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Building blocks

Similarity transforms

When we talked about least squares problems, we spent some time discussing the transformations
that preserve the Euclidean norm: orthogonal transformations. It is worth spending a moment
now to give a name to the transformations that preserve the eigenvalue structure of a matrix.
These are similarity transformations.

Suppose 𝐴 ∈ ℂ𝑛×𝑛 is a square matrix, and 𝑋 ∈ ℂ𝑛×𝑛 is invertible. Then the matrix 𝑋𝐴𝑋−1

is said to be similar to 𝐴, and the mapping from 𝐴 to 𝑋𝐴𝑋−1 is a similarity transformation.
If 𝐴 is the matrix for an operator from ℂ𝑛 onto itself, then 𝑋𝐴𝑋−1 is the matrix for the same
operator in a different basis. The eigenvalues and the Jordan block structure of a matrix are
preserved under similarity, and the matrix 𝑋 gives a relationship between the eigenvectors of 𝐴
and those of 𝑋𝐴𝑋−1. Note that this goes both ways: two matrices have the same eigenvalues
and Jordan block structure iff they are similar.

Symmetric polynomials

Usually, we think of the characteristic polynomial 𝑝(𝑧) = det(𝑧𝐼 − 𝐴) as a function of 𝑧.
However, we can also think about it as a function of 𝐴. In particular, we can think of the
coefficients in the characteristic polynomial as functions of 𝐴; some of these functions have
names, like the determinant (the constant coefficient) and the trace (the coefficient at order
𝑑 − 1). Collectively, the coefficients are elementary symmetric polynomials of the eigenvalues
of 𝐴 — symmetric in this case meaning polynomials in 𝑛 variables that are invariant under
permutation of the arguments. In fact, the fundamental theorem of characteristic polynomials
says that any symmetric polynomial in the 𝑛 eigenvalues (i.e. any function that is the same
under arbitrary permutations of the arguments) can be defined in terms of these coefficients of
the characteristic polynomial. Thus, any nice symmetric function of the eigenvalues will be
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a smooth function of the entries of the matrix 𝐴, even if the individual eigenvalues become
rather unpleasant.

Contour integrals

Complex analysis is not a pre-requisite for this course, and this material may be considered
optional. Nonetheless, it is useful as background both for understanding the perturbation
theory of eigenvalues and for understanding certain numerical algorithms that we will describe
in a couple weeks.

One of the beautiful, fundamental facts about complex analysis is the Cauchy residue theorem.
Suppose Ω ⊂ ℂ is a simply connected domain, and that 𝑓 ∶ Ω ⊂ ℂ → ℂ is holomorphic (aka
analytic) except at finitely many points 𝜉1, … , 𝜉𝑛. If Γ ⊂ Ω is a rectifiable curve, then

∫
Γ

𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖
𝑛

∑
𝑗=1

𝐼(Γ, 𝜉𝑗) Res(𝑓, 𝜉𝑗),

where 𝐼(Γ, 𝜉𝑗) is the winding number (the number of times Γ goes in a positive direction around
𝜉𝑗) and Res(𝑓, 𝜉𝑗) is the residue at 𝜉𝑗.

Closely related is the Cauchy integral theorem, which says that if 𝑓 ∶ Ω → ℂ is holomorphic
and Γ is a positively oriented simple closed curve that winds once around 𝑎, then

𝑓(𝑎) = 1
2𝜋𝑖

∫
Γ

𝑓(𝑧)
𝑧 − 𝑎

𝑑𝑧

and
𝑓 (𝑛)(𝑎) = 𝑛!

2𝜋𝑖
∫

Γ

𝑓(𝑧)
(𝑧 − 𝑎)(𝑛+1) 𝑑𝑧.

What if we replace the scalar 𝑎 by a matrix 𝐴? In this case, we end up with integrals involving
the resolvent 𝑅(𝑧) = (𝑧𝐼 − 𝐴)−1, which turns out to be an extremely useful object. Suppose 𝐴
is diagonalizable, with 𝐴 = 𝑉 Λ𝑉 −1, and the spectrum of 𝐴 is inside our curve Γ. Then we can
consider the integral one eigen-direction at a time:

𝑓(𝐴) = 1
2𝜋𝑖

∫
Γ
(𝑧𝐼 − 𝐴)−1𝑓(𝑧) 𝑑𝑧

= 𝑉 ( 1
2𝜋𝑖

∫
Γ
(𝑧𝐼 − Λ)−1𝑓(𝑧) 𝑑𝑧) 𝑉 −1

= 𝑉 𝑓(Λ)𝑉 −1.

