
CS 6210: Matrix Computations
Sparse direct solvers

David Bindel

2025-09-22

Right and left

In this lecture, we will consider various types of sparse direct factorization methods. We’ll focus
throughout on Cholesky, simply to avoid the awkwardness associated with pivoting. Before
discussing sparse Cholesky factorizations, though, it’s worth re-considering the dense case.
Throughout this lecture we will use the upper triangular form of the factorization (i.e. 𝐴 = 𝑅𝑇𝑅
where 𝑅 = 𝐿𝑇).

So far, we have mostly considered right-looking (aka downward-looking) factorization method.
The simplest version of these methods can be seen as follows:

1. Partition 𝐴 = [𝑎11 𝑎12
𝑎21 𝐴22

]

2. Compute 𝑟11 = √𝑎11 and 𝑟12 = 𝑎12/𝑟11
3. Recursively factor 𝑆 = 𝐴22 − 𝑟𝑇

12𝑟12

In code, this looks like:

function mychol_rl!(A)

n = size(A)[1]

for k = 1:n

Compute row of R

A[k,k] = sqrt(A[k,k])

A[k,k+1:n] ./= A[k,k]

Schur complement update (just upper triangle)

for i = k+1:n

A[i,k+1:n] .-= A[k,i]*A[k,k+1:n]

end

1

end

UpperTriangular(A)

end

In contrast, left-looking (aka upward-looking) factorization methods recurse in the other
direction

1. Partition 𝐴 = [𝐴11 𝑎12
𝑎21 𝑎22

]

2. Factor 𝐴11 = 𝑅𝑇
11𝑅11 recursively

3. Compute the last column by 𝑟12 = 𝑅−𝑇
11 𝑎12 and 𝑟22 = √𝑎22 − ‖𝑟12‖2

In code, this looks like:

function mychol_ll!(A)

n = size(A)[1]

A[1,1] = sqrt(A[1,1])

for k = 2:n

Back substitution with R11^T + Schur compl

for i=1:k-1

A[i,k] -= A[1:i-1,i]'*A[1:i-1,k]

A[i,k] /= A[i,i]

A[k,k] -= A[i,k]*A[i,k]

end

Compute next diagonal

A[k,k] = sqrt(A[k,k])

end

UpperTriangular(A)

end

The two algorithms both do the same operations, and both have 𝑂(𝑛3) complexity. But each
has a slightly different interpretation to it, and these different interpretations will prove useful
when we consider sparse matrix factorization.

Band and skyline solvers

We begin with the case of band matrices. These have the great advantage of looking somewhat
similar to dense matrices (and much less complicated than the general sparse case).

2

The bandwidth 𝑏 of a matrix is the smallest non-negative integer 𝑏 such that 𝑎𝑖𝑗 = 0 for
|𝑖 − 𝑗| > 𝑏. Hence, diagonal matrices have bandwidth 1, bidiagonal and tridiagonal matrices
have bandwidth 2, and so forth. In the nonsymmetric case, we may distinguish between the
upper and the lower bandwidth.

For symmetric positive definite matrices of bandwidth 𝑏, the Cholesky factors also have
bandwidth 𝑏. To see why, consider one step of Cholesky factorization for a pentadiagonal
matrix (bandwidth 𝑏 = 2):

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × ×
× × × ×
× × × × ×

× × × × ×
× × × × ×

⋱ ⋱ ⋱ ⋱ ⋱
× × × × ×

× × × ×
× × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The first step of Cholesky factorization takes the square root of the (1, 1) element, scales the
first row, and (conceptually) zeros out the subdiagonal entries of the first column. If we mark
the modified entries with stars, we have

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ ∗
0 × × ×
0 × × × ×

× × × × ×
× × × × ×

⋱ ⋱ ⋱ ⋱ ⋱
× × × × ×

× × × ×
× × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The entries multiplied in the Schur complement update are those in the (2 ∶ 𝑏) × (2 ∶ 𝑏) block

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ ∗
0 ∗ ∗ ×
0 ∗ ∗ × ×

× × × × ×
× × × × ×

⋱ ⋱ ⋱ ⋱ ⋱
× × × × ×

× × × ×
× × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

3

We now observe that the Schur complement continues to have bandwidth 𝑏, and so this same
pattern will repeat throughout the factorization.

