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Least squares basics

Figure 1: Picture of a linear least squares problem. The vector 𝐴𝑥 is the closest vector in ℛ(𝐴)
to a target vector 𝑏 in the Euclidean norm. Consequently, the residual 𝑟 = 𝑏 − 𝐴𝑥 is
normal (orthogonal) to ℛ(𝐴).

A least squares problem involves minimization of a (squared) Euclidean norm of some vector:

minimize 1
2

‖𝑟‖2 s.t. 𝑟 ∈ Ω.

In general, the derivative of the squared norm is given by

𝛿 (1
2

‖𝑟‖2) = ℜ⟨𝛿𝑟, 𝑟⟩;

we will usually assume least squares problems over the real numbers, in which case we don’t
have to worry about taking the real part. If we want to minimize the Euclidean norm of 𝑟 (in
the real case), we need

⟨𝛿𝑟, 𝑟⟩ = 0 for all admissible 𝛿𝑟;

that is, 𝑟 is orthogonal (or normal) to any admissible variation 𝛿𝑟 at the point. Here an
“admissible” variation is just one that we could produce by changing the system in an allowed
way.
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For example, consider 𝐴 ∈ ℝ𝑚×𝑛 with 𝑚 > 𝑛 and let 𝑟(𝑥) = 𝐴𝑥 − 𝑏. This is a linear least
squares problem. In this setting, the admissible variations are 𝛿𝑟 = 𝐴𝛿𝑥, and the first-order
condition for a minimizer is

∀𝛿𝑥 ∈ ℝ𝑛, ⟨𝐴𝛿𝑥, 𝐴𝑥 − 𝑏⟩ = 0.

Using the standard inner product, this gives us

𝐴𝑇(𝐴𝑥 − 𝑏) = 𝐴𝑇𝐴𝑥 − 𝐴𝑇𝑏 = 0,

which is sometimes known as the normal equations because the residual is normal to all
admissible variations (Figure 1).

The normal equations have a unique solution when 𝐴 is full column rank. The solution to the
normal equations is

(𝐴𝑇𝐴)−1𝐴𝑇𝑏 = 𝐴†𝑏,

where 𝐴† = (𝐴𝑇𝐴)−1𝐴 is the Moore-Penrose pseudoinverse of 𝐴. It is a pseudoinverse because
𝐴†𝐴 = 𝐼, but 𝑃 = 𝐴𝐴† is not an identity. Instead, 𝑃 is a projector, i.e. 𝑃 2 = 𝑃. We say 𝑃 is
the orthogonal projector onto ℛ(𝐴). Conceptually, it maps each point to the nearest point in
the range space of 𝐴. The projector 𝐼 − 𝑃 is the residual projector, for which ℛ(𝐴) is the null
space.

If you are not entirely happy with the variational calculus argument, there is a more algebraic
approach. We note that for 𝑥 = 𝐴†𝑏 + 𝑧 we have

‖𝐴𝑥 − 𝑏‖2 = ‖𝐴𝑧 − (𝐼 − 𝑃)𝑏‖2

= ‖𝐴𝑧‖2 + ‖(𝐼 − 𝑃)𝑏‖2

by the Pythagorean theorem (since 𝐴𝑧 ⟂ (𝐼 − 𝐴𝐴†)𝑏 by the normal equations). When 𝐴 is full
rank, positive definiteness implies that ‖𝐴𝑧‖2 > 0 for 𝑧 ≠ 0; therefore, the minimizer happens
at 𝑧 = 0.

An alternate formulation for the normal equations for the linear least squares problem is

[ 𝐼 𝐴
𝐴𝑇 0] [𝑟

𝑥] = [𝑏
0]

where the first row in the system defines 𝑟 = 𝑏 − 𝐴𝑥 and the second row gives the normal
condition 𝐴𝑇𝑟 = 0. Partial Gaussian elimination on this alternative system gives the normal
equations 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 as a Schur complement subsystem.

Nothing we have said is specific to the standard inner product. If 𝑀 is any symmetric positive
definite matrix, there is an associated inner product

⟨𝑥, 𝑦⟩𝑀 = 𝑦𝑇𝑀𝑥,
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and we can write the normal equations in terms of this inner product:

𝐴𝑇𝑀(𝐴𝑥 − 𝑏) = 0.

Similarly, we can generalize the alternative form of the least squares problem to

[𝑀−1 𝐴
𝐴𝑇 0] [ ̃𝑟

𝑥] = [𝑏
0]

where ̃𝑟 = 𝑀𝑟 is the scaled residual.

