CS 6210: Matrix Computations

Householder, Givens, and QR factorization

David Bindel
2025-09-29

A family of factorizations

Cholesky

If A€ R™"™ with m > n is full rank, then ATA is symmetric and positive definite matrix, and
we can compute a Cholesky factorization of ATA:

ATA = R"R.
The solution to the least squares problem is then
r=(ATA)1ATh = R-IR"TATS.
Or, in Julia world

F = cholesky(A'*A);
F\(A'*b);

X
1l

Economy QR

The Cholesky factor R appears in a different setting as well. Let us write A = QR where
Q = AR™'; then
QTQ = RTATAR' = RTRTRR ' =1I.

That is, @ is a matrix with orthonormal columns. This “economy QR factorization” can be
computed in several different ways, including one that you have seen before in a different guise
(the Gram-Schmidt process).

Julia provides a numerically stable method to compute the QR factorization via

F = qr(A)

and we can use the QR factorization directly to solve the least squares problem without forming
ATA by

qr(A)
X = F\b

Behind the scenes, this is what is used when we write A\b with a dense rectangular matrix A.

Full QR

There is an alternate “full” QR decomposition where we write

A= QR, where QQ = [Ql QQ] € R R = [}?)1] € R™*n,

To see how this connects to the least squares problem, recall that the Euclidean norm is
invariant under orthogonal transformations, so

Ty
e = 1o = |[3] - []

We can set |QTv — R z|? to zero by setting z = Ry 1Q7Tb; the result is |r|? = |QZb]>.

2
= |QTb — Ryz[* + |QZ0]*.

The QR factorization routine in Julia can be used to reconstruct either the full or the compact
QR decomposition. Internally, it stores neither the smaller (), nor the full matrix) explicitly;
rather, it uses a compact representation of the matrix as a product of Householder reflectors,
as we will discuss next time.

SvD

The full QR decomposition is useful because orthogonal transformations do not change lengths.
Hence, the QR factorization lets us change to a coordinate system where the problem is simple
without changing the problem in any fundamental way. The same is true of the SVD, which
we write as

by
0

=U,xvT Economy SVD.

A= [0, Uz][]VT Full SVD

As with the QR factorization, we can apply an orthogonal transformation involving the factor
U that makes the least squares residual norm simple:

UTy] [ov
el =17y | — al| = U0 — SV 7Tz|? + U3 0|,
Ut 0

and we can minimize by setting x = VX~ UTb.

QR and Gram-Schmidt

We now turn to our first numerical method for computing the QR decomposition: the Gram-
Schmidt algorithm. This method is usually presented in first linear algebra classes, but is rarely
interpreted as a matrix factorization. Rather, it is presented as a way of converting a basis for
a space into an orthonormal basis for the same space. If aq,a,, ..., a,, are column vectors, the
Gram-Schmidt algorithm is as follows: for each j=1,...,n

—1

~ _ T
a; = a; 4;q; G

<.

i

£

q; = aj/”a |j'

At the end of the iteration, we have that the g; vectors are all mutually orthonormal and
span{ay, ..., a;} = span{qy, ..., ¢; }-

To see this as a matrix factorization, we rewrite the iteration as

Tij = qiTaj
j—1
a;=a;— Z 4iTij
=1
T3 = HiiHj
q; = a;/r;;

Putting these equations together, we have that

or, in matrix form,

where A and @ are the matrices with column vectors a; and g, respectively.

In Julia, Gram-Schmidt looks something like this:

function orth cgs0(A)
m,n = size(A)
Q = zeros(m,n)

for j = 1:n
v =A[:,j] # Take the jth original basis vector
v =v-Q[:,1:7-11*(Q[:,1:j-1]"*v) # Orthogonalize vs q 1, ... g j-1
v = v/norm(v) # Normalize what remains
Q[:,j] = v # Add result to Q basis
end
Q

end

Where does R appear in this algorithm? It appears thus:

function orth cgs(A)
m,n = size(A)
Q = zeros(m,n)
R = zeros(n,n)

for j = 1:n
v =A[:,]] # Take the jth original basis vector
R[1:j-1,j] = Q[:,1:j-1]"*v # Project ontoq 1, ..., q j-1
v =v-Q[:,1:j-11*R[1:7-1,7] # Orthogonalize vs q 1, ... q j-1
R[j,j] = norm(v) # Compute normalization constant
v = V/R[]j,]] # Normalize what remains
Q[:,j] = v # Add result to Q basis

end

Q, R

end

That is, R accumulates the multipliers that we computed from the Gram-Schmidt procedure.
This idea that the multipliers in an algorithm can be thought of as entries in a matrix should
be familiar, since we encountered it before when we looked at Gaussian elimination.