Because both the matrix 𝐴 and the Cholesky factor have the same structure, we can write a
version of Cholesky that transforms a packed version of the (upper triangle) of the matrix 𝐴 to
a packed version of its Cholesky factor. The packed storage format we use has 𝑏 + 1 rows (for
the main diagonal and each of the 𝑏 superdiagonals) and 𝑛 columns:

𝐵 = ⎡
⎢
⎣

⋅ ⋅ 𝑎13 … 𝑎𝑛−2,𝑛
⋅ 𝑎12 𝑎23 … 𝑎𝑛−1,𝑛

𝑎11 𝑎22 𝑎33 … 𝑎𝑛,𝑛

⎤
⎥
⎦

The indexing convention is 𝑏𝑑𝑗 = 𝑎𝑗−𝑚+𝑑,𝑗, 𝑚 = 1 + 𝛽, where 𝛽 is the bandwidth. Our
right-looking band Cholesky is almost identical to the right-looking Cholesky from before,
except that we introduce an indexing function that maps our ordinary (𝑖, 𝑗) entries to the (𝑑, 𝑗)
indexing used in the packed format.

function bandchol_rl!(B)

m, n = size(B)

f(i,j) = (i-j+m)+(j-1)*m

for k = 1:n

-- Compute row of R --

B[f(k,k)] = sqrt(B[f(k,k)])

for j = k+1:min(k+m-1,n) B[f(k,j)] /= B[f(k,k)] end

-- Update Schur complement --

for j = k+1:min(k+m-1,n)

for i = k+1:j

B[f(i,j)] -= B[f(k,i)]*B[f(k,j)]

end

end

end

B

end

In thinking about the right-looking algorithm, our emphasis is on the Schur complements and
their structure. In constrast, the left-looking version of the algorithm focuses on linear solves.
Suppose that

𝐴 = [𝐴11 𝑎12
𝑎21 𝑎22

]

and 𝐴11 = 𝑅𝑇
11𝑅11. We know that 𝑟12 = 𝑅−𝑇

11 𝑎12; and if 𝑎12 is zero up to the 𝑘th component,
then the same is true of 𝑟12 because of the way the forward substitution algorithm works. In

4

our pentadiagonal example above, we have (for example)

⎡
⎢
⎢
⎣

×
× ×
× × ×

× × ×

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0
0
×
×

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0
0
×
×

⎤
⎥
⎥
⎦

Therefore, the last column of 𝑅 has the same structure as the last column of 𝐴; and recursing
backward, we see this is true for the other columns as well.

The left-looking version of the Cholesky algorithm in band form is below:

function bandchol_ll!(B)

m, n = size(B)

B[m,1] = sqrt(B[m,1])

for k = 2:n

d1 = max(1,m-k+1)

for d = d1:m-1

Compute a step of forward substitution

B[d,k] -= B[(d1-d)+m:m-1,k-m+d]' * B[d1:d-1,k]

B[d,k] /= B[m,k-m+d]

Subtract off from the last diagonal element

B[m,k] -= B[d,k]*B[d,k]

end

Finish with square root

B[m,k] = sqrt(B[m,k])

end

B

end

As with the right-looking version of the algorithm, the left-looking band Cholesky can be
derived from the dense version by keeping the exact same logic, just with different indexing of
the relevant data structure.

Nonsymmetric band solvers may involve pivoting, but even then the band structure cannot
increase by very much. In each case, by using compact representations of band matrices, we
can compute an LU or Cholesky factorization using 𝑂(𝑛𝑏2) time and 𝑂(𝑛𝑏) space. And, once
the factorization is computed, forward and backward substitution steps then take 𝑂(𝑛𝑏) time
as well.

5

A generalization of band solvers is the profile or skyline solver. A skyline matrix format has a
different bandwidth for each column of the upper triangular part (row of the upper triangular
part); for example, consider the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × ×
× × × ×
× × × × × ×

× × × × ×
× × × × × ×

× × × × × ×
× × × × ×

× × × ×
× × × × × × × × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which has the bandwidth vector

[0 1 2 1 2 2 2 2 8] .

