
CS 6210: Matrix Computations
Introduction to eigenvalues

David Bindel

2025-10-20

Eigenvalue problems

An eigenvalue 𝜆 ∈ ℂ of a matrix 𝐴 ∈ ℂ𝑛×𝑛 is a value for which the equations 𝐴𝑣 = 𝑣𝜆 and
𝑤∗𝐴 = 𝜆𝑤∗ have nontrivial solutions (the eigenvectors 𝑤∗ and 𝑣). Together, (𝜆, 𝑣) forms an
eigenpair and (𝜆, 𝑣, 𝑤∗) forms an eigentriple. An eigenvector is a basis for a one-dimensional
invariant subspace: that is, 𝐴 maps anything multiple of 𝑣 to some other multiple of 𝑣. More
generally, a matrix 𝑉 ∈ ℂ𝑛×𝑚 spans an invariant subspace if 𝐴𝑉 = 𝑉 𝐿 for some 𝐿 ∈ ℂ𝑛×𝑚.

Associated with any square 𝐴, we can write a matrix 𝑄 whose columns form an orthonormal
basis for nested invariant subspaces of 𝐴; that is, the first 𝑘 columns of 𝑄 form a 𝑘-dimensional
invariant subspace of 𝐴. This structure of nested invariant subspaces gives us that

𝐴𝑄 = 𝑄𝑇 ,

where 𝑇 is an upper triangular matrix. The factorization

𝐴 = 𝑄𝑇 𝑄∗

is a Schur factorization. Most of next week will be devoted to methods to compute Schur
factorizations (or parts of Schur factorizations). The Schur factorization is nearly as versatile
as, and is far more numerically stable than, the Jordan canonical form

𝐴𝑉 = 𝑉 𝐽.

where 𝐽 is a block diagonal matrices with Jordan blocks of the form

𝐽𝜆 =
⎡
⎢
⎢
⎣

𝜆 1
⋱ ⋱

𝜆 1
𝜆

⎤
⎥
⎥
⎦

.
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The algebraic multiplicity of an eigenvalue 𝜆 is the number of times it appears on the diagonal
of the Jordan form, or the number of times the factor 𝑧 −𝜆 divides the characteristic polynomial
det(𝐴 − 𝑧𝐼). The geometric multiplicity is given by the number of Jordan blocks associated to
𝜆, or by the dimension of the null space of (𝐴 − 𝜆𝐼). In general, there is exactly one eigenvector
of 𝐴 for each Jordan block, and the eigenvectors form a basis iff 𝐴 is diagonalizable – that
is, if 𝐴 has only 1-by-1 Jordan blocks and all geometric and algebraic multiplicities match.
The diagonalizable matrices form a dense set in ℂ𝑛×𝑛, a fact which is often convenient in
proofs (since an argument for the diagonalizable case together with a continuity argument
often yields a general solution). This fact also explains part of why the Jordan canonical
form is annoying for numerical work: if every matrix is an arbitrarily small perturbation of
something diagonalizable, then the Jordan form is discontinuous as a function of 𝐴! Even
among the diagonalizable matrices, though, the eigenvector decomposition is often overrated for
computational purposes. Poor conditioning of the eigenvector basis can make diagonalization a
numerically unstable business, and most computations that are naively formulated in terms of
an eigenvector basis can equally well be formulated in terms of Schur basis.

In generalized eigenvalue problems, we ask for nontrivial solutions to

(𝐴 − 𝜆𝐵)𝑣 = 0.

There are also nonlinear eigenvalue problems, which show up in my research but which we will
not talk about in class. In addition to these variants on the eigenvalue problem, there are also
many different factors that affect the how we choose algorithms. Is the problem...

1. nonsymmetric or symmetric?

2. standard or generalized?

3. to find all eigenvalues or just a few?

4. to compute eigenvectors, invariant subspaces, or just eigenvalues?

For different answers to these questions, there are different “best” choices of algorithm. For the
next week or two, we will focus specifically on the problem of computing eigenpairs, invariant
subspaces, and Schur forms for nonsymmetric matrices. We will only briefly touch on the
special case of the symmetric problem, which has so much more mathematical structure that it
is treated almost entirely differently from the nonsymmetric case.

The 2-by-2 case: some illustrative examples

Many of the salient features that occur in general eigenvalue problems can be illustrated with
the 2-by-2 matrix

𝐴 = [𝑎 𝑏
𝑐 𝑑] .
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Finding an eigenvalue is equivalent to finding a root of the characteristic polynomial:

𝑝(𝑧) = det(𝐴 − 𝑧𝐼) = (𝑎 − 𝑧)(𝑑 − 𝑧) − 𝑏𝑐
= 𝑧2 − (𝑎 + 𝑑)𝑧 + (𝑎𝑑 − 𝑏𝑐).

