
CS 6210: Matrix Computations
Constraints, sparsity, and projectors

David Bindel

2025-10-08

Regularization via iteration

We have briefly talked about one iterative method already (iterative refinement), and will talk
about other iterative methods later in the semester. Some of these iterations have a regularizing
effect when they are truncated early. In fact, there is an argument that slowly convergent
methods may be beneficial in some cases!

As an example, consider the Landweber iteration, which is gradient descent applied to linear
least squares problems:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝐴𝑇(𝐴𝑥𝑘 − 𝑏).

If we start from the initial guess 𝑥0 = 0 and let the step size be a fixed 𝛼𝑘 = 𝛼, each subsequent
step is a partial sum of a Neumann series

𝑥𝑘+1 =
𝑘

∑
𝑗=0

(𝐼 − 𝛼𝐴𝑇𝐴)𝑗𝛼𝐴𝑇𝑏

= (𝐼 − (𝐼 − 𝛼𝐴𝑇𝐴)𝑘+1) (𝛼𝐴𝑇𝐴)−1𝛼𝐴𝑇𝑏
= (𝐼 − (𝐼 − 𝛼𝐴𝑇𝐴)𝑘+1) 𝐴†𝑏.

Alternately, we can write the iterates in terms of the singular value decomposition with a filter
for regularization:

𝑥𝑘+1 = 𝑉Σ̃−1𝑈𝑇𝑏, 𝜎̃−1
𝑗 = (1 − (1 − 𝛼𝜎2

𝑗 )𝑘+1)𝜎−1
𝑗 .

Usually, the Landweber iteration is stopped when 𝑘 is large enough so that the filter is nearly
the identity for large singular values, but is small enough to suppress the influence of small
singular values.

The Landweber iteration is not alone in having a regularizing effect, but it is easier to analyze
than some of the more sophisticated Krylov-based methods that we will describe later in the
semester.
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Tradeoffs and tactics

All four of the regularization approaches we have described are used in practice, and each has
something to recommend it. The pivoted QR approach is relatively inexpensive, and it results in
a model that depends on only a few factors. If taking the measurements to compute a prediction
costs money — or even costs storage or bandwidth for the factor data! — such a model may
be to our advantage. The Tikhonov approach is likewise inexpensive, and has a nice Bayesian
interpretation (though we didn’t talk about it). The truncated SVD approach involves the
best approximation rank 𝑘 approximation to the original factor matrix, and can be interpreted
as finding the 𝑘 best factors that are linear combinations of the original measurements. The ℓ1
approach again produces models with sparse coefficients; but unlike QR with column pivoting,
the ℓ1 regularized solutions incorporate information about the vector 𝑏 along with the matrix
𝐴.

So which regularization approach should one use? In terms of prediction quality, all can
provide a reasonable deterrent against ill-posedness and overfitting due to highly correlated
factors. Also, all of the methods described have a parameter (the number of retained factors,
or a penalty parameter 𝜆) that governs the tradeoff between how well-conditioned the fitting
problem will be and the increase in bias that naturally comes from looking at a smaller class of
models. Choosing this tradeoff intelligently may be rather more important than the specific
choice of regularization strategy. A detailed discussion of how to make this tradeoff is beyond
the scope of the class; but we will see some of the computational tricks involved in implementing
specific strategies for choosing regularization parameters before we are done.

Choice of regularization

All of the regularization methods we have discussed share a common trait: they define a
parametric family of models. With more regularization, we restrict the range of models we can
easily generate (adding bias), but we also reduce the sensitivity of the fit (reducing variance).
The choice of the regularization parameter is a key aspect of these methods, and we now briefly
discuss three different ways of systematically making that choice. In all cases, we rely on the
assumption that the sample observations we use for the fit are representative of the population
of observations where we might want to predict.