A natural approach to storing this (similar to the compressed sparse column format) is to just
keep a list of the structurally nonzero entries of the upper triangle in column major order,
along with an indexing array that indicates the start of each column (with an index in position
𝑛 + 1 one past the end of the data for the last column). That is, we have a vector colptr with
entries

[1 2 4 7 9 12 15 18 21 30]

Our analysis of the fill pattern in the left-looking Cholesky algorithm generalizes naturally to
the skyline format as well.

General sparse direct methods

Supppse 𝐴 is positive definite and 𝐴 = 𝑅𝑇𝑅 is the Cholesky factorization. Will 𝑅 also be
sparse? The answer depends in a somewhat complicated way on the structure of the graph
associated with the matrix 𝐴 and the order in which variables are eliminated. Except in very
special circumstances, there will generally be more nonzeros in 𝑅 than there are in 𝐴; these
extra nonzeros are referred to as fill.

The standard approach for minimizing fill is to apply a fill-reducing ordering to the variables;
that is, use a factorization

𝑃𝐴𝑃 𝑇 = 𝑅𝑇𝑅

where the permutation 𝑃 is chosen to minimize the number of nonzeros in 𝑅. In the nonsym-
metric case, one considers

𝑃𝐴𝑄 = 𝐿𝑈,

6

where 𝑄 is a column permutation chosen to approximately minimize the fill in 𝐿 and 𝑈, and 𝑃
is the row permutation used for stability. One can relax the standard partial pivoting condition,
choosing the row permutation 𝑃 to balance the desire for numerical stability against the desire
to minimize fill.

The problem of finding an elimination order that minimizes fill is NP-hard, so it is hard to say
that any ordering strategy is really optimal. But there is canned software for some heuristic
orderings that tend to work well in practice. From a practical perspective, then, the important
thing is to remember that a fill-reducing elimination order tends to be critical to using sparse
Gaussian elimination in practice.

Tree elimination

Consider the following illustrative example of how factoring a sparse matrix can lead to more
or less dense factors depending on the order of elimination. Putting in × to indicate a nonzero
element, we have

⎡
⎢
⎢
⎢
⎣

× × × × ×
× ×
× ×
× ×
× ×

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

×
× ×
× × ×
× × × ×
× × × × ×

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥
⎥
⎥
⎦

.

That is, 𝑅 has many more nonzeros than 𝐴. These nonzero locations that appear in 𝑅 and not
in 𝐴 are called fill-in. On the other hand, if we cyclically permute the rows and columns of 𝐴,
we have

⎡
⎢
⎢
⎢
⎣

× ×
× ×

× ×
× ×

× × × × ×

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

×
×

×
×

× × × × ×

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

× ×
× ×

× ×
× ×

×

⎤
⎥
⎥
⎥
⎦

.

That is, the factorization of 𝑃𝐴𝑃 𝑇 has no fill-in.

A sparse matrix 𝐴 can be viewed as an adjacency matrices for an associated graphs: make one
node for each row, and connect node 𝑖 to node 𝑗 if 𝐴𝑖𝑗 ≠ 0. The graphs for the two “arrow”
matrices above are:

7

These graphs of both our example matrices are trees, and they differ only in how the nodes are
labeled. In the original matrix, the root node is assigned the first label (pre-ordered labeling);
in the second matrix, the root node is labeled after all the children (post-ordered labeling).
Clearly, the latter label order is superior for Gaussian elimination. This turns out to be a
general fact: if the graph for a (structurally symmetric) sparse matrix 𝑆 is a tree, and if the
labels are ordered so that each node appears after any children it may have, then there is no
fill-in: that is, 𝑅 has nonzeros only where 𝑆 has nonzeros.

Why should we have no fill when factoring a matrix for a tree ordered from the leaves up?
To answer this, we think about what happens in the first step of Gaussian elimination. Our
original matrix has the form

𝑆 = [𝛼 𝑣𝑇

𝑣 𝑆22
]

The first row of 𝑅 is identical to the first row of 𝑆, and the first column of 𝐿 has the same
nonzero structure as the first column of 𝐴, so we are fine there. The only question is about
the nonzero structure of the Schur complement 𝑆22 − 𝑣𝑣𝑇/𝛼. Note that the update 𝑣𝑣𝑇/𝛼 has
nonzeros only where 𝑣𝑖 and 𝑣𝑗 are both nonzero — that is, only when nodes 𝑖 and 𝑗 are both
connected to node 1. But node 1 is a leaf node; the only thing it connects to is its parent!
So if 𝑝 is the index of the parent of node 1 in the tree, then we only change the (𝑝, 𝑝) entry
of the trailing submatrix during the update — and we assume that entry is already nonzero.
Thus, the graph associated with the Schur complement is the same as the graph of the original
matrix, but with one leaf trimmed off.

