
CS 6210: Matrix Computations
Householder, Givens, and QR factorization

David Bindel

2025-09-29

A family of factorizations

Cholesky

If 𝐴 ∈ ℝ𝑚×𝑛 with 𝑚 > 𝑛 is full rank, then 𝐴𝑇𝐴 is symmetric and positive definite matrix, and
we can compute a Cholesky factorization of 𝐴𝑇𝐴:

𝐴𝑇𝐴 = 𝑅𝑇𝑅.

The solution to the least squares problem is then

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 = 𝑅−1𝑅−𝑇𝐴𝑇𝑏.

Or, in Julia world

F = cholesky(A'*A);

x = F\(A'*b);

Economy QR

The Cholesky factor 𝑅 appears in a different setting as well. Let us write 𝐴 = 𝑄𝑅 where
𝑄 = 𝐴𝑅−1; then

𝑄𝑇𝑄 = 𝑅−𝑇𝐴𝑇𝐴𝑅−1 = 𝑅−𝑇𝑅𝑇𝑅𝑅−1 = 𝐼.

That is, 𝑄 is a matrix with orthonormal columns. This “economy QR factorization” can be
computed in several different ways, including one that you have seen before in a different guise
(the Gram-Schmidt process).

Julia provides a numerically stable method to compute the QR factorization via

1

F = qr(A)

and we can use the QR factorization directly to solve the least squares problem without forming
𝐴𝑇𝐴 by

F = qr(A)

x = F\b

Behind the scenes, this is what is used when we write A\b with a dense rectangular matrix 𝐴.

Full QR

There is an alternate “full” QR decomposition where we write

𝐴 = 𝑄𝑅, where 𝑄 = [𝑄1 𝑄2] ∈ ℝ𝑛×𝑛, 𝑅 = [𝑅1
0] ∈ ℝ𝑚×𝑛.

To see how this connects to the least squares problem, recall that the Euclidean norm is
invariant under orthogonal transformations, so

‖𝑟‖2 = ‖𝑄𝑇𝑟‖2 = ∥[𝑄𝑇
1 𝑏

𝑄𝑇
2 𝑏] − [𝑅1

0] 𝑥∥
2

= ‖𝑄𝑇
1 𝑏 − 𝑅1𝑥‖2 + ‖𝑄𝑇

2 𝑏‖2.

We can set ‖𝑄𝑇
1 𝑣 − 𝑅1𝑥‖2 to zero by setting 𝑥 = 𝑅−1

1 𝑄𝑇
1 𝑏; the result is ‖𝑟‖2 = ‖𝑄𝑇

2 𝑏‖2.

The QR factorization routine in Julia can be used to reconstruct either the full or the compact
QR decomposition. Internally, it stores neither the smaller 𝑄1 nor the full matrix 𝑄 explicitly;
rather, it uses a compact representation of the matrix as a product of Householder reflectors,
as we will discuss next time.

SVD

The full QR decomposition is useful because orthogonal transformations do not change lengths.
Hence, the QR factorization lets us change to a coordinate system where the problem is simple
without changing the problem in any fundamental way. The same is true of the SVD, which
we write as

𝐴 = [𝑈1 𝑈2] [Σ
0] 𝑉 𝑇 Full SVD

= 𝑈1Σ𝑉 𝑇 Economy SVD.

2

As with the QR factorization, we can apply an orthogonal transformation involving the factor
𝑈 that makes the least squares residual norm simple:

‖𝑈𝑇𝑟‖2 = ∥[𝑈𝑇
1 𝑏

𝑈𝑇
2 𝑏] − [Σ𝑉 𝑇

0] 𝑥∥ = ‖𝑈𝑇
1 𝑏 − Σ𝑉 𝑇𝑥‖2 + ‖𝑈𝑇

2 𝑏‖2,

and we can minimize by setting 𝑥 = 𝑉 Σ−1𝑈𝑇
1 𝑏.

QR and Gram-Schmidt

We now turn to our first numerical method for computing the QR decomposition: the Gram-
Schmidt algorithm. This method is usually presented in first linear algebra classes, but is rarely
interpreted as a matrix factorization. Rather, it is presented as a way of converting a basis for
a space into an orthonormal basis for the same space. If 𝑎1, 𝑎2, … , 𝑎𝑛 are column vectors, the
Gram-Schmidt algorithm is as follows: for each 𝑗 = 1, … , 𝑛

̃𝑎𝑗 = 𝑎𝑗 −
𝑗−1

∑
𝑖=1

𝑞𝑖𝑞𝑇
𝑖 𝑎𝑗

𝑞𝑗 = ̃𝑎𝑗/‖ ̃𝑎‖𝑗.

