
CS 6210: Matrix Computations
Rank deficiency and regularization

David Bindel

2025-10-06

Bias-variance decomposition

The bias-variance decomposition is a standard result in statistics. Suppose we want to predict

𝑦 = 𝑓(𝑥) + 𝜖

where 𝑓(𝑥) is some underlying “ground truth” function and 𝜖 is a noise term with mean zero
and variance 𝜎2. Some algorithm takes in a data set 𝐷 that encompasses our observations
about the function (usually 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑛

𝑖=1) and produces a prediction function 𝑠𝐷(𝑥). The
data set (and the algorithm) may include some randomness, which we assume is independent
of the measurement noise 𝜖 at any test point. So we also define the mean and variance for the
prediction function:

̄𝑠𝐷(𝑥) = 𝔼𝐷[𝑠𝐷(𝑥)], Var𝐷[𝑠𝐷(𝑥)] = 𝔼𝐷[(𝑠𝐷(𝑥) − ̄𝑠𝐷(𝑥))2].

The bias in the predictor is the difference between its mean and the true function 𝑓(𝑥):

Bias𝐷[𝑠𝐷(𝑥)] = 𝑓(𝑥) − ̄𝑠𝐷(𝑥).

The bias-variance decomposition says that the squared prediction error at a test point 𝑠 can be
written

𝔼𝐷,𝜖[(𝑦 − 𝑠𝐷(𝑥))2] = Var𝐷[𝑠𝐷(𝑥)] + Bias𝐷[𝑠𝐷(𝑥)]2 + 𝜎2.

The argument consists of two steps. First, we expand the quadratic and use independence of 𝜖
from 𝐷 to get

𝔼𝐷,𝜖[(𝑦 − 𝑠𝐷(𝑥))2] = 𝔼𝐷[(𝑓(𝑥) − 𝑠𝐷(𝑥))2] + 2𝔼𝐷,𝜖[𝜖(𝑓(𝑥) − 𝑠𝐷(𝑥))] + 𝔼𝜖[𝜖2]
= 𝔼𝐷[(𝑓(𝑥) − 𝑠𝐷(𝑥))2] + 2𝔼𝜖[𝜖]𝔼𝐷[(𝑓(𝑥) − 𝑠𝐷(𝑥))] + 𝔼𝜖[𝜖2]
= 𝔼𝐷[(𝑓(𝑥) − 𝑠𝐷(𝑥))2] + 𝜎2
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since 𝔼𝜖[𝜖] = 0 and 𝔼𝜖[𝜖2] = 𝜎2. Now write

𝑓(𝑥) − 𝑠𝐷(𝑥) = 𝑏(𝑥) − 𝑒𝐷(𝑥)

where
𝑏(𝑥) ∶= 𝑓(𝑥) − ̄𝑠𝐷(𝑥)

𝑒𝐷(𝑥) ∶= 𝑠𝐷(𝑥) − ̄𝑠𝐷(𝑥).

Note that 𝑏(𝑥) the bias and that 𝔼𝐷[𝑒𝐷(𝑥)] = 0 and 𝔼𝐷[𝑒𝐷(𝑥)2] = Var𝐷[𝑠𝐷(𝑥)], so that

𝔼𝐷[(𝑏(𝑥) − 𝑒𝐷(𝑥))2] = 𝑏(𝑥)2 − 2𝑏(𝑥)𝔼𝐷(𝑥) + 𝔼𝐷[𝑒𝐷(𝑥)2]
= 𝑏(𝑥)2 + Var𝐷[𝑠𝐷(𝑥)2]
= Bias𝐷[𝑠𝐷(𝑥)]2 + Var𝐷[𝑠𝐷(𝑥)2].

Bias-variance tradeoffs in the matrix setting

Now consider linear least squares in the context of the bias-variance tradeoff. For simplicity,
rather than a function 𝑓(𝑥), let us assume that our ground truth is a vector of measurements
𝑓 ∈ ℝ𝑀. At test time, we are trying to predict 𝑦 = 𝑓 + 𝑒, where 𝑒 is a vector of mean zero
errors. Our model space will be {𝐴𝑥 ∶ 𝑥 ∈ ℝ𝑛}, and our fitting algorithm will involve

̂𝑥 = 𝐴†
1𝑦1, 𝑦1 = 𝑓1 + ̃𝑒1

where 𝐴1 ∈ ℝ𝑚×𝑛 is a subset of the rows of 𝐴 and 𝑓1 is the corresponding subset of rows of
𝑓, and ̃𝑒1 is a vector of mean zero training-time errors. By linearity of expectation, the mean
model is

̄𝑥 = 𝔼[ ̂𝑥] = 𝐴†
1𝑓1.

and
̂𝑥 − ̄𝑥 = 𝐴†

1 ̃𝑒1

Then the bias-variance decomposition gives us

𝔼[‖𝑦 − 𝐴 ̂𝑥‖2] = ‖𝑓 − 𝐴 ̄𝑥‖2 + 𝔼[‖𝐴𝐴†
1 ̃𝑒1‖2] + 𝔼[‖𝑒‖2].

