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Trouble points

At a high level, there are two pieces to solving a least squares problem:

1. Project 𝑏 onto the span of 𝐴.
2. Solve a linear system so that 𝐴𝑥 equals the projected 𝑏.

Consequently, there are two ways we can get into trouble in solving least squares problems: either
𝑏 may be nearly orthogonal to the span of 𝐴, or the linear system might be ill conditioned.

Perpendicular problems

Let’s first consider the issue of 𝑏 nearly orthogonal to the range of 𝐴 first. Suppose we have
the trivial problem

𝐴 = [1
0] , 𝑏 = [𝜖

1] .

The solution to this problem is 𝑥 = 𝜖; but the solution for

𝐴 = [1
0] , ̂𝑏 = [−𝜖

1 ] .

is ̂𝑥 = −𝜖. Note that ‖ ̂𝑏 − 𝑏‖/‖𝑏‖ ≈ 2𝜖 is small, but | ̂𝑥 − 𝑥|/|𝑥| = 2 is huge. That is because the
projection of 𝑏 onto the span of 𝐴 (i.e. the first component of 𝑏) is much smaller than 𝑏 itself;
so an error in 𝑏 that is small relative to the overall size may not be small relative to the size of
the projection onto the columns of 𝐴.

Of course, the case when 𝑏 is nearly orthogonal to 𝐴 often corresponds to a rather silly
regressions, like trying to fit a straight line to data distributed uniformly around a circle, or
trying to find a meaningful signal when the signal to noise ratio is tiny. This is something to
be aware of and to watch out for, but it isn’t exactly subtle: if ‖𝑟‖/‖𝑏‖ is near one, we have a
numerical problem, but we also probably don’t have a very good model.
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Conditioning of least squares

A more subtle problem occurs when some columns of 𝐴 are nearly linearly dependent (i.e. 𝐴 is
ill-conditioned). The condition number of 𝐴 for least squares is

𝜅(𝐴) = ‖𝐴‖‖𝐴†‖ = 𝜎1/𝜎𝑛.

If 𝜅(𝐴) is large, that means:

1. Small relative changes to 𝐴 can cause large changes to the span of 𝐴 (i.e. there are some
vectors in the span of ̂𝐴 that form a large angle with all the vectors in the span of 𝐴).

2. The linear system to find 𝑥 in terms of the projection onto 𝐴 will be ill-conditioned.

If 𝜃 is the angle between 𝑏 and the range of 𝐴, then the sensitivity to perturbations in 𝑏 is

‖𝛿𝑥‖
‖𝑥‖

≤ 𝜅(𝐴)
cos(𝜃)

‖𝛿𝑏‖
‖𝑏‖

while the sensitivity to perturbations in 𝐴 is

‖𝛿𝑥‖
‖𝑥‖

≤ (𝜅(𝐴)2 tan(𝜃) + 𝜅(𝐴)) ‖𝛿𝐴‖
‖𝐴‖

.

The first term (involving 𝜅(𝐴)2) is associated with the tendency of changes in 𝐴 to change
the span of 𝐴; the second term comes from solving the linear system restricted to the span of
the original 𝐴. Even if the residual is moderate, the sensitivity of the least squares problem
to perturbations in 𝐴 (either due to roundoff or due to measurement error) can quickly be
dominated by 𝜅(𝐴)2 tan(𝜃) if 𝜅(𝐴) is at all large.

In regression problems, the columns of 𝐴 correspond to explanatory factors. For example, we
might try to use height, weight, and age to explain the probability of some disease. In this
setting, ill-conditioning happens when the explanatory factors are correlated — for example,
weight might be well predicted by height and age in our sample population. This happens
reasonably often. When there is a lot of correlation, we have an ill-posed problem.

Sensitivity details

Having given a road-map of the main sensitivity result for least squares, we now go through
some more details.
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Preliminaries

Before continuing, it is worth highlighting a few facts about norms of matrices that appear in
least squares problems.

1. In the ordinary two-norm, ‖𝐴‖ = ‖𝐴𝑇‖.

2. If 𝑄 ∈ ℝ𝑚×𝑛 satisfies 𝑄𝑇𝑄 = 𝐼, then ‖𝑄𝑧‖ = ‖𝑧‖. We know also that ‖𝑄𝑇𝑧‖ ≤ ‖𝑧‖, but
equality will not hold in general.

3. Consequently, if Π = 𝑄𝑄𝑇, then ‖𝑃 ‖ ≤ 1. Equality actually holds unless 𝑄 is square (so
that Π = 0).

4. If 𝐴 = 𝑄𝑅 = 𝑈Σ𝑉 𝑇 are economy decompositions, then ‖𝐴‖ = ‖𝑅‖ = 𝜎1(𝐴) and
‖𝐴†‖ = ‖𝑅−1‖ = 1/𝜎𝑛(𝐴).

Warm-up: 𝑦 = 𝐴𝑇𝑏

Before describing the sensitivity of least squares, we address the simpler problem of sensitivity
of matrix-vector multiply. As when we dealt with square matrices, the first-order sensitivity
formula looks like