At the end of the iteration, we have that the 𝑞𝑗 vectors are all mutually orthonormal and

span{𝑎1, … , 𝑎𝑗} = span{𝑞1, … , 𝑞𝑗}.

To see this as a matrix factorization, we rewrite the iteration as

𝑟𝑖𝑗 = 𝑞𝑇
𝑖 𝑎𝑗

̃𝑎𝑗 = 𝑎𝑗 −
𝑗−1

∑
𝑖=1

𝑞𝑖𝑟𝑖𝑗

𝑟𝑗𝑗 = ‖ ̃𝑎‖𝑗

𝑞𝑗 = ̃𝑎𝑗/𝑟𝑗𝑗

Putting these equations together, we have that

𝑎𝑗 =
𝑗

∑
𝑖=1

𝑞𝑖𝑟𝑖𝑗,

or, in matrix form,
𝐴 = 𝑄𝑅

where 𝐴 and 𝑄 are the matrices with column vectors 𝑎𝑗 and 𝑞𝑗, respectively.

In Julia, Gram-Schmidt looks something like this:

3

function orth_cgs0(A)

m,n = size(A)

Q = zeros(m,n)

for j = 1:n

v = A[:,j] # Take the jth original basis vector

v = v-Q[:,1:j-1]*(Q[:,1:j-1]'*v) # Orthogonalize vs q_1, ... q_j-1

v = v/norm(v) # Normalize what remains

Q[:,j] = v # Add result to Q basis

end

Q

end

Where does 𝑅 appear in this algorithm? It appears thus:

function orth_cgs(A)

m,n = size(A)

Q = zeros(m,n)

R = zeros(n,n)

for j = 1:n

v = A[:,j] # Take the jth original basis vector

R[1:j-1,j] = Q[:,1:j-1]'*v # Project onto q_1, ..., q_j-1

v = v-Q[:,1:j-1]*R[1:j-1,j] # Orthogonalize vs q_1, ... q_j-1

R[j,j] = norm(v) # Compute normalization constant

v = v/R[j,j] # Normalize what remains

Q[:,j] = v # Add result to Q basis

end

Q, R

end

That is, 𝑅 accumulates the multipliers that we computed from the Gram-Schmidt procedure.
This idea that the multipliers in an algorithm can be thought of as entries in a matrix should
be familiar, since we encountered it before when we looked at Gaussian elimination.

Sadly, the Gram-Schmidt algorithm is not backward stable. The problem occurs when a vector
𝑎𝑗 is nearly in the span of previous vectors, so that cancellation rears its ugly head in the
formation of ̃𝑎𝑗. As a result, we have that 𝐴 + 𝐸 = 𝑄̂𝑅̂ is usually satisfied with a relatively
small 𝐸, but ‖𝑄̂𝑇𝑄̂ − 𝐼‖ may not be small (in the worst case, the computed 𝑄̂ may even be
near singular). The classical Gram-Schmidt (CGS) method that we have shown is particularly
problematic; a somewhat better alternative is the modified Gram-Schmidt method (MGS)
algorithm:

4

function orth_mgs(A)

m,n = size(A)

Q ,R = zeros(m,n), zeros(n,n)

for j = 1:n

v = A[:,j] # Take the jth original basis vector

for k = 1:j-1

R[k,j] = Q[:,j]'*v # Project onto q_1, ..., q_j-1

v -= Q[:,j]*R[k,j] # Orthogonalize vs q_1, ... q_j-1

end

R[j,j] = norm(v) # Compute normalization constant

v = v/R[j,j] # Normalize what remains

Q[:,j] = v # Add result to Q basis

end

Q, R

end

Though equivalent in exact arithmetic, the MGS algorithm has the advantage that it computes
dot products with the updated ̃𝑎𝑗 as we go along, and these intermediate vectors have smaller
norm than the original vector. Sadly, this does not completely fix the matter: the computed 𝑞𝑗
vectors can still drift away from being orthogonal to each other.