Morozov’s discrepancy principle

Suppose that we want to fit 𝐴𝑥 ≈ ̂𝑏 by regularized least squares, and the (noisy) observation
vector ̂𝑏 is known to be within some error bound ‖𝑒‖ of the true values 𝑏. The discrepancy
principle says that we should choose the regularization parameter so the residual norm is
approximately ‖𝑒‖. That is, we seek the most stable fitting problem we can get subject to the

2



constraint that the residual error for the regularized solution (with the noisy vector ̂𝑏) is not
much bigger than we would get from unknown true solution.

One of the most obvious drawbacks of the discrepancy principle is that it requires that we
have an estimate for the norm of the error in the data. Sadly, such estimates are not always
available.

The L-curve

A second approach to the regularization parameter is the L-curve. If we draw a parametric
curve of the residual error versus solution norm on a log-log plot, with log ‖𝑟𝜆‖ on the 𝑥 axis
and log ‖𝑥𝜆‖ on the 𝑦 axis, we often see an “L” shape. In the top of the vertical bar (small
𝜆), we find that increasing regularization decreases the solution norm significantly without
significantly increasing the residual error. Along the end of the horizontal part, increasing
regularization increases the residual error, but does not significantly help with the solution
norm. We want the corner of the curve, where the regularization is chosen to minimize the
norm of the solution subject to the constraint that the residual is close to the smallest possible
residual (which we would have without regularization).

Computing the inflection point on the L-curve is a neat calculus exercise which we will not
attempt here.

Cross-validation

The idea with cross-validation is to choose the parameter by fitting the model on a subset of
the data and testing on the remaining data. We may do this with multiple partitions into data
used for fitting versus data reserved for checking predictions. We often choose regularization
parameters to give the smallest error on the predictions in a cross-validation study.

One variant of cross-validation involves minimizing the leave-one-out cross-validation (LOOCV)
statistic:

LOOCV = 1
𝑚

𝑚
∑
𝑖=1

[𝐴𝑥(−𝑖) − 𝑏]2
𝑖

,

where 𝑥(−𝑖) denotes the model coefficients fit using all but the 𝑖th data point.

To compute the LOOCV statistic in the most obvious way, we would delete each row 𝑎𝑇
𝑖 of 𝐴

in turn, fit the model coefficients 𝑥(−𝑖), and then evaluate 𝑟(−𝑖) = 𝑏𝑖 − 𝑎𝑇
𝑖 𝑥(−𝑖). This involves 𝑚

least squares problems, for a total cost of 𝑂(𝑚2𝑛2) (as opposed to the usual 𝑂(𝑚𝑛2) cost for
an ordinary least squares problem). Let us find a better way! For the sake of concreteness, we
will focus on the Tikhonov-regularized version of the problem
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The key is to write the equations for 𝑥(−𝑖) as a small change to the equations for (𝐴𝑇𝐴+𝜆2𝐼)𝑥∗ =
𝐴𝑇𝑏:

(𝐴𝑇𝐴 + 𝜆2𝐼 − 𝑎𝑖𝑎𝑇
𝑖 )𝑥(−𝑖) = 𝐴𝑇𝑏 − 𝑎𝑖𝑏𝑖.

This subtracts the influence of row 𝑖 from both sides of the normal equations. By introducing
the auxiliary variable 𝛾 = −𝑎𝑇

𝑖 𝑥(−𝑖), we have

[𝐴𝑇𝐴 + 𝜆2𝐼 𝑎𝑖
𝑎𝑇

𝑖 1 ] [𝑥(−𝑖)

𝛾 ] = [𝐴𝑇𝑏 − 𝑎𝑖𝑏𝑖
0 ] .

Eliminating 𝑥(−𝑖) gives
(1 − ℓ2

𝑖 )𝛾 = ℓ2
𝑖 𝑏𝑖 − 𝑎𝑇

𝑖 𝑥∗

where ℓ2
𝑖 = 𝑎𝑇

𝑖 (𝐴𝑇𝐴 + 𝜆2𝐼)−1𝑎𝑖 is called the leverage score for row 𝑖. Now, observe that if
𝑟 = 𝑏 − 𝐴𝑥∗ is the residual for the full problem, then

(1 − ℓ2
𝑖 )𝑟(−𝑖) = (1 − ℓ2

𝑖 )(𝑏𝑖 + 𝛾) = (1 − ℓ2
𝑖 )𝑏𝑖 + ℓ2

𝑖 𝑏𝑖 − 𝑎𝑇
𝑖 𝑥∗ = 𝑟𝑖,

or, equivalently
𝑟(−𝑖) = 𝑟𝑖

1 − ℓ2
𝑖

.

