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Matrix nearness problems

A matrix nearness problem has the form

minimize ‖𝑋 − 𝐴‖ s.t. 𝑋 ∈ Ω

or, equivalently,
minimize ‖𝐸‖ s.t. 𝐴 + 𝐸 ∈ Ω

where Ω is a set in matrix space (real or complex) and 𝐴 is a target matrix. The most frequent
choice of norms are the Frobenius norm and the operator 2-norm (aka the spectral norm).
Depending on the context, one may be interested in simple bounds on the minimum value, an
explicit formula or characterization for the minimum value, characterization of any 𝑋 (or 𝐸)
for which the minimum value is obtained, or an algorithm for computing or estimating either
the minimum value ‖𝐸‖ or an explicit minimizer 𝐸.

Our treatment of matrix nearness problems is largely drawn from the excellent paper “Matrix
nearness problems and applications” by Nick Higham, appearing in Applications of Matrix
Theory (Oxford University Press, 1989).

Preliminaries

In most cases, the easiest norm to work with for matrix nearness problems is the Frobenius
norm, for a few reasons:

• The squared Frobenius norm is an inner product norm with respect to the Frobenius
inner product, and is everywhere differentiable (in the real case), with

𝛿 [‖𝐴‖2
𝐹] = 2⟨𝛿𝐴, 𝐴⟩𝐹 = 2 tr(𝐴𝑇𝛿𝐴).
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• The Frobenius norm is strictly convex. All norms are convex by homogeneity together
with the triangle inequality; that is, for 0 ≤ 𝛼 ≤ 1 we have

‖𝛼𝑥 + (1 − 𝛼)𝑦‖ ≤ 𝛼‖𝑥‖ + (1 − 𝛼)‖𝑦‖.

But for the Frobenius norm (and the vector 2-norm), we have strict inequality when 𝑥 ≠ 𝑦
and 0 < 𝛼 < 1. Strict convexity allows us to get uniqueness results for the minimizer in
the Frobenius norm in some cases where we do not have uniquess in other norms.

• The Frobenius norm is unitarily invariant, i.e.

‖𝑃𝐴𝑄‖𝐹 = ‖𝐴‖𝐹

whenever 𝑃 , 𝑄 are unitary matrices. This means in particular that we can use the
SVD and related decompositions to simplify Frobenius-norm nearness problems, since if
𝐴 = 𝑈Σ𝑉 ∗ is a singular value decomposition for 𝐴, then ‖𝐴‖𝐹 = ‖Σ‖𝐹.

One sometimes sees useful nearness results with respect to general unitarily invariant norms.
The most common such norms are the Ky-Fan norms. The Ky-Fan 𝑝 norms have the form

‖𝐴‖ = ‖𝜎‖𝑝

where 𝜎 is the vector of singular values of 𝐴; the Frobenius norm and the spectral norm are
the Ky-Fan 2-norm and the Ky-Fan ∞-norm, respectively. The Ky-Fan 1-norm (also called the
nuclear norm) is also used in some applications. However, the spectral norm and the nuclear
norm lack the differentiability and strict convexity of the Frobenius norm.

Symmetry

A warm-up case is the question of the nearest symmetric matrix. The space ℝ𝑛×𝑛 of square
matrices can be written as a direct sum of the 𝑛(𝑛 + 1)/2-dimensional space of symmetric
matrices (𝐻 = 𝐻𝑇) and the 𝑛(𝑛 − 1)/2-dimensional space of skew matrix (𝐾 = −𝐾𝑇). The
two spaces are orthogonal to each other in the Frobenius inner product; and for any matrix
𝐴 ∈ ℝ𝑛×𝑛, there is a unique decomposition into a symmetric and a skew symmetric part:

𝐴 = 𝐴𝐻 + 𝐴𝐾, 𝐴𝐻 = 𝐴𝑇
𝐻, 𝐴𝐾 = −𝐴𝑇

𝐾

where 𝐴𝐻 = (𝐴 + 𝐴𝑇)/2 and 𝐴𝐾 = (𝐴 − 𝐴𝑇)/2. The best symmetric approximation to 𝐴 in
the Frobenius norm is therefore 𝐴𝐻, since the residual 𝐴𝐾 is normal to the space of symmetric
matrices. And by the Pythagorean theorem, ‖𝐴‖2

𝐹 = ‖𝐴𝐻‖2
𝐹 +‖𝐴𝐾‖2

𝐹, so ‖𝐴𝐾‖2
𝐹 = ‖𝐴−𝐴𝐻‖2

𝐹 =
‖𝐴‖2

𝐹 − ‖𝐴𝐻‖2
𝐹 is the distance from 𝐴 to the closest symmetric matrix.

What if we are interested in other norms? The characterization of the distance to symmetry is
straightforward in any unitarily invariant norm: it is always ‖𝐴 − 𝐴𝐻‖ = ‖𝐴𝐾‖. To prove this,
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Fan and Hoffman used the fact that unitary invariance implies that ‖𝐴‖ = ‖𝐴𝑇‖, and so for any
symmetric 𝑌

‖𝐴𝐾‖ = 1
2

‖(𝐴 − 𝑌 ) + (𝑌 𝑇 − 𝐴𝑇)‖

≤ 1
2

‖𝐴 − 𝑌 ‖ + 1
2

‖𝑌 𝑇 − 𝐴𝑇‖

≤ ‖𝐴 − 𝑌 ‖.

The minimum distance is achieved at 𝑋 = 𝐴𝐻, but it generally may be achieved by other
points, too – the uniquenss that we see in the Frobenius norm doesn’t generalize. For example,
consider

𝐴 =
⎡
⎢
⎢
⎣

0 −1
1 0

0.1
0.1

⎤
⎥
⎥
⎦

The symmetric part of this matrix is 𝐴𝐻 = diag(0, 0, 0.1, 0.1), but in the spectral norm it is
the same distance from 𝐴 as the all zero matrix, for example: ‖𝐴𝐾‖2 = ‖𝐴‖2 = 1.

Distance to rank deficiency

Suppose 𝐴 ∈ ℝ𝑛×𝑛, and consider the problem of finding the smallest 𝐸 such that a given 𝑥 ≠ 0
is a null vector of 𝐴 + 𝐸. Take any operator norm associated with some vector norm, and let
𝑧𝑇 be a dual vector to 𝑥 with respect to the vector norm (i.e. ‖𝑧𝑇‖ = 1 in the appropriate dual
norm and 𝑧𝑇𝑧 = ‖𝑥‖). The smallest possible ‖𝐸‖ in the operator norm is ‖𝐴𝑥‖/‖𝑥‖, and this
is attained at 𝐸 = −𝐴𝑥𝑧𝑇. Now, if we minimize ‖𝐴𝑥‖/‖𝑥‖ over all nonzero 𝐸, the minimum
possible value is ‖𝐴−1‖−1, which gives us that

min {‖𝐸‖
‖𝐴‖

∶ 𝐴 + 𝐸 is singular} = 𝜅(𝐴)−1.

That is, the inverse condition number can be seen as the relative distance to singularity of the
matrix 𝐴, giving us a nice geometric interpretation of the condition number (and this geometric
interpretation extends to many other settings).

Low rank and Eckart-Young-Mirsky

Closely related to the distance of a square matrix to the nearest singular matrix is the problem
of distance to rank deficiency for a possibly rectangular 𝐴 ∈ ℝ𝑚×𝑛. Then the minimum distance
to a rank 𝑘 matrix is achieved by the truncated SVD:

𝐴𝑘 = 𝑈𝑘Σ𝑘𝑉 𝑇
𝑘
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where 𝑈𝑘 and 𝑉𝑘 consist of the first 𝑘 columns of the singular vector matrices 𝑈 and 𝑉, and Σ𝑘
is the diagonal matrix of the 𝑘 largest singular values. In the Frobenius norm, this was proved
by Eckart and Young, and it was later shown true in any unitarily invariant norm – hence it is
called the Eckart-Young-Mirsky theorem. We will discuss the Frobenius norm case.