If the roots of the characteristic polynomial are 𝜆1 and 𝜆2, then we have

𝑝(𝑧) = (𝑧 − 𝜆1)(𝑧 − 𝜆2)
= 𝑧2 − (𝜆1 + 𝜆2)𝑧 + 𝜆1𝜆2.

We recognize the second coefficient in the characteristic polynomial as minus the trace 𝑎 + 𝑑 =
𝜆1 + 𝜆2. The constant coefficient is the determinant 𝑎𝑑 − 𝑏𝑐 = 𝜆1𝜆2. Both these coefficients can
be seen as functions of the eigenvalues, but both can be computed efficiently without referring
to the eigenvalues explicitly.

Now suppose we choose some fixed 𝜆 ∈ ℂ and look at the 2-by-2 matrices for which 𝜆 is
an eigenvalue. If we just want 𝜆 to be an eigenvalue, we must satisfy one scalar equation:
𝑝(𝜆) = 0. To find matrices for which 𝜆 is a double eigenvalue, we must satisfy the additional
constraint 𝑎 + 𝑑 = 2𝜆. And there is only one 2-by-2 matrix for which 𝜆 is a double eigenvalue
with geometric multiplicity 2: 𝐴 = 𝜆𝐼. Put differently, the set of 2-by-2 matrices for which
𝜆 is an eigenvalue has codimension 1 (i.e. it is described by one scalar constraint); the set of
2-by-2 matrices for which 𝜆 is an eigenvalue with algebraic multiplicity 2 has codimension 2;
and the set of 2-by-2 matrices for which 𝜆 is an eigenvalue with geometric multiplicity 2 has
codimension 3.

More generally, we can say that among general complex 𝑛-by-𝑛 matrices, the existence of some
multiple eigenvalue is a codimension 1 phenomena (somewhat rare in general); and the existence
of an eigenvalue with geometric multiplicity greater than 1 is a codimension 3 phenomena (very
rare in general). Of course, things change if we consider structured matrices. For example, in
symmetric matrices the algebraic and geometric multiplicities of all eigenvalues are the same.

The symmetric case

In general, a real matrix can have complex eigenvalues (though in conjugate pairs), and it may
or may not have a basis of eigenvectors. In the case of real symmetric matrices (𝐴 = 𝐴𝑇), we
have much more structure: namely,

• All the eigenvalues are real.

• There is a complete orthonormal basis of eigenvectors.

To see the former, observe that if (𝑣, 𝜆) is an eigenpair and ‖𝑣‖ = 1 then

𝜆 = 𝑣∗𝐴𝑣 = ̄𝑣∗𝐴𝑣 = 𝜆̄,
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which implies that 𝜆 is real. To see that eigenvectors associated with different eigenvalues must
be orthogonal, note that if (𝑣, 𝜆) and (𝑢, 𝜇) are eigenpairs with 𝜆 ≠ 𝜇, then

𝑣∗𝐴𝑢 = {
(𝐴𝑣)∗𝑢 = 𝜆𝑣 ⋅ 𝑢
𝑣∗(𝐴𝑢) = 𝜇𝑣 ⋅ 𝑢

and the only way for these to be the same is if 𝑣 ⋅ 𝑢 = 0. Combining these two facts about the
symmetric eigenvalue problem, we usually write the standard decomposition

𝐴 = 𝑄Λ𝑄𝑇

where 𝑄 is an orthogonal matrix of eigenvalues and Λ is the corresponding diagonal matrix of
eigenvalues.

We often use symmetric matrices to represent quadratic forms, and this is one reason why
symmetric eigenvalue problems are so common. If 𝐴 = 𝑄Λ𝑄𝑇, then we can define 𝑤 = 𝑄𝑇𝑣 to
get the expression

𝑣∗𝐴𝑣 =
𝑛

∑
𝑖=1

𝑤2
𝑖 𝜆𝑖.

If ‖𝑣‖2 = 1 (implying ‖𝑤‖2 = 1), then we can see 𝑣∗𝐴𝑣 is a weighted average of the eigenvalues
of 𝐴. Hence, the minimum or maximum of 𝑣∗𝐴𝑣 over all unit length vectors gives the largest
and smallest of the eigenvalues of 𝐴; and, more generally, the eigenvalues are stationary points
of 𝑣∗𝐴𝑣 subject to the constraint ‖𝑣‖2 = 1. Sometimes we prefer to work with all nonzero
vectors rather than vectors with unit length, and hence define the Rayleigh quotient

𝜌𝐴(𝑣) = 𝑣∗𝐴𝑣
𝑣∗𝑣

;

this ratio plays a central role in the theory of the symmetric eigenproblem.