A more interesting example

Now let us turn to a more interestingly sparse example for which (unlike our examples so far)
there is no ordering that completely does away with fill.

8

If we plot the graph of the Cholesky factor along with the sparsity structure of 𝑅𝑇 + 𝑅, we
might see that there is some structure to the fill (indicated with dashed red lines in the graph
and with red open circles in the “spy ploy” of 𝑅 + 𝑅𝑇).

The question, then, is how can we analyze the sparsity for examples like this?

From the “right-looking” perspective, we have a sequence of graphs associated with successive
Schur complements in the elimination process. When we eliminate node 𝑘, we get the next
graph by removing node 𝑘 and connecting all its neighbors together to form a clique. This is
the perspective we took above in our discussion of tree graphs.

From the “left-looking” perspective, we have a sequence of directed graphs associated leading
submatrices 𝒢𝑘 for the Cholesky factor. As a concrete case, let’s consider the step of advancing
from 𝒢5 to 𝒢6 in the example above. This involves solving the linear system

⎡
⎢
⎢
⎢
⎣

𝑟11
𝑟22
𝑟23 𝑟33

𝑟34 𝑟44
𝑟45 𝑟55

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑟16
𝑟26
𝑟36
𝑟46
𝑟56

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
𝑎26
0
0

𝑎56

⎤
⎥
⎥
⎥
⎦

Forward substitution gives us

𝑟16 = 0
𝑟26 = 𝑎26/𝑟22 ≠ 0
𝑟36 = (0 − 𝑟23𝑟26)/𝑟33 ≠ 0
𝑟46 = (0 − 𝑟34𝑟36)/𝑟44 ≠ 0
𝑟56 = (𝑎56 − 𝑟45𝑟46)/𝑟55 ≠ 0

The flow of information through forward substitution can be summarized in the graph 𝒢5:

9

The fact that 𝑎26 is nonzero implies that 𝑟26 is nonzero, which in turn implies the same of
everything reachable from node 2: that is, 𝑟36, 𝑟46, and 𝑟56 are all nonzero.

Let’s consider more generally the process of computing column 𝑘 + 1 of 𝑅 given columns 1
through 𝑘. The forward substitution recurrence is

𝑟𝑗,𝑘+1 = (𝑎𝑗,𝑘+1 − ∑
𝑖<𝑗

𝑟𝑖𝑗𝑟𝑖,𝑘+1) /𝑟𝑗𝑗.

In terms of the nonzero structure of 𝑅:

• If 𝑎𝑗,𝑘+1 ≠ 0, then 𝑟𝑗,𝑘+1 ≠ 0. That is, if 𝑗 connects to 𝑘 + 1 in the graph of 𝐴, then there
is an edge from 𝑗 to 𝑘 + 1 in the graph of 𝑅.

• If 𝑟𝑖,𝑘+1 ≠ 0 and 𝑟𝑖𝑗 ≠ 0, then 𝑟𝑗,𝑘+1 ≠ 0.
• More generally, 𝑟𝑗,𝑘+1 ≠ 0 whenever 𝑎𝑖,𝑘+1 ≠ 0 and there is a directed path from 𝑖 to 𝑗 in

𝒢𝑘 (in which case we say 𝑗 is reachable from 𝑖).