Minimum norm problems

So far, we have considered overdetermined problems. But it is also interesting to consider
minimum norm solutions to underdetermined problems:

minimize 1
2

‖𝑥‖2 s.t. 𝐴𝑥 = 𝑏

where 𝐴 ∈ ℝ𝑚×𝑛 and now 𝑚 < 𝑛. In this case, using the method of Lagrange multipliers, we
have

ℒ(𝑥, 𝜆) = 1
2

‖𝑥‖2 + 𝜆𝑇(𝐴𝑥 − 𝑏)

and the stationary equations are

0 = 𝛿ℒ = 𝛿𝑥𝑇(𝑥 + 𝐴𝑇𝜆) + 𝛿𝜆𝑇(𝐴𝑥 − 𝑏)

for all 𝛿𝑥 and 𝛿𝜆. Alternately, in matrix form, we have

[ 𝐼 𝐴𝑇

𝐴 0 ] [𝑥
𝜆] = [0

𝑏] .

Eliminating the 𝑥 variable gives us (𝐴𝐴𝑇)𝜆 = 𝑏, and back-substitution yields

𝑥 = 𝐴𝑇(𝐴𝐴𝑇)−1𝑏.

When 𝐴 is short and wide rather than tall and skinny (and assuming it is full row rank), we
say that 𝐴† = 𝐴𝑇(𝐴𝐴𝑇)−1 is the Moore-Penrose pseudo-inverse.

Why least squares?

Why is the ordinary least squares problem interesting? There are at least three natural
responses.
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1. Simplicity: The least squares problem is one of the simplest formulations around for
fitting linear models. The quadratic loss model is easy to work with analytically; it is
smooth; and it leads to a problem whose solution is linear in the observation data.

2. Statistics: The least squares problem is the optimal approach to parameter estimation
among linear unbiased estimators, assuming independent Gaussian noise. The least
squares problem is also the maximum likelihood estimator under these same hypotheses.

3. It’s a building block: Linear least squares are not the right formulation for all regression
problems — for example, they tend to lack robustness in the face of heavy-tailed, non-
Gaussian random errors. But even for these cases, ordinary least squares is a useful
building block. Because least squares problems are linear in the observation vector, they
are amenable to direct attack by linear algebra methods in a way that other estimation
methods are not. The tools we have available for more complex fitting boil down to linear
algebra subproblems at the end of the day, so it is useful to learn how to work effectively
with linear least squares.

Least squares and statistical models

Consider the model
𝑦𝑖 =

𝑛
∑
𝑗=1

𝑐𝑗𝑥𝑖𝑗 + 𝜖𝑖

where the factors 𝑥𝑖𝑗 for example 𝑗 are known, and the observations 𝑦𝑖 are assumed to be an
(unknown) combination of the factor values plus independent noise terms 𝜖𝑖 with mean zero
and variance 𝜎2. In terms of a linear system, we have

𝑦 = 𝑋𝑐 + 𝜖.

Gauss-Markov

A linear unbiased estimator for 𝑐 is a linear combination of the observations whose expected
value is 𝑐; that is, we need a matrix 𝑀 ∈ ℝ𝑛×𝑚 such that

𝔼[𝑀𝑦] = 𝑀𝑋𝑐 = 𝑐.

That is, 𝑀 should be a pseudo-inverse of 𝑋. Clearly one choice of linear unbiased estimator is
̂𝑐 = 𝑋†𝑦. According to the Gauss-Markov theorem, this is actually the best linear unbiased

estimator, in the sense of miminizing the variance. To see this, consider any other linear
unbiased estimator. We can always write such an estimator as

̃𝑐 = (𝑋† + 𝐷)𝑦
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where 𝐷 ∈ ℝ𝑛×𝑚 satisfies 𝐷𝑋 = 0. Then
Var( ̃𝑐) = Var((𝑋† + 𝐷)𝑦)

= (𝑋† + 𝐷)(𝜎2𝐼)(𝑋†𝐷)
= 𝜎2(𝑋† + 𝐷)(𝑋† + 𝐷)𝑇

= 𝜎2(𝑋𝑇𝑋)−1 + 𝜎2𝐷𝐷𝑇 = Var( ̂𝑐) + 𝜎2𝐷𝐷𝑇,

i.e. the variance of ̃𝑐 exceeds that of ̂𝑐 by a positive definite matrix. And when the noise has
covariance 𝐶, the best linear unbiased estimator satisfies the generalized least squares problem
𝑋𝑇𝐶−1(𝑋𝑐 − 𝑦) = 0 or, in alternate form

[ 𝐶 𝑋
𝑋𝑇 0 ] [𝑟

𝑐] = [𝑦
0] .

Maximum likelihood

Another estimator for the parameters 𝑐 in the model 𝑦 = 𝑋𝑐 + 𝜖 comes from maximizing the
(log) likelihood function. If 𝜖 is a vector of multivariate Gaussian noise with mean zero and
covariance 𝐶, then the likelihood function is

ℓ(𝑦) = 1
√det(2𝜋𝐶)

exp (−1
2

(𝑦 − 𝑋𝑐)𝑇𝐶−1(𝑦 − 𝑋𝑐)) ,

and for a fixed 𝐶, maximizing the likelihood corresponds to minimizing ‖𝑦 − 𝑋𝑐‖2
𝐶−1 .