Why eigenvalues?

I spend a lot of time thinking about eigenvalue problems. In part, this is because I look for
problems that can be solved via eigenvalues. But I might have fewer things to keep me out of
trouble if there weren’t so many places where eigenvalue analysis is useful! The purpose of this
lecture is to tell you about a few applications of eigenvalue analysis, or perhaps to remind you
of some applications that you’ve seen in the past.

Nonlinear equation solving

The eigenvalues of a matrix are the roots of the characteristic polynomial

𝑝(𝑧) = det(𝑧𝐼 − 𝐴).
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One way to compute eigenvalues, then, is to form the characteristic polynomial and run a
root-finding routine on it. In practice, this is a terrible idea, if only because the root-finding
problem is often far more sensitive than the original eigenvalue problem. But even if sensitivity
were not an issue, finding all the roots of a polynomial seems like a nontrivial undertaking.
Iterations like Newton’s method, for example, only converge locally. In fact, the roots command
in MATLAB computes the roots of a polynomial by finding the eigenvalues of a corresponding
companion matrix with the polynomial coefficients on the first row, ones on the first subdiagonal,
and zeros elsewhere:

𝐶 =
⎡
⎢
⎢
⎢
⎣

𝑐𝑑−1 𝑐𝑑−2 … 𝑐1 𝑐0
1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0

⎤
⎥
⎥
⎥
⎦

.

The characteristic polynomial for this matrix is precisely

det(𝑧𝐼 − 𝐶) = 𝑧𝑑 + 𝑐𝑑−1𝑧𝑑−1 + … + 𝑐1𝑧 + 𝑐0.

There are some problems that connect to polynomial root finding, and thus to eigenvalue
problems, in surprising ways. For example, the problem of finding “optimal” rules for computing
integrals numerically (sometimes called Gaussian quadrature rules) boils down to finding the
roots of orthogonal polynomials, which can in turn be converted into an eigenvalue problem;
see, for example, “Calculation of Gauss Quadrature Rules” by Golub and Welsch (Mathematics
of Computation, vol 23, 1969).

More generally, eigenvalue problems are one of the few examples I have of a nonlinear equation
where I can find all solutions in polynomial time! Thus, if I have a hard nonlinear equation to
solve, it is very tempting to try to massage it into an eigenvalue problem, or to approximate it
by an eigenvalue problem.

Optimization

As we noted before, the symmetric eigenvalue problem has an interpretation in terms of
optimization of a quadratic form over unit length vectors. More generally, one can look at
generalized eigenvalue problems in terms of optimization of a ratio of quadratic forms. We now
discuss some applications where this interpretation is useful.

Recall that the matrix 2-norm is defined as

‖𝐴‖2 = max
𝑥≠0

‖𝐴𝑥‖
‖𝑥‖

= max
‖𝑥‖=1

‖𝐴𝑥‖.

Taking squares and using the monotonicity of the map 𝑧 → 𝑧2 for non-negative arguments, we
have

‖𝐴‖2
2 = max

‖𝑥‖2=1
‖𝐴𝑥‖2 = max

𝑥𝑇𝑥=1
𝑥𝑇𝐴𝑇𝐴𝑥.
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The 𝑥 that solves this constrained optimization problem must be a stationary point for the
augmented Lagrangian function

𝐿(𝑥, 𝜆) = 𝑥𝑇𝐴𝑇𝐴𝑥 − 𝜆(𝑥𝑇𝑥 − 1),

i.e.
∇𝑥𝐿(𝑥, 𝜆) = 2(𝐴𝑇𝐴𝑥 − 𝜆𝑥) = 0
∇𝜆𝐿(𝑥, 𝜆) = 𝑥𝑇𝑥 − 1 = 0.

These equations say that 𝑥 is an eigenvector of 𝐴𝑇𝐴 with eigenvalue 𝜆. The largest eigenvalue
of 𝐴𝑇𝐴 is therefore ‖𝐴‖2

2.

More generally, if 𝐻 is any Hermitian matrix, the Rayleigh quotient

𝜌𝐻(𝑣) = 𝑣∗𝐻𝑣
𝑣∗𝑣

has stationary points exactly when 𝑣 is an eigenvector of 𝐻. Optimizing the Rayleigh quotient
is therefore example of a non-convex global optimization problem that I know how to solve
in polynomial time. Such examples are rare, and so it is tempting to try to massage other
nonconvex optimization problems so that they look like Rayleigh quotient optimization, too.