This is all as in the previous section, just with a concrete choice of algorithms for fitting the
model.

Now suppose that 𝑥∗ = 𝐴†𝑓 and 𝑟 = 𝑓 − 𝐴𝑥∗. The model associated with 𝑥∗ is optimal: the
squared bias term ‖𝑟‖2 is as small as possible, and if a genie gives us 𝑥∗, there is no variance!
How does the model associated with ̂𝑥 compare? We can rewrite the squared bias term for the

̂𝑥 model as
‖𝑓 − 𝐴 ̄𝑥‖2 = ‖𝑟 − 𝐴( ̄𝑥 − 𝑥∗)‖2 = ‖𝑟‖2 + ‖𝐴( ̄𝑥 − 𝑥∗)‖2.

Note that 𝑥∗ = 𝐴†
1(𝑏1 + 𝑟1), so ̄𝑥 − 𝑥∗ = −𝐴†

1𝑟1. Therefore

‖𝑓 − 𝐴 ̄𝑥‖2 = ‖𝑟‖2 + ‖𝐴𝐴†
1𝑟1‖2.
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Putting things together, we have the decomposition

𝔼[‖𝑦 − 𝐴 ̂𝑥‖2] = (‖𝑟‖2 + ‖𝐴𝐴†
1𝑟1‖2) + (𝔼[‖𝐴𝐴†

1 ̃𝑒1‖2] + 𝔼[‖𝑒‖2]) ,

where the first two terms come from the bias and the second two terms come from the variance
of the training error ̃𝑒1 and the test error 𝑒.

Note that if 𝑒 and ̃𝑒 have independent entries with mean 𝜎2, then

𝔼[‖𝐴𝐴†
1 ̃𝑒1‖2] = 𝜎2‖𝐴𝐴†

1‖2
𝐹 ≤ 𝜎2𝑛‖𝐴𝐴†

1‖2
2

𝔼[‖𝑒‖2] = 𝜎2𝑀

In this case, we have

𝔼[‖𝑦 − 𝐴 ̂𝑥‖2] ≤ (1 + ‖𝐴𝐴†
1‖2 ‖𝑟1‖2

‖𝑟‖2 ) ‖𝑟‖2 + (1 + ‖𝐴𝐴†
1‖2 𝑛

𝑀
) 𝑀𝜎2

We note that ‖𝑟1‖2/‖𝑟‖2 should be approximately 𝑛/𝑀 if the residual entries in 𝑟1 are “typical”
of those in 𝑟. We can be cruder in our bounds and say

𝔼[‖𝑦 − 𝐴 ̂𝑥‖2] ≤ (1 + ‖𝐴𝐴†
1‖2) (‖𝑟‖2 + 𝑀𝜎2) .

This can be interpreted as a quasi-optimality result: the expected squared prediction error is
within a constant factor (1 + ‖𝐴𝐴†

1‖2) of the best possible error given the model flexibility and
the noise.

When ‖𝐴†
1‖ is large, the problem of fitting to training data is ill-posed, and the accuracy can be

compromised. What can we do? As we discussed in the last section, the problem with ill-posed
problems is that they admit many solutions of very similar quality. In order to distinguish
between these possible solutions to find a model with good predictive power, we consider
regularization: that is, we assume that the coefficient vector 𝑥 is not too large in norm, or that
it is sparse. Different statistical assumptions give rise to different regularization strategies; for
the current discussion, we shall focus on the computational properties of a few of the more
common regularization strategies without going into the details of the statistical assumptions.
In particular, we consider four strategies in turn

1. Factor selection via pivoted QR.

2. Tikhonov regularization and its solution.

3. Truncated SVD regularization.

4. ℓ1 regularization or the lasso.
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Factor selection and pivoted QR