Of course, Gaussian noise is not the only type of noise. More general noise models lead to
more complex optimization problems. For example, if we assume the 𝜖𝑖 are Laplacian random
variables (with probability proportional to exp(−|𝑧|) rather than exp(−𝑧2)), then maximizing
the likelihood corresponds to maximimizing ‖𝑦 − 𝑋𝑐‖1 instead of ‖𝑦 − 𝑋𝑐‖2. This gives an
estimator that is a nonlinear function of the data. However, least squares computations can be
used as a building block for computing this type of estimators as well.

Reasoning about the residual

When we come to a least squares problem via a statistical model, it is natural to check whether
the residual terms behave as one might expect:

• Are there about the same number of positive and negative residuals?

• If there is a natural “linear” structure to the data, is there evidence of significant
auto-correlation between consecutive residuals?

• Does the residual behave like white noise, or does it concentrate on certain frequencies?

Even when they are small, residuals that do not appear particularly noisy are a sign that the
model may not describe the data particularly well.
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A family of factorizations

Cholesky

If 𝐴 is full rank, then 𝐴𝑇𝐴 is symmetric and positive definite matrix, and we can compute a
Cholesky factorization of 𝐴𝑇𝐴:

𝐴𝑇𝐴 = 𝑅𝑇𝑅.

The solution to the least squares problem is then

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 = 𝑅−1𝑅−𝑇𝐴𝑇𝑏.

Or, in Julia world

F = cholesky(A'*A);

x = F\(A'*b);

Economy QR

The Cholesky factor 𝑅 appears in a different setting as well. Let us write 𝐴 = 𝑄𝑅 where
𝑄 = 𝐴𝑅−1; then

𝑄𝑇𝑄 = 𝑅−𝑇𝐴𝑇𝐴𝑅−1 = 𝑅−𝑇𝑅𝑇𝑅𝑅−1 = 𝐼.

That is, 𝑄 is a matrix with orthonormal columns. This “economy QR factorization” can be
computed in several different ways, including one that you have seen before in a different guise
(the Gram-Schmidt process).

Julia provides a numerically stable method to compute the QR factorization via

F = qr(A)

and we can use the QR factorization directly to solve the least squares problem without forming
𝐴𝑇𝐴 by

F = qr(A)

x = F\b

Behind the scenes, this is what is used when we write A\b with a dense rectangular matrix 𝐴.
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Full QR

There is an alternate “full” QR decomposition where we write

𝐴 = 𝑄𝑅, where 𝑄 = [𝑄1 𝑄2] ∈ ℝ𝑛×𝑛, 𝑅 = [𝑅1
0 ] ∈ ℝ𝑚×𝑛.

To see how this connects to the least squares problem, recall that the Euclidean norm is
invariant under orthogonal transformations, so

‖𝑟‖2 = ‖𝑄𝑇𝑟‖2 = ∥[𝑄𝑇
1 𝑏

𝑄𝑇
2 𝑏] − [𝑅1

0 ] 𝑥∥
2

= ‖𝑄𝑇
1 𝑏 − 𝑅1𝑥‖2 + ‖𝑄𝑇

2 𝑏‖2.

We can set ‖𝑄𝑇
1 𝑣 − 𝑅1𝑥‖2 to zero by setting 𝑥 = 𝑅−1

1 𝑄𝑇
1 𝑏; the result is ‖𝑟‖2 = ‖𝑄𝑇

2 𝑏‖2.

The QR factorization routine in Julia can be used to reconstruct either the full or the compact
QR decomposition. Internally, it stores neither the smaller 𝑄1 nor the full matrix 𝑄 explicitly;
rather, it uses a compact representation of the matrix as a product of Householder reflectors,
as we will discuss next time.

SVD

The full QR decomposition is useful because orthogonal transformations do not change lengths.
Hence, the QR factorization lets us change to a coordinate system where the problem is simple
without changing the problem in any fundamental way. The same is true of the SVD, which
we write as

𝐴 = [𝑈1 𝑈2] [Σ
0] 𝑉 𝑇 Full SVD

= 𝑈1Σ𝑉 𝑇 Economy SVD.

As with the QR factorization, we can apply an orthogonal transformation involving the factor
𝑈 that makes the least squares residual norm simple:

‖𝑈𝑇𝑟‖2 = ∥[𝑈𝑇
1 𝑏

𝑈𝑇
2 𝑏] − [Σ𝑉 𝑇

0 ] 𝑥∥ = ‖𝑈𝑇
1 𝑏 − Σ𝑉 𝑇𝑥‖2 + ‖𝑈𝑇

2 𝑏‖2,

and we can minimize by setting 𝑥 = 𝑉 Σ−1𝑈𝑇
1 𝑏.
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