)" — 0 for each j > 1, and for large enough k, we expect A*z to be
nearly parallel to v;, assuming Z; # 0. This is the idea behind the power iteration:
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Assuming that the first component of V129 is nonzero and that |\,| > |)\;|, the iterates z(®)

converge linearly to the “dominant” eigenvector of A, with the error asymptotically decreasing
by a factor of |A;|/|A\y| at each step.

There are three obvious potential problems with the power method:

1. What if the first component of V129 is zero?
2. What A, /), is near one?

3. What if we want the eigenpair (A;,v;) for j # 17
The first point turns out to be a non-issue: if we choose z©) at random, then the first component
of V12(© will be nonzero with probability 1. Even if we were so extraordinarily unlucky as to
choose a starting vector for which V12?0 did have a zero leading coefficient, perturbations due
to floating point arithmetic would generally bump us to the case in which we had a nonzero
coefficient.

The second and third points turn out to be more interesting, and we address them now.

Spectral transformation and shift-invert

Suppose again that A is diagonalizable with A = VAV . The power iteration relies on the
identity

AF = VAPV L,
Now, suppose that f(z) is any function that is defined locally by a convergent power series.

Then as long as the eigenvalues are within the radius of convergence, we can define f(A) via
the same power series, and

flA) =ViMV

where f(A) = diag(f(A;), f(As),..., f(A,)). So the spectrum of f(A) is the image of the
spectrum of A under the mapping f, a fact known as the spectral mapping theorem.

As a particular instance, consider the function f(z) = (z — o)~!. This gives us
(A—o) P =V(A—0ol)tV1

and so if we run power iteration on (A—oI)~!, we will converge to the eigenvector corresponding
to the eigenvalue A; for which (\; — o)1 is maximal — that is, we find the eigenvalue closest
to o in the complex plane. Running the power method on (A — oI)~! is sometimes called the
shift-invert power method.



Changing shifts

If we know a shift o that is close to a desired eigenvalue, the shift-invert power method may
be a reasonable method. But even with a good choice of shift, this method converges at best
linearly (i.e. the error goes down by a constant factor at each step). We can do better by
choosing a shift dynamically, so that as we improve the eigenvector, we also get a more accurate
shift.

Suppose v is an approximate eigenvector for A, i.e. we can find some ) so that
A — DA ~ 0. (1)

The choice of corresponding approximate eigenvalues is not so clear, but a reasonable choice
(which is always well-defined when ¥ is nonzero) comes from multiplying Equation 1 by v* and
changing the ~ to an equal sign:

3" AD — *0\ = 0.

The resulting eigenvalue approximation ) is the Rayleigh quotient:
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v*v
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If we dynamically choose shifts for shift-invert steps using Rayleigh quotients, we get the
Rayleigh quotient iteration:

R * Ay(k)
Akt = = T
A=)\ —14(k)
k1) — ( ki1) U

A= ) B,

Unlike the power method, the Rayleigh quotient iteration has locally quadratic convergence —
so once convergence sets in, the number of correct digits roughly doubles from step to step. We
will return to this method later when we discuss symmetric matrices, for which the Rayleigh
quotient iteration has locally cubic convergence.

Subspaces and orthogonal iteration

So far, we have still not really addressed the issue of dealing with clustered eigenvalues. For
example, in power iteration, what should we do if A\; and A\, are very close? If the ratio between
the two eigenvalues is nearly one, we don’t expect the power method to converge quickly; and
we are likely to not have at hand a shift which is much closer to A; than to )\, so shift-invert
power iteration might not help much. In this case, we might want to relax our question, and
look for the invariant subspace associated with A; and A, (and maybe more eigenvalues if there
are more of them clustered together with A, ) rather than looking for the eigenvector associated
with A;. This is the idea behind subspace iteration.



In subspace iteration, rather than looking at A*z, for some initial vector x,, we look at
V), = AV, where V, is some initial subspace. If V, is a p-dimensional space, then under some
mild assumptions the space V, will asymptotically converge to the p-dimensional invariant
subspace of A associated with the p eigenvalues of A with largest modulus. The analysis is
basically the same as the analysis for the power method. In order to actually compute, though,
we need bases for the subspaces V. Let us define these bases by the recurrence

Qpi1 B = AQy,

where @ is a matrix with p orthonormal columns and @), ?;; represents an economy QR
decomposition. This recurrence is called orthogonal iteration, since the columns of @, are an
orthonormal basis for the range space of AQ,,, and the span of @, is the span of A*Q,.

Assuming there is a gap between [\, | and |A, 4|, orthogonal iteration will usually converge
to an orthonormal basis for the invariant subspace spanned by the first p eigenvectors of A.
But it is interesting to look not only at the behavior of the subspace, but also at the span of
the individual eigenvectors. For example, notice that the first column ¢, ; of @, satisfies the
recurrence

Ar+1,1Tk+1,11 — AQk,b

which means that the vectors gy ; evolve according to the power method! So over time, we
expect the first columns of the @), to converge to the dominant eigenvector. Similarly, we expect
the first two columns of @), to converge to a basis for the dominant two-dimensional invariant
subspace, the first three columns to converge to the dominant three-dimensional invariant
subspace, and so on. This observation suggests that we might be able to get a complete list of
nested invariant subspaces by letting the initial (), be some square matrix. This is the basis
for the workhorse of nonsymmetric eigenvalue algorithms, the QR method, which we will turn
to next time.
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