If Γ only encloses part of the spectrum, then only those eigenvalues inside Γ are represented.
In particular, we can use this to compute a spectral projector :

𝑃Γ = 1
2𝜋𝑖

∫
Γ
(𝑧𝐼 − 𝐴)−1 𝑑𝑧 = ∑

𝜆𝑖 inside Γ

𝑣𝑖𝑤∗
𝑖
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where 𝑤∗
𝑖 = 𝑒𝑇

𝑖 𝑉 −1 is a row eigenvector for the eigenvalue 𝜆𝑖. The trace of the spectral projector
gives a count of the number of eigenvalues inside of the contour. We can also compute the sum
of the eigenvalues inside the contour as

1
2𝜋𝑖

tr (∫
Γ

𝑧(𝑧𝐼 − 𝐴)−1 𝑑𝑧) .

All of these contour integrals are continuously defined up to the point where the contour
intersects a pole. For example, using what we know about the distance to singularity, this
means that if that if ‖𝐸‖ < min𝑧∈Γ ‖(𝑧𝐼 − 𝐴)−1‖−1, then the trace of the spectral projector for
𝐴 + 𝑠𝐸 remains continuously defined for 0 ≤ 𝑠 ≤ 1 – which means that 𝐴 and 𝐴 + 𝐸 have the
same number of eigenvalues. This is essentially the same argument behind Rouché’s theorem: if
𝑓 and 𝑓 are holomorphic on Ω and |𝑓(𝑧)| ≤ |𝑔(𝑧)| for all 𝑧 on a simple rectifiable closed contour
Γ, then 𝑓 and 𝑔 have the same number of zeros inside Γ.

Eigenvalue perturbations

Consider the matrix
𝐴(𝜖) = [𝜆 1

𝜖 𝜆] .

The characteristic polynomial of 𝐴(𝜖) is 𝑝(𝑧) = 𝑧2 − 2𝜆𝑧 + (𝜆2 − 𝜖), which has roots 𝜆 ±
√

𝜖.
These eigenvalues are continuous functions of 𝜖 at 𝜖 = 0, but they are not differentiable functions.
This is a more general phenomenon: an 𝑂(𝜖) perturbation to a matrix with an eigenvalue
with multiplicity 𝑚 usually splits the eigenvalue into 𝑚 distinct eigenvalues, each of which
is moved from the original position by 𝑂(𝜖1/𝑚). We expect, then, that it will be difficult to
accurately compute multiple eigenvalues of general nonsymmetric matrices in floating point. If
we are properly suspicious, we should suspect that nearly multiple eigenvalues are almost as
troublesome — and indeed they are. On the other hand, while we usually lose some accuracy
when trying to compute nearly multiple eigenvalues, we should not always expect to lose all
digits of accuracy.

The next lecture or two will be spent developing the perturbation theory we will need in order
to figure out what we can and cannot expect from our eigenvalue computations.

First-order perturbation theory

Suppose 𝐴 ∈ ℂ𝑛×𝑛 has a simple1 eigenvalue 𝜆 with corresponding column eigenvector 𝑣 and
row eigenvector 𝑤∗. We would like to understand how 𝜆 changes under small perturbations to
𝐴. If we formally differentiate the eigenvalue equation 𝐴𝑣 = 𝑣𝜆, we have

(𝛿𝐴)𝑣 + 𝐴(𝛿𝑣) = (𝛿𝑣)𝜆 + 𝑣(𝛿𝜆).
1An eigenvalue is simple if it is not multiple.
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If we multiply this equation by 𝑤∗, we have

𝑤∗(𝛿𝐴)𝑣 + 𝑤∗𝐴(𝛿𝑣) = 𝜆𝑤∗(𝛿𝑣) + 𝑤∗𝑣(𝛿𝜆).

Note that 𝑤∗𝐴 = 𝜆𝑤∗, so that we have

𝑤∗(𝛿𝐴)𝑣 = 𝑤∗𝑣(𝛿𝜆),

which we rearrange to get

𝛿𝜆 = 𝑤∗(𝛿𝐴)𝑣
𝑤∗𝑣

. (1)

This formal derivation of the first-order sensitivity of an eigenvalue only goes awry if 𝑤∗𝑣 = 0,
which we can show is not possible if 𝜆 is simple.