One can explicitly re-orthogonalize vectors that drift away from orthogonality, and this helps
further.

function orth_mgs2(A :: AbstractMatrix)

m, n = size(A)

Q, R = zeros(m,n), zeros(n,n)

for j = 1:n

wj = A[:,j]

for s = 1:2

for i = 1:j-1

dRij = Q[:,i]'*wj

wj -= Q[:,i]*dRij

R[i,j] += dRij

end

end

R[j,j] = norm(wj)

Q[:,j] = wj/R[j,j]

end

Q, R

end

5

In practice, though, we often don’t bother: if backward stability is required, we turn to other
algorithms.

Despite its backward instability, the Gram-Schmidt algorithm forms a very useful building
block for iterative methods, and we will see it frequently in later parts of the course.

Householder transformations

The Gram-Schmidt orthogonalization procedure is not generally recommended for numerical
use. Suppose we write 𝐴 = [𝑎1 … 𝑎𝑚] and 𝑄 = [𝑞1 … 𝑞𝑚]. The essential problem is that if
𝑟𝑗𝑗 ≪ ‖𝑎𝑗‖2, then cancellation can destroy the accuracy of the computed 𝑞𝑗; and in particular,
the computed 𝑞𝑗 may not be particularly orthogonal to the previous 𝑞𝑗. Actually, loss of
orthogonality can build up even if the diagonal elements of 𝑅 are not exceptionally small.
This is Not Good, and while we have some tricks to mitigate the problem, we need a different
approach if we want the problem to go away.

Recall that one way of expressing the Gaussian elimination algorithm is in terms of Gauss
transformations that serve to introduce zeros into the lower triangle of a matrix. Householder
transformations are orthogonal transformations (reflections) that can be used to similar effect.
Reflection across the plane orthogonal to a unit normal vector 𝑢 can be expressed in matrix
form as

𝐻 = 𝐼 − 2𝑣𝑣𝑇;

Now suppose we are given a vector 𝑥 and we want to find a reflection that transforms 𝑥 into a
direction parallel to some unit vector 𝑦. The right reflection is through a hyperplane that bisects
the angle between 𝑥 and 𝑦 (see Figure 1), which we can construct by taking the hyperplane
normal to 𝑥 − ‖𝑥‖𝑦. That is, letting 𝑢 = 𝑥 − ‖𝑥‖𝑦 and 𝑣 = 𝑢/‖𝑢‖, we have

(𝐼 − 2𝑣𝑣𝑇)𝑥 = 𝑥 − 2 (𝑥 + ‖𝑥‖𝑦)(𝑥𝑇𝑥 + ‖𝑥‖𝑥𝑇𝑦)
‖𝑥‖2 + 2𝑥𝑇𝑦‖𝑥‖ + ‖𝑥‖2‖𝑦‖2

= 𝑥 − (𝑥 − ‖𝑥‖𝑦)
= ‖𝑥‖𝑦.

If we use 𝑦 = ±𝑒1, we can get a reflection that zeros out all but the first element of the vector
𝑥. So with appropriate choices of reflections, we can take a matrix 𝐴 and zero out all of the
subdiagonal elements of the first column.

Now think about applying a sequence of Householder transformations to introduce subdiagonal
zeros into 𝐴, just as we used a sequence of Gauss transformations to introduce subdiagonal
zeros in Gaussian elimination. As with 𝐿𝑈 factorization, we can re-use the storage of 𝐴 by
recognizing that the number of nontrivial parameters in the vector 𝑤 at each step is the same
as the number of zeros produced by that transformation. This gives us the following:

6

Figure 1: Construction of a reflector to transform 𝑥 into ‖𝑥‖𝑦, ‖𝑦‖ = 1.

function hqr!(A)

m,n = size(A)

tau = zeros(n)

for j = 1:n

Find H = I-tau*w*w' to zero out A[j+1:end,j]

normx = norm(A[j:end,j])

s = -sign(A[j,j])

u1 = A[j,j] - s*normx

w = A[j:end,j]/u1

w[1] = 1.0

A[j+1:end,j] = w[2:end] # Save trailing part of w

A[j,j] = s*normx # Diagonal element of R

tau[j] = -s*u1/normx # Save scaling factor

Update trailing submatrix by multipling by H

A[j:end,j+1:end] -= tau[j]*w*(w'*A[j:end,j+1:end])

end

A, tau

end

If we ever need 𝑄 or 𝑄𝑇 explicitly, we can always form it from the compressed representation.
We can also multiply by 𝑄 and 𝑄𝑇 implicitly:

function applyQ!(QR, τ, X)

m, n = size(QR)

for j = n:-1:1

7

w = [1.0; QR[j+1:end,j]]