We finish the job by observing that ℓ2
𝑖 is the 𝑖th diagonal element of the orthogonal projector

Π = 𝐴(𝐴𝑇𝐴 + 𝜆𝐼)𝐴−1, which we can also write in terms of the economy QR decomposition

[𝐴
𝜆𝐼] = [𝑄1

𝑄2
] 𝑅

as Π = 𝑄1𝑄𝑇
1 . Hence, ℓ2

𝑖 is the squared row sum of 𝑄1 in the QR factorization.

Linearly constrained case

Consider the weighted least squares problem

minimize
𝑚

∑
𝑖=1

𝑤𝑖𝑟2
𝑖

where 𝑤1 is much larger than the others. If we let 𝑤1 → ∞ while the others are fixed, what
happens? We essentially say that we care about enforcing the first equation above all others,
and in the limit we are solving the constrained least squares problem

minimize
𝑚

∑
𝑖=2

𝑤𝑖𝑟2
𝑖 s.t. 𝑟1 = 0.

Unfortunately, if we actually try to compute this way, we are dancing on dangerous ground; as
𝑤1 goes to infinity, so does the condition number of the least squares problem. But this is only
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an issue with the weighted formulation; we can formulate the constrained problem in other
ways that are perfectly well-behaved.

In the remainder of this section, we address two ways of handling the linearly constrained least
squares problem

minimize ‖𝐴𝑥 − 𝑏‖2 s.t. 𝐶𝑇𝑥 = 𝑑,

by either eliminating variables (the null-space method) or adding variables (the method of
Lagrange multipliers).

Null space method

In the null space method, we write an explicit expression for the solutions to 𝐶𝑇𝑥 = 𝑑 in the
form 𝑥𝑝 + 𝑊𝑧 where 𝑥𝑝 is a particular solution to 𝐶𝑇𝑥𝑝 = 𝑑 and 𝑊 is a basis for the null space
of 𝐶𝑇. Perhaps the simplest particular solution is 𝑥𝑝 = (𝐶𝑇)†𝑑, the solution with minimal
norm; we can compute both this particular solution and an orthogonormal null space basis
quickly using a full QR decomposition of 𝐶:

𝐶 = [𝑄1 𝑄2] [𝑅1
0 ] , 𝑥𝑝 = 𝑄1𝑅−𝑇

1 𝑑, 𝑊 = 𝑄2.

Note that
𝐶𝑇𝑥𝑝 = (𝑅𝑇

1 𝑄𝑇
1 )𝑥𝑝 = 𝑑,

so this is indeed a particular solution. Having written an explicit parameterization for all
solutions of the constraint equations, we can minimize the least squares objective with respect
to the reduced set of variables

minimize ‖𝐴(𝑥𝑝 + 𝑊𝑧) − 𝑏‖2 = ‖(𝐴𝑊)𝑧 − (𝑏 − 𝐴𝑥𝑝)‖2.

This new least squares problem involves a smaller set of variables (which is good); but in
general, even if 𝐴 is sparse, 𝐴𝑊 will not be. So it is appropriate to have a few more methods
in our arsenal.

Lagrange multipliers

An alternate method is the method of Lagrange multipliers. This is an algebraic technique for
adding equations to enforce constraints.