Sadly, the Gram-Schmidt algorithm is not backward stable. The problem occurs when a vector

a; is nearly in the span of previous vectors, so that cancellation rears its ugly head in the

formation of @;. As a result, we have that A+ £ = C}]A% is usually satisfied with a relatively
small E, but ||QTQ — I| may not be small (in the worst case, the computed Q may even be
near singular). The classical Gram-Schmidt (CGS) method that we have shown is particularly
problematic; a somewhat better alternative is the modified Gram-Schmidt method (MGS)
algorithm:

function orth mgs(A)
m,n = size(A)
Q ,R = zeros(m,n), zeros(n,n)

for j = 1:n
v =A[:,j] # Take the jth original basis vector
for k = 1:j-1
R[k,j1 = Q[:,j]1"*v # Project ontoq 1, ..., q j-1
v -= Q[:,j1*R[k,]I # Orthogonalize vs q 1, ... q_j-1
end
R[j,j] = norm(v) # Compute normalization constant
v = v/R[j,]] # Normalize what remains
Q[:,j] = v # Add result to Q basis
end
Q, R

end

Though equivalent in exact arithmetic, the MGS algorithm has the advantage that it computes
dot products with the updated &j as we go along, and these intermediate vectors have smaller
norm than the original vector. Sadly, this does not completely fix the matter: the computed g;
vectors can still drift away from being orthogonal to each other.

One can explicitly re-orthogonalize vectors that drift away from orthogonality, and this helps
further.

function orth mgs2(A :: AbstractMatrix)

m, n = size(A)
Q, R = zeros(m,n), zeros(n,n)
for j = 1:n
wj = Al:,]]
for s = 1:2
for i = 1:j-1
dRij = Q[:,1] "' *wj
wj -= Q[:,i1*dRij
R[i,j] += dRij
end
end
R[j,j]1 = norm(wj)
Ql:,31 = wj/RI[],]]
end
Q, R

end

In practice, though, we often don’t bother: if backward stability is required, we turn to other
algorithms.

Despite its backward instability, the Gram-Schmidt algorithm forms a very useful building
block for iterative methods, and we will see it frequently in later parts of the course.

Householder transformations

The Gram-Schmidt orthogonalization procedure is not generally recommended for numerical
use. Suppose we write A = [ay ...a,,] and Q = [¢; ...¢,,]- The essential problem is that if
7;i < [lajlly, then cancellation can destroy the accuracy of the computed ¢;; and in particular,
the computed ¢; may not be particularly orthogonal to the previous g;. Actually, loss of
orthogonality can build up even if the diagonal elements of R are not exceptionally small.
This is Not Good, and while we have some tricks to mitigate the problem, we need a different
approach if we want the problem to go away.

Recall that one way of expressing the Gaussian elimination algorithm is in terms of Gauss
transformations that serve to introduce zeros into the lower triangle of a matrix. Householder
transformations are orthogonal transformations (reflections) that can be used to similar effect.
Reflection across the plane orthogonal to a unit normal vector u can be expressed in matrix
form as

H =1 2w";

Now suppose we are given a vector x and we want to find a reflection that transforms = into a
direction parallel to some unit vector y. The right reflection is through a hyperplane that bisects
the angle between x and y (see Figure 1), which we can construct by taking the hyperplane
normal to z — ||z||y. That is, letting u = = — |z||y and v = u/|u|, we have

(z + |zly) (=72 + |x]2Ty)
[z]* + 22Ty || + =] y]?
=z —(z—|z[y)

= [«ly-

(I —2v0T)r =2 —2

If we use y = +e,, we can get a reflection that zeros out all but the first element of the vector
x. So with appropriate choices of reflections, we can take a matrix A and zero out all of the
subdiagonal elements of the first column.

