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Power iteration

In most introductory linear algebra classes, one computes eigenvalues as roots of a characteristic
polynomial. For most problems, this is a bad idea: the roots of the characteristic polynomial
are often very sensitive to changes in the polynomial coefficients even when they correspond to
well-conditioned eigenvalues. Rather than starting from this point, we will start with another
idea: the power iteration.

Suppose 𝐴 ∈ ℂ𝑛×𝑛 is diagonalizable, with eigenvalues 𝜆1, … , 𝜆𝑛 ordered so that

|𝜆1| ≥ |𝜆2| ≥ … ≥ |𝜆𝑛|.

Then we have 𝐴 = 𝑉 Λ𝑉 −1 where Λ = diag(𝜆1, … , 𝜆𝑛). Now, note that

𝐴𝑘 = (𝑉 Λ𝑉 −1)(𝑉 Λ𝑉 −1) … (𝑉 Λ𝑉 −1) = 𝑉 Λ𝑘𝑉 −1,

or, to put it differently,
𝐴𝑘𝑉 = 𝑉 Λ𝑘.

Now, suppose we have a randomly chosen vector 𝑥 = 𝑉 ̃𝑥 ∈ ℂ𝑛, and consider

𝐴𝑘𝑥 = 𝐴𝑘𝑉 ̃𝑥 = 𝑉 Λ𝑘 ̃𝑥 =
𝑛

∑
𝑗=1

𝑣𝑗𝜆𝑘
𝑗 ̃𝑥𝑗.

If we pull out a constant factor from this expression, we have

𝐴𝑘𝑥 = 𝜆𝑘
1 (

𝑛
∑
𝑗=1

𝑣𝑗 (
𝜆𝑗

𝜆1
)

𝑘

̃𝑥𝑗) .

If |𝜆1| > |𝜆2|, then (𝜆𝑗/𝜆1)𝑘 → 0 for each 𝑗 > 1, and for large enough 𝑘, we expect 𝐴𝑘𝑥 to be
nearly parallel to 𝑣1, assuming ̃𝑥1 ≠ 0. This is the idea behind the power iteration:

𝑥(𝑘+1) = 𝐴𝑥(𝑘)

‖𝐴𝑥(𝑘)‖
= 𝐴𝑘𝑥(0)

‖𝐴𝑘𝑥(0)‖
.
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Assuming that the first component of 𝑉 −1𝑥(0) is nonzero and that |𝜆1| > |𝜆2|, the iterates 𝑥(𝑘)

converge linearly to the “dominant” eigenvector of 𝐴, with the error asymptotically decreasing
by a factor of |𝜆1|/|𝜆2| at each step.

There are three obvious potential problems with the power method:

1. What if the first component of 𝑉 −1𝑥(0) is zero?

2. What 𝜆1/𝜆2 is near one?

3. What if we want the eigenpair (𝜆𝑗, 𝑣𝑗) for 𝑗 ≠ 1?

The first point turns out to be a non-issue: if we choose 𝑥(0) at random, then the first component
of 𝑉 −1𝑥(0) will be nonzero with probability 1. Even if we were so extraordinarily unlucky as to
choose a starting vector for which 𝑉 −1𝑥(0) did have a zero leading coefficient, perturbations due
to floating point arithmetic would generally bump us to the case in which we had a nonzero
coefficient.

The second and third points turn out to be more interesting, and we address them now.

Spectral transformation and shift-invert

Suppose again that 𝐴 is diagonalizable with 𝐴 = 𝑉 Λ𝑉 −1. The power iteration relies on the
identity

𝐴𝑘 = 𝑉 Λ𝑘𝑉 −1.

Now, suppose that 𝑓(𝑧) is any function that is defined locally by a convergent power series.
Then as long as the eigenvalues are within the radius of convergence, we can define 𝑓(𝐴) via
the same power series, and

𝑓(𝐴) = 𝑉 𝑓(Λ)𝑉 −1

where 𝑓(Λ) = diag(𝑓(𝜆1), 𝑓(𝜆2), … , 𝑓(𝜆𝑛)). So the spectrum of 𝑓(𝐴) is the image of the
spectrum of 𝐴 under the mapping 𝑓, a fact known as the spectral mapping theorem.

As a particular instance, consider the function 𝑓(𝑧) = (𝑧 − 𝜎)−1. This gives us

(𝐴 − 𝜎𝐼)−1 = 𝑉 (Λ − 𝜎𝐼)−1𝑉 −1,

and so if we run power iteration on (𝐴−𝜎𝐼)−1, we will converge to the eigenvector corresponding
to the eigenvalue 𝜆𝑗 for which (𝜆𝑗 − 𝜎)−1 is maximal — that is, we find the eigenvalue closest
to 𝜎 in the complex plane. Running the power method on (𝐴 − 𝜎𝐼)−1 is sometimes called the
shift-invert power method.
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Changing shifts

If we know a shift 𝜎 that is close to a desired eigenvalue, the shift-invert power method may
be a reasonable method. But even with a good choice of shift, this method converges at best
linearly (i.e. the error goes down by a constant factor at each step). We can do better by
choosing a shift dynamically, so that as we improve the eigenvector, we also get a more accurate
shift.