Suppose ‖𝐴 − 𝐵‖2
𝐹 is minimal, where 𝐵 = 𝑋𝐷𝑌 𝑇, 𝑋, 𝑌 ∈ ℝ𝑛×𝑘 have orthonormal columns and

𝐷 ∈ ℝ𝑘×𝑘 is diagonal with non-negative entries. Note that we can allow 𝑋 and 𝑌 to deviate
from having orthonormal columns, but there will always exist some representation of the stated
form (by the SVD). Expanding the quadratic and playing with the cyclic property of traces
gives

𝜙(𝑋, 𝐷, 𝑌 ) = ‖𝐴 − 𝑋𝐷𝑌 𝑇‖2
𝐹

= ‖𝐴‖2
𝐹 − 2 tr(𝐴𝑇𝑋𝐷𝑌 𝑇) + ‖𝑋𝐷𝑌 𝑇‖2

𝐹

= ‖𝐴‖2
𝐹 − 2 tr(𝑌 𝑇𝐴𝑋𝐷) + tr(𝑌 𝑇𝑌 𝐷𝑋𝑇𝑋𝐷)

= ‖𝐴‖2
𝐹 − 2 tr(𝑋𝑇𝐴𝑇𝑌 𝐷) + tr(𝑋𝑇𝑋𝐷𝑌 𝑇𝑌 𝐷)

Differentiating with respect to 𝑋, 𝑌, and 𝐷 gives

𝛿𝜙 = 2⟨𝐷 − 𝑌 𝑇𝐴𝑋, 𝛿𝐷⟩𝐹 + 2⟨(𝑌 𝐷 − 𝐴𝑋)𝐷, 𝛿𝑌 ⟩𝐹 + 2⟨(𝑋𝐷 − 𝐴𝑇𝑌 )𝐷, 𝛿𝑋⟩𝐹

Setting the gradient to zero, we have the stationary conditions

𝐷 = diag(𝑌 𝑇𝐴𝑋)
(𝑌 𝐷 − 𝐴𝑋)𝐷 = 0

(𝑋𝐷 − 𝐴𝑇𝑌 )𝐷 = 0

If 𝑑𝑗 > 0, then the latter two equations give

[ 0 𝐴
𝐴𝑇 0] [𝑦𝑗

𝑥𝑗
] = [𝑦𝑗

𝑥𝑗
] 𝑑𝑗,

i.e. the columns of 𝐴 solve an eigenvalue problem. In fact, as we will see after the fall break,
the solutions to this eigenvalue problem with positive eigenvalues are exactly (up to choice of
normalization)

[ 0 𝐴
𝐴𝑇 0] [𝑣𝑗

𝑢𝑗
] = [𝑣𝑗

𝑢𝑗
] 𝜎𝑗.

Therefore, the columns of 𝑋 and 𝑌 must either satisfy 𝑦𝑇
𝑗 𝐴𝑥𝑗 = 𝑑𝑗 = 0 (in which case they

really contribute nothing to 𝐵) or they must correspond to the singular vectors. Given this, we
have that at a stationary point, 𝑈𝑇(𝐴 − 𝐵)𝑉 is a diagonal matrix of singular values with 𝑘 of
them “zeroed out”; the best choice to zero out in order to minimize ‖𝐴−𝐵‖𝐹 = ‖𝑈𝑇(𝐴−𝐵)𝑉 ‖𝐹
is obviously the 𝑘 largest.