One way to approach the Lagrange multiplier method is to look at the equations for a constrained
minimum. In order not to have a downhill direction, we require that the directional derivatives
be zero in any direction consistent with the constraint; that is, we require 𝐶𝑥 = 𝑑 and

𝛿𝑥𝑇𝐴𝑇𝑟 = 0 when 𝐶𝑇𝛿𝑥 = 0.
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The constraint says that admissible 𝛿𝑥 are orthogonal to the columns of 𝐶; the objective tells
us the admissible 𝛿𝑥 should be orthogonal to the residual. So we need that 𝐴𝑇𝑟 should lie in
the column span of 𝐶; that is,

𝐴𝑇𝑟 = −𝐶𝜆

for some 𝜆, and 𝐶𝑥 = 𝑑. Putting this together, we have the KKT equations

[𝐴𝑇𝐴 𝐶
𝐶𝑇 0] [𝑥

𝜆] = [𝐴𝑇𝑏
𝑑 ] .

These bordered normal equations are not the end point for constrained least squares with
Lagrange multipliers, any more than the normal equations are the end point for unconstrained
least squares. Rather, we can use this as a starting point for clever manipulations involving our
favorite factorizations (QR and SVD) that reduce the bordered system to a more computationally
convenient form.

Quadratically constrained least squares

We end the lecture by commenting on the quadratically constrained least squares problem

minimize 1
2

‖𝐴𝑥 − 𝑏‖2 s.t. ‖𝑥‖2
𝑀 ≤ 𝜌2

for some positive definite matrix 𝑀. Again applying the method of Lagrange multipliers, we
have that either ‖𝐴†𝑏‖2

𝑀 ≤ 𝜌2 (i.e. the constraint is inactive) or we seek a stationary point of

ℒ(𝑥, 𝜆) = 1
2

‖𝐴𝑥 − 𝑏‖2 + 𝜆
2

(𝑥𝑇𝑀𝑥 − 𝜌2),

and taking variations with respect to 𝑥 gives us

∇𝑥ℒ = 𝐴𝑇(𝐴𝑥 − 𝑏) + 𝜆𝑀𝑥 = (𝐴𝑇𝐴 + 𝜆𝑀)𝑥 − 𝐴𝑇𝑏 = 0.

That is, if the constrained problem is active, we are actually solving a Tikhonov-regularized
least squares problem, with the Lagrange multiplier serving the role of the regularization
parameter.

Iteratively reweighted least squares

We conclude with a brief example of how least squares can be used as a building block for
related functions. As an example, consider replacing the least squares loss with an alternate
loss function:

minimize ∑
𝑖

𝜙(𝑟𝑖) s.t. 𝑟 = 𝐴𝑥 − 𝑏
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where 𝜙 is a continuous symmetric function such that 𝜙(0) = 0. A common example is the
Huber loss function

𝜙𝛿(𝑟) = {
1
2𝑟2, |𝑟| ≤ 𝛿
𝛿 (|𝑟| − 1

2𝛿) , otherwise.

Optimizing the Huber loss is much less sensitive to outliers than the least squares loss. Other
loss functions, such as the Tukey biweight, are even less sensitive to outliers (but are nonconvex,
and may lead to a non-unique optimization problem).

How do we minimize the Huber loss? There are several options, but one of the most popular is
the iteratively reweighted least squares (IRLS) algorithm. To derive the algorithm, we write the
stationary conditions as

𝛿𝑟𝑇(𝜓(𝑟) ⊙ 𝑟) = 0

where 𝜓(𝑟𝑖) = 𝜙′
𝛿(𝑟𝑖)/𝑟𝑖 is a weight. In terms of 𝑥, we have 𝛿𝑟 = 𝐴𝛿𝑥, and so the stationary

conditions are
𝛿𝑥𝑇𝐴𝑇𝑊(𝑟)(𝐴𝑥 − 𝑏) = 0

where 𝑊(𝑟) is a diagonal matrix with entries 𝑊𝑖𝑖(𝑟) = 𝜓(𝑟𝑖). That is, the stationary conditions
correspond to a set of normal equations for a weighted least squares problem! Unfortunately,
we don’t know what the weights are; but we can guess them based on previous iterates. That
is, we repeatedly solve problems of the form

minimize ‖𝐴𝑥(𝑘+1) − 𝑏‖2
𝑊(𝑟(𝑘))

until convergence.
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