𝛿𝑦 = 𝛿𝐴𝑇𝑏 + 𝐴𝑇𝛿𝑏

and taking norms gives us a first-order bound on absolute error

‖𝛿𝑦‖ ≤ ‖𝛿𝐴‖‖𝑏‖ + ‖𝐴‖‖𝛿𝑏‖.

Now we divide by ‖𝑦‖ = ‖𝐴𝑇𝑏‖ to get relative errors

‖𝛿𝑦‖
‖𝑦‖

≤ ‖𝐴‖‖𝑏‖
‖𝐴𝑇𝑏‖

(‖𝛿𝐴‖
‖𝐴‖

+ ‖𝛿𝑏‖
‖𝑏‖

) .

If 𝐴 were square, we could control the multiplier in this relative error expression by ‖𝐴‖‖𝐴−1‖.
But in the rectangular case, 𝐴 does not have an inverse. We can, however, use the SVD to
write

‖𝐴‖‖𝑏‖
‖𝐴𝑇𝑏‖

≥ 𝜎1(𝐴)‖𝑏‖
𝜎𝑛(𝐴)‖𝑈𝑇𝑏‖

= 𝜅(𝐴) ‖𝑏‖
‖𝑈𝑇𝑏‖

= 𝜅(𝐴) sec(𝜃)

where 𝜃 ∈ [0, 𝜋/2] is the acute angle between 𝑏 and the range space of 𝐴 (or, equivalently, of
𝑈).
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Sensitivity of the least squares solution

We now take variations of the normal equations 𝐴𝑇𝑟 = 0:

𝛿𝐴𝑇𝑟 + 𝐴𝑇(𝛿𝑏 − 𝛿𝐴𝑥 − 𝐴𝛿𝑥) = 0.

Rearranging terms slightly, we have

𝛿𝑥 = (𝐴𝑇𝐴)−1𝛿𝐴𝑇𝑟 + 𝐴†(𝛿𝑏 − 𝛿𝐴𝑥).

Taking norms, we have

‖𝛿𝑥‖ ≤ ‖𝛿𝐴‖‖𝑟‖
𝜎𝑛(𝐴)2 + ‖𝛿𝑏‖ + ‖𝛿𝐴‖‖𝑥‖

𝜎𝑛(𝐴)
.

We now note that because 𝐴𝑥 is in the span of 𝐴,

‖𝑥‖ = ‖𝐴†𝐴𝑥‖ ≥ ‖𝐴𝑥‖/𝜎1(𝐴)

and so if 𝜃 is the angle between 𝑏 and ℛ(𝐴),

‖𝑏‖
‖𝑥‖

≤ 𝜎1(𝐴) ‖𝑏‖
‖𝐴𝑥‖

= 𝜎1(𝐴) sec(𝜃)

‖𝑟‖
‖𝑥‖

≤ 𝜎1(𝐴) ‖𝑟‖
‖𝐴𝑥‖

= 𝜎1(𝐴) tan(𝜃).

Therefore, we have

‖𝛿𝑥‖
‖𝑥‖

≤ 𝜅(𝐴)2 ‖𝛿𝐴‖
‖𝐴‖

tan(𝜃) + 𝜅(𝐴)‖𝛿𝑏‖
‖𝑏‖

sec(𝜃) + 𝜅(𝐴)‖𝛿𝐴‖
‖𝐴‖

.

which we regroup as

‖𝛿𝑥‖
‖𝑥‖

≤ (𝜅(𝐴)2 tan(𝜃) + 𝜅(𝐴)) ‖𝛿𝐴‖
‖𝐴‖

+ 𝜅(𝐴) sec(𝜃)‖𝛿𝑏‖
‖𝑏‖

.

Residuals and rotations

Sometimes we care not about the sensitivity of 𝑥, but of the residual 𝑟. It is left as an exercise
to show that

‖Δ𝑟‖
‖𝑏‖

≤ ‖Δ𝑏‖
‖𝑏‖

+ ‖ΔΠ‖

where we have used capital deltas to emphasize that this is not a first-order result: Δ𝑏 is a
(possibly large) perturbation to the right hand side and ΔΠ = Π̂ − Π is the difference in the
orthogonal projectors onto the spans of ̂𝐴 and 𝐴. This is slightly awkward, though, as we
would like to be able to relate the changes to the projector to changes to the matrix 𝐴. We can
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show1 that ‖ΔΠ‖ ≤
√

2‖𝐸‖ where 𝐸 = (𝐼 − 𝑄𝑄𝑇)𝑄̂. To finish the job, though, we will need
the perturbation theory for the QR decomposition (though we will revert to first-order analysis
in so doing).