X[j:end,:] -= tau[j]*w*(w'*X[j:end,:])

end

X

end

function applyQT!(QR, τ, X)

m, n = size(QR)

for j = 1:n

w = [1.0; QR[j+1:end,j]]

X[j:end,:] -= tau[j]*w*(w'*X[j:end,:])

end

X

end

applyQ(QR, tau, X) = applyQ!(QR, tau, copy(X))

applyQT(QR, tau, X) = applyQ(QR, tau, copy(X))

Block reflectors

As with Gaussian elimination, we would prefer to have a block implementation of the algorithm
available in order to get better use of level 3 BLAS routines. To do this, we seek a representation
for a block reflector. Three such representations are common in the literature:

• The block reflector (or 𝐺𝐺𝑇) representation: 𝐻 = 𝐼 − 2𝑈𝑈𝑇

• The 𝑊𝑌 𝑇 representation: 𝐻 = 𝐼 + 𝑊𝑌 𝑇 where 𝑊 and 𝑌 are computed via a recurrence
relation

• The compact 𝑊𝑌 𝑇 representation: 𝐻 = 𝐼 + 𝑌 𝑇 𝑌 𝑇 where 𝑇 is upper triangular

The LAPACK routine DGEQRT uses the compact 𝑊𝑌 𝑇 representation, as do most variants of
the qr routine in Julia.

Stability of QR

It is not too difficult to show that applying a Householder reflector to a matrix is backward-stable:
if 𝑃 is the desired transformation, the floating point result of 𝑃𝐴 is

̃𝑃𝐴 = (𝑃 + 𝐸)𝐴, ‖𝐸‖ ≤ 𝑂(𝜖mach)‖𝐴‖.

8

Moreover, orthogonal matrices are perfectly conditioned! Taking a product of 𝑗 matrices is
also fine; the result has backward error bounded by 𝑗𝑂(𝜖mach)‖𝐴‖. As a consequence, QR
decomposition Householder transformations is ultimately backward stable.

The stability of orthogonal matrices in general makes them a marvelous building block for
numerical linear algebra algorithms, and we will take advantage of this again when we discuss
eigenvalue solvers.

Beyond Householder QR

While the Householder QR factorization is a major workhorse for least squares problems, there
are many variants beyond what we have discussed. We mention a few of these below, with a
particular focus on cases where 𝑚 (or both 𝑚 and 𝑛) are large.

Givens rotations

Householder reflections are one of the standard orthogonal transformations used in numerical
linear algebra. The other standard orthogonal transformation is a Givens rotation:

𝐺 = [𝑐 −𝑠
𝑠 𝑐] .

where 𝑐2 + 𝑠2 = 1. Note that

𝐺 = [𝑐 −𝑠
𝑠 𝑐] [𝑥

𝑦] = [𝑐𝑥 − 𝑠𝑦
𝑠𝑥 + 𝑐𝑦]

so if we choose
𝑠 = −𝑦

√𝑥2 + 𝑦2
, 𝑐 = 𝑥

√𝑥2 + 𝑦2

then the Givens rotation introduces a zero in the second column. More generally, we can
transform a vector in ℝ𝑚 into a vector parallel to 𝑒1 by a sequence of 𝑚 − 1 Givens rotations,
where the first rotation moves the last element to zero, the second rotation moves the second-
to-last element to zero, and so forth.

For some applications, introducing zeros one by one is very attractive. In some places, you
may see this phrased as a contrast between algorithms based on Householder reflections and
those based on Givens rotations, but this is not quite right. Small Householder reflections can
be used to introduce one zero at a time, too. Still, in the general usage, Givens rotations seem
to be the more popular choice for this sort of local introduction of zeros.

9

Sparse QR

Just as was the case with LU, the QR decomposition admits a sparse variant. And, as with LU,
sparsity of the matrix 𝐴 ∈ ℝ𝑚×𝑛 alone is not enough to guarantee sparsity of the factorization!
Hence, as with solving linear systems, our recommendation for solving sparse least squares
problems varies depending on the actual sparse structure.