In ill-conditioned problems, the columns of 𝐴 are nearly linearly dependent; we can effectively
predict some columns as linear combinations of other columns. The goal of the column pivoted
QR algorithm is to find a set of columns that are “as linearly independent as possible.” This
is not such a simple task, and so we settle for a greedy strategy: at each step, we select the
column that is least well predicted (in the sense of residual norm) by columns already selected.
This leads to the pivoted QR factorization

𝐴Π = 𝑄𝑅

where Π is a permutation and the diagonal entries of 𝑅 appear in descending order (i.e. 𝑟11 ≥
𝑟22 ≥ …). To decide on how many factors to keep in the factorization, we either automatically
take the first 𝑘 or we dynamically choose to take 𝑘 factors where 𝑟𝑘𝑘 is greater than some
tolerance and 𝑟𝑘+1,𝑘+1 is not.

The pivoted QR approach has a few advantages. It yields parsimonious models that predict
from a subset of the columns of 𝐴 – that is, we need to measure fewer than 𝑛 factors to
produce an entry of 𝑏 in a new column. It can also be computed relatively cheaply, even for
large matrices that may be sparse. However, pivoted QR is not the only approach! A related
approach due to Golub, Klema, and Stewart computes 𝐴 = 𝑈Σ𝑉 𝑇 and chooses a subset of
the factors based on pivoted QR of 𝑉 𝑇. More generally, approaches such as the lasso yield an
automatic factor selection.

Tikhonov regularization (ridge regression)

Another approach is to say that we want a model in which the coefficients are not too large.
To accomplish this, we add a penalty term to the usual least squares problem:

minimize ‖𝐴𝑥 − 𝑏‖2 + 𝜆2‖𝑥‖2.

Equivalently, we can write

minimize ∥[𝐴
𝜆𝐼] 𝑥 − [𝑏

0]∥
2

,

which leads to the regularized version of the normal equations

(𝐴𝑇𝐴 + 𝜆2𝐼)𝑥 = 𝐴𝑇𝑏.

In some cases, we may want to regularize with a more general norm ‖𝑥‖2
𝑀 = 𝑥𝑇𝑀𝑥 where 𝑀 is

symmetric and positive definite, which leads to the regularized equations

(𝐴𝑇𝐴 + 𝜆2𝑀)𝑥 = 𝐴𝑇𝑏.
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If we want to incorporate prior information that pushes 𝑥 toward some initial guess 𝑥0, we
may pose the least squares problem in terms of 𝑧 = 𝑥 − 𝑥0 and use some form of Tikhonov
regularization. If we know of no particular problem structure in advance, the standard choice
of 𝑀 = 𝐼 is a good default.

It is useful to compare the usual least squares solution to the regularized solution via the SVD.
If 𝐴 = 𝑈Σ𝑉 𝑇 is the economy SVD, then

𝑥𝐿𝑆 = 𝑉 Σ−1𝑈𝑇𝑏
𝑥𝑇 𝑖𝑘 = 𝑉 𝑓(Σ)−1𝑈𝑇𝑏

where
𝑓(𝜎) = 1√

𝜎−1 + 𝜆2
.

This filter of the inverse singular values affects the larger singular values only slightly, but
damps the effect of very small singular values.

Truncated SVD

The Tikhonov filter reduces the effect of small singular values on the solution, but it does not
eliminate that effect. By contrast, the truncated SVD approach uses the filter

𝑓(𝑧) = {
𝑧, 𝑧 > 𝜎min

∞, otherwise.

In other words, in the truncated SVD approach, we use

𝑥 = 𝑉𝑘Σ−1
𝑘 𝑈𝑇

𝑘 𝑏

where 𝑈𝑘 and 𝑉𝑘 represent the leading 𝑘 columns of 𝑈 and 𝑉, respectively, while Σ𝑘 is the
diagonal matrix consisting of the 𝑘 largest singular values.

ℓ1 and the lasso

An alternative to Tikhonov regularization (based on a Euclidean norm of the coefficient vector)
is an ℓ1 regularized problem

minimize ‖𝐴𝑥 − 𝑏‖2 + 𝜆‖𝑥‖1.

This is sometimes known as the “lasso” approach. The ℓ1 regularized problem has the property
that the solutions tend to become sparse as 𝜆 becomes larger. That is, the ℓ1 regularization
effectively imposes a factor selection process like that we saw in the pivoted QR approach.
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Unlike the pivoted QR approach, however, the ℓ1 regularized solution cannot be computed by
one of the standard factorizations of numerical linear algebra. Instead, one treats it as a more
general convex optimization problem. We will discuss some approaches to the solution of such
problems later in the semester.
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