Establishing that 𝑗 is reachable from 𝑖 only requires that we show one path. In general, though,
there may be many redundant paths. A depth-first or breadth-first search from 𝑖 defines a
spanning tree for 𝒢𝑘 that can be used to answer reachability queries without such redundancy.
Depth-first search is particularly nice here because it has nesting structure: in the depth-first
search tree for 𝒢𝑛 are the depth-first search trees for all 𝒢𝑘 for 𝑘 < 𝑛. The tree for 𝒢𝑛 is called
the elimination tree for 𝐴. The elimination tree for our example graph is shown with bold
edges below:

10

The elimination tree can be computed in almost nnz(𝐴) time with the use of union-find data
structures. Once we have the elimination tree, it can be used for several tasks. As we’ve
hinted, the elimination tree can be used to compute the nonzero structure of 𝑅; it can also
be used identify supernodes (columns with fill patterns that are a good target for level 3
BLAS operations), and to identify opportunities for parallelism (since disjoint subtrees of the
elimination tree can be eliminated independently).

The analysis of the nonzero structure of 𝑅 via graph methods is referred to as symbolic
factorization, and typically precedes the numerical factorization phase in which the 𝑅 is
actually formed.

For many more details, we refer to Direct Methods for Sparse Linear Systems by Tim Davis.

Nested dissection

Tree-structured matrices are marvelous because we can do everything in 𝑂(𝑛) time: we process
the tree from the leaves to the root in order to compute 𝐿 and 𝑈, then recurse from the root
to the leaves in order to do back substitution with 𝑈, and then go back from the leaves to the
root in order to do forward substitution with 𝐿. Sadly, many of the graphs we encounter in
practice do not look like trees. However, we can often profitably think of clustering nodes so
that we get a block structure associated with a tree.

For illustrative purposes, let us consider Gaussian elimination on a matrix whose graph is
a regular 𝑛 × 𝑛 mesh. Such a matrix might arise, for example, if we were solving Poisson’s
equation using a standard five-point stencil to discretize the Laplacian operator. We then think
of cutting the mesh in half by removing a set of separator nodes, cutting the halves in half,
and so forth. This yields a block structure of a tree consisting of a root (the separator nodes)
and two children (the blocks on either side of the separator). We can now dissect each of the
sub-blocks with a smaller separator, and continue on in this fashion until we have cut the mesh
into blocks containing only a few nodes each. Figure 1 illustrates the first two steps in this
process of nested dissection.

11

https://epubs.siam.org/doi/book/10.1137/1.9780898718881

𝑆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑆𝐴𝐴 𝑆𝐴𝐶 𝑆𝐴𝐺
𝑆𝐵𝐵 𝑆𝐵𝐶 𝑆𝐵𝐺

𝑆𝐶𝐴 𝑆𝐶𝐵 𝑆𝐶𝐶 𝑆𝐶𝐺
𝑆𝐷𝐷 𝑆𝐷𝐹 𝑆𝐷𝐺

𝑆𝐸𝐸 𝑆𝐸𝐹 𝑆𝐸𝐺
𝑆𝐹𝐷 𝑆𝐹𝐸 𝑆𝐹𝐹 𝑆𝐹𝐺

𝑆𝐺𝐴 𝑆𝐺𝐵 𝑆𝐺𝐶 𝑆𝐺𝐷 𝑆𝐺𝐸 𝑆𝐺𝐹 𝑆𝐺𝐺

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Figure 1: Nested dissection on a square mesh. We first cut the graph in half with the red
separator 𝐺, then further disect the halves with the blue separators 𝐶 and 𝐹. Nodes in
𝐴, 𝐵, 𝐷, and 𝐸 are only connected through these separator nodes, which is reflected
in the sparsity pattern of the adjacency matrix 𝑆 when it is ordered so that the
separators appear after the things they separate.

12

We can get a lower bound on the cost of the factorization by figuring out the cost of factoring
the Schur complement associated with 𝐺, 𝐶, 𝐹, etc. After we eliminate everything except the
nodes associated with 𝐺, we pay about 2𝑛3/3 flops to factor the remaining (dense) 𝑛-by-𝑛
Schur complement matrix 𝐺. Similarly, we pay about 2(𝑛/2)3/3 time to factor the dense
(𝑛/2)-by-(𝑛/2) complements associated with the separators 𝐶 and 𝐹. Eliminating all four
separators then costs a total of ≈ 10𝑛3/12 flops. Now, think of applying nested dissection
to blocks 𝐴, 𝐵, 𝐷, and 𝐸; eliminating the Shur complements associated with separators
inside each of these blocks will take about 5(𝑛/2)3/6 flops; all four together cost a total of
4(5(𝑛/2)3/6) = (1/2)(5𝑛3/6) flops to factor. If we keep recursing, we find that the cost of
factoring Schur complements associated with all the separators looks like

5
6

𝑛3 (1 + 1
2

+ 1
4

+ …) ≈ 5
3

𝑛3.