Let 𝐴 = 𝑄𝑅 be an economy QR decomposition, and let 𝑄⟂ be an orthonormal basis for
the orthogonal complement of the range of 𝑄. Taking variations, we have the first-order
expression:

𝛿𝐴 = 𝛿𝑄𝑅 + 𝑄𝛿𝑅.

Pre-multiplying by 𝑄𝑇
⟂ and post-multiplying by 𝑅−1, we have

𝑄𝑇
⟂(𝛿𝐴)𝑅−1 = 𝑄𝑇

⟂𝛿𝑄.

Here 𝑄𝑇
⟂𝛿𝑄 represents the part of 𝛿𝑄 that lies outside the range space of 𝑄. That is,

(𝐼 − 𝑄𝑄𝑇)(𝑄 + 𝛿𝑄) = 𝑄⟂𝑄𝑇
⟂𝛿𝑄 = 𝑄⟂𝑄𝑇

⟂(𝛿𝐴)𝑅−1.

Using the fact that the norm of the projector is bounded by one, we have

‖(𝐼 − 𝑄𝑄𝑇)𝛿𝑄‖ ≤ ‖𝛿𝐴‖‖𝑅−1‖ = ‖𝛿𝐴‖/𝜎𝑛(𝐴).

Therefore,

‖𝛿Π‖ ≤
√

2𝜅(𝐴)‖𝛿𝐴‖
‖𝐴‖

and so
‖𝛿𝑟‖
‖𝑏‖

≤ ‖𝛿𝑏‖
‖𝑏‖

+
√

2𝜅(𝐴)‖𝛿𝐴‖
‖𝐴‖

.

From our analysis, though, we have seen that the only part of the perturbation to 𝐴 that
matters is the part that changes the range of 𝐴.

A cautionary tale

We have seen in our discussion of linear systems that sensitivity analysis plays a key role in
understanding the effect of perturbations (whether due to roundoff or measurement error)
on our computed solutions. In the case of least squares problems, understanding sensitivity
is more complex, but it is – if anything – even more critical than in the linear systems case.
Consequently, this is the setting in which most students of matrix computations are really faced
head-on with the practical difficulties of ill-conditioning and the necessity of regularization.

To set the stage for our discussion of regularization, we consider a silly story that demonstrates
a real problem. Suppose you have been dropped on a desert island with a laptop with a magic

1Demmel’s book goes through this argument, but ends up with a factor of 2 where we have a factor of
√

2; the
modest improvement of the constant comes from the observation that if 𝑋, 𝑌 ∈ ℝ𝑚×𝑛 satisfy 𝑋𝑇𝑌 = 0,
then ‖𝑋 + 𝑌 ‖2 ≤ ‖𝑋‖2 + ‖𝑌 ‖2 via the Pythagorean theorem.
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battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.
In particular, while you know about least squares fitting, you have forgotten how to compute
the perimeter of a square. You vaguely feel that it ought to be related to the perimeter or side
length, though, so you set up the following model:

perimeter = 𝛼 ⋅ side length + 𝛽 ⋅ diagonal.

After measuring several squares, you set up a least squares system 𝐴𝑥 = 𝑏; with your real eyes,
you know that this must look like

𝐴 = [𝑠
√

2𝑠] , 𝑏 = 4𝑠

where 𝑠 is a vector of side lengths. The normal equations are therefore

𝐴𝑇𝐴 = ‖𝑠‖2 [ 1
√

2√
2 2 ] , 𝐴𝑇𝑏 = ‖𝑠‖2 [ 4

4
√

2] .

This system does have a solution; the problem is that it has far more than one. The equations
are singular, but consistent. We have no data that would lead us to prefer to write 𝑝 = 4𝑠 or
𝑝 = 2

√
2𝑑 or something in between. The fitting problem is ill-posed.

We deliberately started with an extreme case, but some ill-posedness is common in least squares
problems. As a more natural example, suppose that we measure the height, waist girth, chest
girth, and weight of a large number of people, and try to use these factors to predict some
other factor such as proclivity to heart disease. Naive linear regression – or any other naively
applied statistical estimation technique – is likely to run into trouble, as the height, weight,
and girth measurements are highly correlated. It is not that we cannot fit a good linear model;
rather, we have too many models that are each almost as good as the others at fitting the data!
We need a way to choose between these models, and this is the point of regularization.
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