We can use Equation 1 to get a condition number for the eigenvalue 𝜆 as follows:

|𝛿𝜆|
|𝜆|

= |𝑤∗(𝛿𝐴)𝑣|
|𝑤∗𝑣||𝜆|

≤ ‖𝑤‖2‖𝑣‖2
|𝑤∗𝑣|

‖𝛿𝐴‖2
|𝜆|

= sec 𝜃‖𝛿𝐴‖2
|𝜆|

.

where 𝜃 is the acute angle between the spaces spanned by 𝑣 and by 𝑤. When this angle is large,
very small perturbations can drastically change the eigenvalue.

Gershgorin theory

The first-order perturbation theory outlined in the previous section is very useful, but it is also
useful to consider the effects of finite (rather than infinitesimal) perturbations to 𝐴. One of
our main tools in this consideration will be Gershgorin’s theorem.

Here is the idea. We know that diagonally dominant matrices are nonsingular, so if 𝐴 − 𝜆𝐼 is
diagonally dominant, then 𝜆 cannot be an eigenvalue. Contraposing this statement, 𝜆 can be
an eigenvalue only if 𝐴 − 𝜆𝐼 is not diagonally dominant. The set of points where 𝐴 − 𝜆𝐼 is not
diagonally dominant is a union of sets ∪𝑗𝐺𝑗, where each 𝐺𝑗 is a Gershgorin disk:

𝐺𝑗 = 𝐵𝜌𝑗
(𝑎𝑗𝑗) = {𝑧 ∈ ℂ ∶ |𝑎𝑗𝑗 − 𝑧| ≤ 𝜌𝑗 where 𝜌𝑗 = ∑

𝑖≠𝑗
|𝑎𝑖𝑗|} .

Our strategy now, which we will pursue in detail next time, is to use similarity transforms
based on 𝐴 to make a perturbed matrix 𝐴+𝐸 look “almost” diagonal, and then use Gershgorin
theory to turn that “almost” diagonality into bounds on where the eigenvalues can be.

We now argue that we can extract even more information from the Gershgorin disks: we can
get counts of how many eigenvalues are in different parts of the union of Gershgorin disks.

Suppose that 𝒢 is a connected component of ∪𝑗𝐺𝑗; in other words, suppose that 𝒢 = ∪𝑗∈𝑆𝐺𝑗
for some set of indices 𝑆, and that 𝒢 ∩ 𝐺𝑘 = ∅ for 𝑘 ∉ 𝑆. Then the number of eigenvalues of 𝐴
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in 𝒢 (counting eigenvalues according to multiplicity) is the same as the side of the index set
𝑆.

To sketch the proof, we need to know that eigenvalues are continuous functions of the matrix
entries. Now, for 𝑠 ∈ [0, 1], define

𝐻(𝑠) = 𝐷 + 𝑠𝐹

where 𝐷 is the diagonal part of 𝐴 and 𝐹 = 𝐴 − 𝐷 is the off-diagonal part. The function
𝐻(𝑠) is a homotopy that continuously takes us from an easy-to-analyze diagonal matrix at
𝐻(0) = 𝐷 to the matrix we care about at 𝐻(1) = 𝐴. At 𝑠 = 0, we know the eigenvalues of
𝐴 are the diagonal elements of 𝐴; and if we apply the first part of Gershgorin’s theorem, we
see that the eigenvalues of 𝐻(𝑠) always must live inside the union of Gershgorin disks of 𝐴
for any 0 ≤ 𝑠 ≤ 1. So each of the |𝑆| eigenvalues that start off in the connected component 𝒢
at 𝐻(0) = 𝐷 can move around continuously within 𝒢 as we move the matrix continuously to
𝐻(1) = 𝐴, but they cannot “jump” discontinuously across the gap between 𝒢 and any of the
other Gershgorin disks. So at 𝑠 = 1, there will still be |𝑆| eigenvalues of 𝐻(1) = 𝐴 inside 𝒢.

Perturbing Gershgorin

Now, let us consider the relation between the Gershgorin disks for a matrix 𝐴 and a matrix
̂𝐴 = 𝐴 + 𝐹. It is straightforward to write down the Gershgorin disks ̂𝐺𝑗 for ̂𝐴:

̂𝐺𝑗 = ℬ ̂𝜌𝑗
( ̂𝑎𝑗𝑗) = {𝑧 ∈ ℂ ∶ |𝑎𝑗𝑗 + 𝑒𝑗𝑗 − 𝑧| ≤ ̂𝜌𝑗} where ̂𝜌𝑗 = ∑

𝑖≠𝑗
|𝑎𝑖𝑗 + 𝑓𝑖𝑗|.