It turns out that forming each Schur complement is asymptotically not more expensive than
eliminating it, so that the overall cost of doing nested dissection on an 𝑛 × 𝑛 mesh with 𝑁 = 𝑛2

unknown is also 𝑂(𝑛3) = 𝑂(𝑁1.5). It also turns out that the fill-in is 𝑂(𝑁 log 𝑁)1.

Now think about doing the same thing with a three-dimensional mesh. In this case, the top-level
separators for an 𝑛 × 𝑛 × 𝑛 mesh with 𝑁 = 𝑛3 unknowns would involve 𝑛2 unknowns, and we
would take 𝑂(𝑛6) = 𝑂(𝑁2) time to do the elimination, and 𝑂(𝑁4/3) fill. This relatively poor
scaling explains why sparse direct methods are attractive for solving 2D PDEs, but are less
popular for 3D problems.

Sparse solvers in practice

Well-tuned sparse elimination codes do not have quite the flop rate of dense linear algebra, but
they are nonetheless often extremely fast. In order to get this speed, though, quite a bit of
engineering is needed. In the remainder of these notes, we sketch some of these engineering
aspects – but we do so largely to convince you that you are better off using someone else’s
sparse solver code than rolling your own! If you want all the gory details, I again highly
recommend the book Direct Methods for Sparse Linear Systems.

Symbolic factorization

Typical sparse Cholesky codes involve two stages: a symbolic factorization stage in which the
nonzero structure of the factors is computed, and a numerical factorization stage in which we
fill in that nonzero structure with actual numbers. One advantage of this two-stage approach
is that we can re-use the symbolic factorization when we are faced with a series of matrices

1The explanation of why is not so hard, at least for regular 2D meshes, but it requires more drawing than I
feel like at the moment. The paper “Nested Dissection of a Regular Finite Element Mesh” by Alan George
(SIAM J. Numer. Anal. 10(2), April 1973) gives a fairly readable explanation for the curious.

13

https://epubs.siam.org/doi/book/10.1137/1.9780898718881

that all have the same nonzero structure. This happens frequently in nonlinear PDE solvers,
for example: the Jacobian of the discretized problem changes at each solver step (or each time
step), but the nonzero structure often remains fixed.

(Approximate) minimum degree ordering

When we have a clear geometry, nested dissection ordering can be very useful. Indeed, nested
dissection is useful in some cases even when we have “lost” the geometry – we can use spectral
methods (which we will describe later in the course) to find small separators in the graph. But
in some cases, there is no obvious geometry, or we don’t want to pay the cost of computing a
nested dissection ordering. In this case, a frequent alternative approach is a minimum degree
ordering. The idea of minimum degree ordering is to search the Schur complement graph for the
node with smallest degree, since the fill on eliminating that variable is bounded by the square
of the degree. Then we eliminate the vertex, update the degrees of the neighbors, and repeat.
Unfortunately, this is expensive to implement in the way described here – better variants (using
quotient graphs) are more frequently used in practice.

Cache locality

In order to get good use of level 3 BLAS, sparse direct factorization routines often identify dense
“supernodal” structure in the factor. We have already seen one case where this happens in our
discussion of nested dissection: we get dense blocks arising from separator Schur complements.
The main alternative to supernodal solvers is the family of multifrontal solvers, which also are
able to take advantage of level 3 BLAS.

Elimination trees and parallelism

As discussed earlier, elimination trees are useful not only for identifying the structure of 𝑅,
but also for finding dense “supernodal” structures and for finding opportunities for parallelism:
disjoint subtrees of the elimination tree do not directly interact, and can be eliminated in
parallel in the numerical factorization.

14

	Right and left
	Band and skyline solvers
	General sparse direct methods
	Tree elimination
	A more interesting example

	Nested dissection
	Sparse solvers in practice
	Symbolic factorization
	(Approximate) minimum degree ordering
	Cache locality
	Elimination trees and parallelism