Recall that the 𝑅 matrix in QR factorization is also the Cholesky factor of the Gram matrix:
𝐺 = 𝐴𝑇𝐴 = 𝑅𝑇𝑅. Hence, the sparsity of the 𝑅 factor can be inferred from the sparsity of 𝐺
using the ideas we talked about when discussing sparse Cholesky. If the rows of 𝐴 correspond
to experiments and columns correspond to factors, the nonzero structure of 𝐺 is determined by
which experiments share common factors: in general 𝑔𝑖𝑗 ≠ 0 if any experiment involves both
factors 𝑖 and factor 𝑗. So a very sparse 𝐴 matrix may nonetheless yield a completely dense
𝐺 matrix. Of course, if 𝑅 is dense, that is not the end of the world! Factoring a dense 𝑛 × 𝑛
matrix is pretty cheap for 𝑛 in the hundreds or even up to a couple thousand, and solves with
the resulting triangular factors are quite inexpensive.

If one forms 𝑄 at all, it is often better to work with 𝑄 as a product of (sparse) Householder
reflectors rather than forming the elements of 𝑄. One may also choose to use a “𝑄-less QR
decomposition” in which the matrix 𝑄 is not kept in any explicit form; to form 𝑄𝑇𝑏 in this
case, we would use the formulation 𝑄𝑇𝑏 = 𝑅−𝑇𝐴𝑇𝑏.

As with linear solves, least squares solves can be “cleaned up” using iterative refinement. This
is a good idea in particular when using 𝑄-less QR. If ̃𝐴† is an approximate least squares solve
(e.g. via the slightly-unstable normal equations approach), iterative refinement looks like

𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘

𝑥𝑘+1 = 𝑥𝑘 − 𝑅̃−1(𝑅̃−𝑇(𝐴𝑇𝑟𝑘)).

This approach can be useful even when 𝐴 is moderately large and dense; for example, 𝑅̃ might
be computed from a (scaled) QR decomposition of a carefully selected subset of the rows of
𝐴.

Tall Skinny QR

A special case for QR occurs when 𝐴 ∈ ℝ𝑚×𝑛 and 𝑚 ≫ 𝑛. In this case, it may make sense to
partition the data into subsets of rows, and these can be processed in parallel and then the
results combined. This is the idea behind the TSQR (tall skinny QR) approach.

We illustrate the idea with one level of partitioning:

𝐴 = [𝐴1
𝐴2

] = [𝑄1𝑅1
𝑄2𝑅2

] = [𝑄1
𝑄2

] [𝑅1
𝑅2

] .

10

From here, one can compute compute QR for full 𝐴 via

[𝑅1
𝑅2

] = 𝑄̃𝑅, 𝑄 = [𝑄1
𝑄2

] 𝑄̃.

If we want to apply 𝑄 or 𝑄𝑇 to a vector, we typically will do so with the factored form (i.e. using
whatever reflectors went into 𝑄1, 𝑄2, and 𝑄̃).

The idea of combining QR factorizations by stacking is not limited to two-way splittings. One
can also apply the approach recursively for very large problems.

Randomized approaches

As we noted above, it is reasonable to use a “Q”-less QR factorization together with the
semi-normal equations approach of solving

𝑅𝑇𝑅𝑥 = 𝐴𝑇𝑏.

Even if 𝑅 is not perfect, one can clean up the solution using iterative refinement, provided
that 𝑏 − 𝐴 ̂𝑥 can be computed to high accuracy. Given that forming and factoring 𝐴𝑇𝐴 (or the
equivalent) is the most expensive part of factorization-based solvers, it is tempting to consider
ask how far from perfect 𝑅 can be! In particular, suppose that we choose a random sample
𝐴ℐ,∶ of rows of 𝐴. Then we have an estimator

𝐴𝑇𝐴 ≈ 𝑛
|ℐ|

𝐴𝑇
ℐ,∶𝐴ℐ,∶,

which leads to an approximate 𝑅 given by

𝑄̃𝑅̂ = √
𝑛

|ℐ|
𝐴ℐ,∶.

If we use 𝑅̃ in place of 𝑅 in an iterative refinement loop, we might still hope for and expect to
have fairly rapid convergence, at least for problems that are not too ill-conditioned. The rate of
convergence depends on the quality of the approximation, which in turn depends on details of
how ℐ is sampled. However, this type of analysis is beyond the scope of the current lecture.

Using random samples of the rows of 𝐴 as the basis of an iterative procedure for solving least
squares problems is an example of a randomized linear algebra (randNLA) algorithm. The past
two decades have seen an enormous explosion of interest in these types of methods.

11

	A family of factorizations
	Cholesky
	Economy QR
	Full QR
	SVD

	QR and Gram-Schmidt
	Householder transformations
	Block reflectors
	Stability of QR

	Beyond Householder QR
	Givens rotations
	Sparse QR
	Tall Skinny QR
	Randomized approaches