To give an example of a nonconvex optimization that can be usefully approximated using
Rayleigh quotients, consider the superficially unrelated problem of graph bisection. Given
an undirected graph 𝐺 with vertices 𝑉 and edges 𝐸 ⊂ 𝑉 × 𝑉, we want to find a partition of
the nodes into two equal-size sets such that few edges go between the sets. That is, we want
to write 𝑉 as a disjoint union 𝑉 = 𝑉1 ∪ 𝑉2, |𝑉1| = |𝑉2|, such that the number of edges cut
|𝐸 ∩ (𝑉1 × 𝑉2)| is minimized. Another way to write the same thing is to label each node 𝑖 in
the graph with 𝑥𝑖 ∈ {+1, −1}, and define 𝑉1 to be all the nodes with label +1, 𝑉2 to be all the
nodes with label −1. Then the condition that the two sets are the same size is equivalent to

∑
𝑖

𝑥𝑖 = 0,

and the number of edges cut is
1
4

∑
(𝑖,𝑗)∈𝐸

(𝑥𝑖 − 𝑥𝑗)2

We can rewrite the constraint more concisely as 𝑒𝑇𝑥 = 0, where 𝑒 is the vector of all ones; as
for the number of edges cut, this is

edges cut = 1
4

𝑥𝑇𝐿𝑥

where the graph Laplacian 𝐿 has the node degrees on the diagonal and −1 in off-diagonal entry
(𝑖, 𝑗) iff there is an edge from 𝑖 to 𝑗.

Unsurprisingly, the binary quadratic programming problem

minimize 𝑥𝑇𝐿𝑥 s.t. 𝑒𝑇𝑥 = 0 and 𝑥 ∈ {+1, −1}𝑛
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is NP-hard, and we know of no efficient algorithms that are guaranteed to work for this problem
in general. On the other hand, we can relax the problem to

minimize 𝑣𝑇𝐿𝑣 s.t. 𝑒𝑇𝑣 = 0 and ‖𝑣‖2 = 𝑛, 𝑣 ∈ ℝ𝑛,

and this problem is an eigenvalue problem: 𝑣 is the eigenvector associated with the smallest
positive eigenvalue of 𝐿, and 𝑣𝑇𝐿𝑣 is 𝑛 times the corresponding eigenvalue. Since the constraint
in the first problem is strictly stronger than the constraint in the second problem, 𝑛𝜆2(𝐿) is in
fact a lower bound on the smallest possible cut size, and the sign pattern of 𝑣 often provides a
partition with a small cut size. This is the heart of spectral partitioning methods.

Dynamics

Eigenvalue problems come naturally out of separation of variables methods, and out of transform
methods for the dynamics of discrete or continuous linear time invariant systems, including
examples from physics and from probability theory. They allow us to analyze complicated high-
dimensional dynamics in terms of simpler, low-dimensional systems. We consider two examples:
separation of variables for a free vibration problem, and convergence of a discrete-time Markov
chain.

Generalized eigenvalue problems and free vibrations

One of the standard methods for solving differential equations is separation of variables. In
this approach, we try to write special solutions as a product of simpler functions, and then
write the equations that those functions have to satisfy. As an example, consider a differential
equation that describes the free vibrations of a mechanical system:

𝑀𝑢̈ + 𝐾𝑢 = 0

Here 𝑀 ∈ ℝ𝑛×𝑛 is a symmetric positive definite mass matrix and 𝐾 ∈ ℝ𝑛×𝑛 is a symmetric
stiffness matrix (also usually positive definite, but not always). We look for solutions to this
system of the form

𝑢(𝑡) = 𝑢0 cos(𝜔𝑡),

where 𝑢0 is a fixed vector. To have a solution of this form, we must have

𝐾𝑢0 − 𝜔2𝑀𝑢0 = 0,

i.e. (𝜔2, 𝑢0) is an eigenpair for a generalized eigenvalue problem. In fact, the eigenvectors for
this generalized eigenvalue problem form an 𝑀-orthonormal basis for ℝ𝑛, and so we can write
every free vibration as a linear combination of these simple “modal” solutions.
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Markov chain convergence and the spectral gap

This high-level idea of using the eigenvalue decomposition to understand dynamics is not limited
to differential equations, nor to mechanical systems. For example, a discrete-time Markov chain
on 𝑛 states is a random process where the state 𝑋𝑘+1 is a random variable that depends only
on the state 𝑋𝑘. The transition matrix for the Markov chain is a matrix 𝑃 where 𝑃𝑖𝑗 is the
(fixed) probability of transitioning to state 𝑖 from state 𝑗, i.e.