Suppose ̂𝑣 is an approximate eigenvector for 𝐴, i.e. we can find some 𝜆̂ so that

𝐴 ̂𝑣 − ̂𝑣𝜆̂ ≈ 0. (1)

The choice of corresponding approximate eigenvalues is not so clear, but a reasonable choice
(which is always well-defined when ̂𝑣 is nonzero) comes from multiplying Equation 1 by ̂𝑣∗ and
changing the ≈ to an equal sign:

̂𝑣∗𝐴 ̂𝑣 − ̂𝑣∗ ̂𝑣𝜆̂ = 0.

The resulting eigenvalue approximation 𝜆̂ is the Rayleigh quotient:

𝜆̂ = ̂𝑣∗𝐴 ̂𝑣
̂𝑣∗ ̂𝑣

.

If we dynamically choose shifts for shift-invert steps using Rayleigh quotients, we get the
Rayleigh quotient iteration:

𝜆𝑘+1 = 𝑣(𝑘) ∗𝐴𝑣(𝑘)

𝑣(𝑘) ∗𝑣(𝑘)

𝑣(𝑘+1) =
(𝐴 − 𝜆𝑘+1)−1𝑣(𝑘)

‖(𝐴 − 𝜆𝑘+1)−1𝑣(𝑘)‖2

Unlike the power method, the Rayleigh quotient iteration has locally quadratic convergence —
so once convergence sets in, the number of correct digits roughly doubles from step to step. We
will return to this method later when we discuss symmetric matrices, for which the Rayleigh
quotient iteration has locally cubic convergence.

Subspaces and orthogonal iteration

So far, we have still not really addressed the issue of dealing with clustered eigenvalues. For
example, in power iteration, what should we do if 𝜆1 and 𝜆2 are very close? If the ratio between
the two eigenvalues is nearly one, we don’t expect the power method to converge quickly; and
we are likely to not have at hand a shift which is much closer to 𝜆1 than to 𝜆2, so shift-invert
power iteration might not help much. In this case, we might want to relax our question, and
look for the invariant subspace associated with 𝜆1 and 𝜆2 (and maybe more eigenvalues if there
are more of them clustered together with 𝜆1) rather than looking for the eigenvector associated
with 𝜆1. This is the idea behind subspace iteration.
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In subspace iteration, rather than looking at 𝐴𝑘𝑥0 for some initial vector 𝑥0, we look at
𝒱𝑘 = 𝐴𝑘𝒱0, where 𝒱0 is some initial subspace. If 𝒱0 is a 𝑝-dimensional space, then under some
mild assumptions the space 𝒱𝑘 will asymptotically converge to the 𝑝-dimensional invariant
subspace of 𝐴 associated with the 𝑝 eigenvalues of 𝐴 with largest modulus. The analysis is
basically the same as the analysis for the power method. In order to actually compute, though,
we need bases for the subspaces 𝒱𝑘. Let us define these bases by the recurrence

𝑄𝑘+1𝑅𝑘+1 = 𝐴𝑄𝑘

where 𝑄0 is a matrix with 𝑝 orthonormal columns and 𝑄𝑘+1𝑅𝑘+1 represents an economy QR
decomposition. This recurrence is called orthogonal iteration, since the columns of 𝑄𝑘+1 are an
orthonormal basis for the range space of 𝐴𝑄𝑘, and the span of 𝑄𝑘 is the span of 𝐴𝑘𝑄0.

Assuming there is a gap between |𝜆𝑝| and |𝜆𝑝+1|, orthogonal iteration will usually converge
to an orthonormal basis for the invariant subspace spanned by the first 𝑝 eigenvectors of 𝐴.
But it is interesting to look not only at the behavior of the subspace, but also at the span of
the individual eigenvectors. For example, notice that the first column 𝑞𝑘,1 of 𝑄𝑘 satisfies the
recurrence

𝑞𝑘+1,1𝑟𝑘+1,11 = 𝐴𝑞𝑘,1,

which means that the vectors 𝑞𝑘,1 evolve according to the power method! So over time, we
expect the first columns of the 𝑄𝑘 to converge to the dominant eigenvector. Similarly, we expect
the first two columns of 𝑄𝑘 to converge to a basis for the dominant two-dimensional invariant
subspace, the first three columns to converge to the dominant three-dimensional invariant
subspace, and so on. This observation suggests that we might be able to get a complete list of
nested invariant subspaces by letting the initial 𝑄0 be some square matrix. This is the basis
for the workhorse of nonsymmetric eigenvalue algorithms, the QR method, which we will turn
to next time.
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