Now think about applying a sequence of Householder transformations to introduce subdiagonal
zeros into A, just as we used a sequence of Gauss transformations to introduce subdiagonal
zeros in Gaussian elimination. As with LU factorization, we can re-use the storage of A by
recognizing that the number of nontrivial parameters in the vector w at each step is the same
as the number of zeros produced by that transformation. This gives us the following;:

]y

Figure 1: Construction of a reflector to transform z into ||z|y, |y| = 1.

function hqr!(A)
m,n = size(A)
tau = zeros(n)

for j = 1:n

Find H = I-tau*w*w' to zero out A[j+1l:end,j]

normx = norm(A[j:end,j])

s = -sign(Alj,jl)

ul = A[j,j] - s*normx

w = A[j:end,j]l/ul

w[l] = 1.0

A[j+1l:end,j] = w[2:end] # Save trailing part of w
A[j,jl = s*normx # Diagonal element of R
tau[j] = -s*ul/normx # Save scaling factor

Update trailing submatrix by multipling by H
Alj:end,j+1l:end] -= taul[j]*w*(w'*A[j:end,j+1:end])

end

A, tau
end

If we ever need @ or Q7 explicitly, we can always form it from the compressed representation.
We can also multiply by Q and QT implicitly:

function applyQ! (QR, T, X)
m, n = size(QR)
for j = n:-1:1

w = [1.0; QR[j+1:end,j]]
X[j:end,:] -= tau[jl*w*(w'*X[j:end,:])
end
X
end

function applyQT!(QR, T, X)
m, n = size(QR)
for j = 1:n
w = [1.0; QR[j+1:end,j]]
X[j:end,:] -= tau[jl*w*(w'*X[j:end,:])
end
X
end

applyQ(QR, tau, X) = applyQ!(QR, tau, copy(X))
applyQT(QR, tau, X) = applyQ(QR, tau, copy(X))

Block reflectors

As with Gaussian elimination, we would prefer to have a block implementation of the algorithm
available in order to get better use of level 3 BLAS routines. To do this, we seek a representation
for a block reflector. Three such representations are common in the literature:

e The block reflector (or GGT) representation: H = I —2UUT

e The WY representation: H = I + WY7 where W and Y are computed via a recurrence
relation

e The compact WY representation: H = I + YTY T where T is upper triangular
The LAPACK routine DGEQRT uses the compact WY representation, as do most variants of

the gr routine in Julia.

Stability of QR

It is not too difficult to show that applying a Householder reflector to a matrix is backward-stable:
if Pis the desired transformation, the floating point result of PA is

PA=(P+E)A, |E| < Oegam)lAl-

Moreover, orthogonal matrices are perfectly conditioned! Taking a product of j matrices is
also fine; the result has backward error bounded by jO(€,..,)[|All. As a consequence, QR
decomposition Householder transformations is ultimately backward stable.

The stability of orthogonal matrices in general makes them a marvelous building block for
numerical linear algebra algorithms, and we will take advantage of this again when we discuss
eigenvalue solvers.

Beyond Householder QR

While the Householder QR factorization is a major workhorse for least squares problems, there
are many variants beyond what we have discussed. We mention a few of these below, with a
particular focus on cases where m (or both m and n) are large.

Givens rotations

Householder reflections are one of the standard orthogonal transformations used in numerical
linear algebra. The other standard orthogonal transformation is a Givens rotation:

where ¢? + s2 = 1. Note that

so if we choose

then the Givens rotation introduces a zero in the second column. More generally, we can
transform a vector in R into a vector parallel to e; by a sequence of m — 1 Givens rotations,
where the first rotation moves the last element to zero, the second rotation moves the second-
to-last element to zero, and so forth.