𝑃𝑖𝑗 = 𝑃{𝑋𝑘+1 = 𝑗|𝑋𝑘 = 𝑖}.

Let 𝜋(𝑘) ∈ ℝ𝑛 be the distribution vector at time 𝑘, i.e.

𝜋(𝑘)
𝑖 = 𝑃{𝑋𝑘 = 𝑖}.

Then we have the recurrence relationship

(𝜋(𝑘+1))𝑇 = (𝜋(𝑘))𝑇𝑃 .

In general, this means that
(𝜋(𝑘))𝑇 = (𝜋(0))𝑇𝑃 𝑘.

Now, suppose the transition matrix 𝑃 is diagonalizable, i.e. 𝑃 = 𝑉 Λ𝑉 −1. Then

𝑃 𝑘 = 𝑉 Λ𝑉 −1𝑉 Λ𝑉 −1 … 𝑉 Λ𝑉 −1 = 𝑉 Λ … Λ𝑉 −1 = 𝑉 Λ𝑘𝑉 −1,

and so
(𝜋(𝑘))𝑇 = (𝜋(0))𝑇𝑉 Λ𝑘𝑉 −1.

An ergodic Markov chain has one eigenvalue at one, and all the other eigenvalues are less
than one in modulus. In this case, the row eigenvector associated with the eigenvalue at one
can be normalized so that the coefficients are all positive and sum to 1. This normalized row
eigenvector 𝜋(∗) represents the stationary distribution to which the Markov chain eventually
converges. To compute the rate of convergence, one looks at

‖(𝜋(𝑘) − 𝜋(∗))𝑇‖ = ‖(𝜋(0) − 𝜋(∗))𝑇(𝑉Λ̃𝑘𝑉 −1)‖ ≤ ‖(𝜋(0) − 𝜋(∗))𝑇‖ 𝜅(𝑉 )‖Λ̃‖𝑘

where Λ = diag(1, 𝜆2, 𝜆3, …), |𝜆𝑖| ≥ |𝜆𝑖+1|, and Λ̃ = diag(0, 𝜆2, 𝜆3, …). In most reasonable
operator norms, |Λ̃|𝑘 = |𝜆2|𝑘, and so a great deal of the literature on convergence of Markov
chains focuses on 1 − |𝜆2|, called the spectral gap. But note that this bound does not depend
on the eigenvalues alone! The condition number of the eigenvector matrix also plays a role, and
if 𝜅(𝑉 ) is very large, then it may take a long time indeed before anyone sees the asymptotic
behavior reflected by the spectral gap.
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Deductions from eigenvalue distributions

In most of our examples so far, we have considered both the eigenvalues and the eigenvectors.
Now let us turn to a simple example where the distribution of eigenvalues can be illuminating.

Let 𝐴 be the adjacency matrix for a graph, i.e.

𝐴𝑖𝑗 = {
1, if there is an edge from 𝑖 to 𝑗
0, otherwise.

Then (𝐴𝑘)𝑖𝑗 is the number of paths of length 𝑘 from node 𝑖 to node 𝑗. In particular, (𝐴𝑘)𝑖𝑖
is the number of cycles of length 𝑘 that start and end at node 𝑖, and trace(𝐴𝑘) is the total
number of length 𝑘 cycles starting from any node. Recalling that the trace of a matrix is
the sum of the eigenvalues, and that the eigenvalues of a matrix power are the power of the
eigenvalues, we have that

# paths of length 𝑘 = ∑
𝑖

𝜆𝑖(𝐴)𝑘,

where 𝜆𝑖(𝐴) are the eigenvalues of 𝐴; and asymptotically, the number of cycles of length 𝑘 for
very large 𝑘 scales like 𝜆1(𝐴)𝑘, where 𝜆1(𝐴) is the largest eigenvalue of the matrix 𝐴.

While the statement above deals only with eigenvalues and not with eigenvectors, we can
actually say more if we include the eigenvector; namely, if the graph 𝐴 is irreducible (i.e. there
is a path from every state to every other state), then the largest eigenvalue 𝜆1(𝐴) is a real,
simple eigenvalue, and asymptotically the number of paths from any node 𝑖 to node 𝑗 scales
like the (𝑖, 𝑗) entry of the rank one matrix

𝜆𝑘
1𝑣𝑤𝑇

where 𝑣 and 𝑤 are the column and row eigenvectors of 𝐴 corresponding to the eigenvalue 𝜆1,
scaled so that 𝑤𝑇𝑣 = 1.
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