We will discuss Eckart-Young-Mirsky in more detail after the break, when we talk about
eigenvalue problems and the singular value decomposition.
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Nearest symmetric positive semidefinite

Now consider the problem of finding the nearest symmetric positive definite 𝑋 to a given 𝐴.
Taking the symmetric/skew symmetric decomposition of 𝐴 = 𝐴𝐻 + 𝐴𝐾, we have

‖𝐴 − 𝑋‖2
𝐹 = ‖𝐴𝐻 − 𝑋‖2

𝐹 + ‖𝐴𝐾‖2
𝐹;

that is, we can just focus on the 𝑋 that is nearest to the symmetric matrix 𝐴𝐻. Take the
symmetric eigenvalue decomposition 𝐴𝐻 = 𝑄Λ𝑄𝑇, and let 𝑋̃ = 𝑄𝑇𝑋𝑄; then we seek to
minimize ‖Λ − 𝑋̃‖2

𝐹 subject to the constraint that 𝑋̃ is positive semidefinite. A positive
semidefinite matrix must have non-negative diagonal entries, so the best choice we can make is
to have 𝑋̃ be a diagonal matrix eith entries max(𝜆𝑖, 0).

Orthogonal nearness

We begin this section with a matrix decomposition closely related to the SVD: the so-called
polar decomposition. Suppose 𝐴 ∈ ℝ𝑚×𝑛, and consider the economy SVD 𝐴 = 𝑈Σ𝑉 𝑇. We can
rewrite this as

𝐴 = (𝑈𝑉 𝑇)(𝑉 Σ𝑉 𝑇) = 𝑄𝐻
where 𝑄 = 𝑈𝑉 𝑇 has orthonormal columns and 𝐻 = 𝑉 Σ𝑉 𝑇 is symmetric and positive (semi)def-
inite. This gives us a generalization of writing a vector as a unit vector times a non-negative
length.

Now suppose that 𝐴 = 𝑈Σ𝑉 𝑇 and we want to find the closest orthogonal matrix to 𝐴 in the
Frobenius norm. That is, we seek 𝑊 with orthonormal columns so as to minimize

‖𝐴 − 𝑊‖2
𝐹 = ‖𝐴‖2

𝐹 − 2 tr(𝑊 𝑇𝐴) + ‖𝑊‖2
𝐹

Note that ‖𝑊‖2
𝐹 =

√
𝑛 by the assumption that 𝑊 has orthonormal columns, so minimizing

‖𝐴 − 𝑊‖𝐹 is equivalent to maximizing (using the cyclic property of traces)

tr(𝑊 𝑇𝐴) = tr(Σ𝑉 𝑇𝑊 𝑇𝑈) = ⟨(𝑊𝑉 )𝑇𝑈, Σ⟩𝐹.

This is the same as the sum of the dot products of columns of 𝑊𝑉 𝑇 and columns of 𝑈, weighted
by Σ. These column dot products of unit vectors have maximal value of 1, taken on when the
two arguments are equal; that is, we require 𝑊𝑉 = 𝑈 or 𝑊 = 𝑈𝑉 𝑇 = 𝑄.

A closely related problem is the orthogonal Procrustes problem: for 𝐴, 𝐵 𝑖𝑛ℝ𝑚×𝑛, find the
minimum of ‖𝐴 − 𝐵𝑄‖𝐹 where 𝑄 ∈ ℝ𝑛×𝑛 is orthogonal. As before, we note that

‖𝐴 − 𝐵𝑄‖2
𝐹 = ‖𝐴‖2

𝐹 − 2 tr(𝐴𝑇𝐵𝑄) + ‖𝐵𝑄‖2
𝐹

and by orthogonal invariance, ‖𝐵𝑄‖2
𝐹 = ‖𝐵‖2

𝐹 is independent of 𝑄. Therefore, minimizing
‖𝐴 − 𝐵𝑄‖2

𝐹 is equivalent to maximizing

tr(𝐴𝑇𝐵𝑄) = ⟨𝐵𝑇𝐴, 𝑄⟩𝐹.

Therefore, we need 𝑄 to be the polar factor of 𝐵𝑇𝐴 with orthonormal columns.
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