For some applications, introducing zeros one by one is very attractive. In some places, you
may see this phrased as a contrast between algorithms based on Householder reflections and
those based on Givens rotations, but this is not quite right. Small Householder reflections can
be used to introduce one zero at a time, too. Still, in the general usage, Givens rotations seem
to be the more popular choice for this sort of local introduction of zeros.

Sparse QR

Just as was the case with LU, the QR decomposition admits a sparse variant. And, as with LU,
sparsity of the matrix A € R™*" alone is not enough to guarantee sparsity of the factorization!
Hence, as with solving linear systems, our recommendation for solving sparse least squares
problems varies depending on the actual sparse structure.

Recall that the R matrix in QR factorization is also the Cholesky factor of the Gram matrix:
G = ATA = RTR. Hence, the sparsity of the R factor can be inferred from the sparsity of G
using the ideas we talked about when discussing sparse Cholesky. If the rows of A correspond
to experiments and columns correspond to factors, the nonzero structure of G is determined by
which experiments share common factors: in general g;; # 0 if any experiment involves both
factors i and factor j. So a very sparse A matrix may nonetheless yield a completely dense
G matrix. Of course, if R is dense, that is not the end of the world! Factoring a dense n x n
matrix is pretty cheap for n in the hundreds or even up to a couple thousand, and solves with
the resulting triangular factors are quite inexpensive.

If one forms @ at all, it is often better to work with @ as a product of (sparse) Householder
reflectors rather than forming the elements of (). One may also choose to use a “Q-less QR
decomposition” in which the matrix @ is not kept in any explicit form; to form Qb in this
case, we would use the formulation Q7b = R~TATb.

As with linear solves, least squares solves can be “cleaned up” using iterative refinement. This
is a good idea in particular when using Q-less QR. If AT is an approximate least squares solve
(e.g. via the slightly-unstable normal equations approach), iterative refinement looks like

k¥ =b— AzF
gk =gk — RYRT(ATr,)).
This approach can be useful even when A is moderately large and dense; for example, R might

be computed from a (scaled) QR decomposition of a carefully selected subset of the rows of

A.

Tall Skinny QR

A special case for QR occurs when A € R™*™ and m > n. In this case, it may make sense to
partition the data into subsets of rows, and these can be processed in parallel and then the
results combined. This is the idea behind the TSQR (tall skinny QR) approach.

We illustrate the idea with one level of partitioning:

Al ol i A A

10

From here, one can compute compute QR for full A via

R, _ A _ @4 A
] =an o=, |

If we want to apply @ or Q7 to a vector, we typically will do so with the factored form (i.e. using
whatever reflectors went into @, @5, and Q).

The idea of combining QR factorizations by stacking is not limited to two-way splittings. One
can also apply the approach recursively for very large problems.

Randomized approaches

As we noted above, it is reasonable to use a “Q”-less QR factorization together with the
semi-normal equations approach of solving

RTRz = ATb.

Even if R is not perfect, one can clean up the solution using iterative refinement, provided
that b — AZ can be computed to high accuracy. Given that forming and factoring ATA (or the
equivalent) is the most expensive part of factorization-based solvers, it is tempting to consider
ask how far from perfect R can be! In particular, suppose that we choose a random sample
Ay, of rows of A. Then we have an estimator

ATA~ 2 AT A,
|j| T 42T
which leads to an approximate R given by
~ =~ n
R=,/—A,..
Q |.7| J,:

If we use R in place of R in an iterative refinement loop, we might still hope for and expect to
have fairly rapid convergence, at least for problems that are not too ill-conditioned. The rate of
convergence depends on the quality of the approximation, which in turn depends on details of
how J is sampled. However, this type of analysis is beyond the scope of the current lecture.

Using random samples of the rows of A as the basis of an iterative procedure for solving least
squares problems is an example of a randomized linear algebra (randNLA) algorithm. The past
two decades have seen an enormous explosion of interest in these types of methods.

11

	A family of factorizations
	Cholesky
	Economy QR
	Full QR
	SVD

	QR and Gram-Schmidt
	Householder transformations
	Block reflectors
	Stability of QR

	Beyond Householder QR
	Givens rotations
	Sparse QR
	Tall Skinny QR
	Randomized approaches