Note that |𝑎𝑗𝑗 + 𝑒𝑗𝑗 − 𝑧| ≥ |𝑎𝑗𝑗 − 𝑧| − |𝑓𝑗𝑗| and |𝑎𝑖𝑗 + 𝑓𝑖𝑗| ≤ |𝑎𝑖𝑗| + |𝑓𝑖𝑗|, so

̂𝐺𝑗 ⊆ ℬ𝜌𝑗+∑𝑗 |𝑓𝑖𝑗|(𝑎𝑗𝑗) = {𝑧 ∈ ℂ ∶ |𝑎𝑗𝑗 − 𝑧| ≤ 𝜌𝑗 + ∑
𝑖

|𝑓𝑖𝑗|} . (2)

We can simplify this expression even further if we are willing to expand the regions a bit:

̂𝐺𝑗 ⊆ ℬ𝜌𝑗+‖𝐹‖1
(𝑎𝑗𝑗). (3)

The Bauer-Fike theorem

We now apply Gershgorin theory together with a carefully chosen similarity to prove a bound
on the eigenvalues of 𝐴 + 𝐹 where 𝐹 is a finite perturbation. This will lead us to the Bauer-Fike
theorem.

The basic idea is as follows. Suppose that 𝐴 is a diagonalizable matrix, so that there is a
complete basis of column eigenvectors 𝑉 such that

𝑉 −1𝐴𝑉 = Λ.
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Then we 𝐴 + 𝐹 has the same eigenvalues as

𝑉 −1(𝐴 + 𝐹)𝑉 = Λ + 𝑉 −1𝐹𝑉 = Λ + ̃𝐹 .

Now, consider the Gershgorin disks for Λ + ̃𝐹. The crude bound Equation 3 tells us that all
the eigenvalues live in the regions

⋃
𝑗

ℬ‖ ̃𝐹‖1
(𝜆𝑗) ⊆ ⋃

𝑗
ℬ𝜅1(𝑉 )‖𝐹‖1

(𝜆𝑗).

This bound really is crude, though; it gives us disks of the same radius around all the eigenvalues
𝜆𝑗 of 𝐴, regardless of the conditioning of those eigenvalues. Let’s see if we can do better with
the sharper bound in Equation 2.

To use Equation 2, we need to bound the absolute column sums of ̃𝐹. Let 𝑒 represent the vector
of all ones, and let 𝑒𝑗 be the 𝑗th column of the identity matrix; then the 𝑗th absolute column
sums of ̃𝐹 is 𝜙𝑗 ≡ 𝑒𝑇| ̃𝐹 |𝑒𝑗, which we can bound as 𝜙𝑗 ≤ 𝑒𝑇|𝑉 −1||𝐹 ||𝑉 |𝑒𝑗. Now, note that we
are free to choose the normalization of the eigenvector 𝑉; let us choose the normalization so
that each row of 𝑊 ∗ = 𝑉 −1. Recall that we defined the angle 𝜃𝑗 by

cos(𝜃𝑗) =
|𝑤∗

𝑗𝑣𝑗|
‖𝑤𝑗‖2‖𝑣𝑗‖2

,

where 𝑤𝑗 and 𝑣𝑗 are the 𝑗th row and column eigenvectors; so if we choose ‖𝑤𝑗‖2 = 1 and
𝑤∗

𝑗𝑣𝑗 = 1 (so 𝑊 ∗ = 𝑉 −1), we must have ‖𝑣𝑗‖2 = sec(𝜃𝑗). Therefore, ‖|𝑉 |𝑒𝑗‖2 = sec(𝜃𝑗). Now,
note that 𝑒𝑇|𝑉 −1| is a sum of 𝑛 rows of Euclidean length 1, so ‖𝑒𝑇|𝑉 −1|‖2 ≤ 𝑛. Thus, we have

𝜙𝑗 ≤ 𝑛‖𝐹‖2 sec(𝜃𝑗).

Putting this bound on the columns of ̃𝐹 together with Equation 2, we have the Bauer-Fike
theorem.

Theorem 0.1 (Bauer-Fike). Suppose 𝐴 ∈ ℂ𝑛×𝑛 is diagonalizable with eigenvalues 𝜆1, … , 𝜆𝑛.
Then all the eigenvalues of 𝐴 + 𝐹 are in the region

⋃
𝑗

ℬ𝑛‖𝐹‖2 sec(𝜃𝑗)(𝜆𝑗),

where 𝜃𝑗 is the acute angle between the row and column eigenvectors for 𝜆𝑗, and any connected
component 𝒢 of this region that contains exactly 𝑚 eigenvalues of 𝐴 will also contain exactly
𝑚 eigenvalues of 𝐴 + 𝐹.
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