
CS 6210: Matrix Computations
LU, Cholesky, refinement, condest

David Bindel

2025-09-17

Diagonally dominant matrices

A matrix 𝐴 is strictly (column) diagonally dominant if for each column 𝑗,

|𝑎𝑗𝑗| > ∑
𝑖≠𝑗

|𝑎𝑖𝑗|.

If we write 𝐴 = 𝐷 + 𝐹 where 𝐷 is the diagonal and 𝐹 the off-diagonal part, strict column
diagonal dominance is equivalent to the statement that

‖𝐹𝐷−1‖1 < 1.

Note that we may factor 𝐴 as
𝐴 = (𝐼 + 𝐹𝐷−1)𝐷

with 𝐷 invertible because the diagonal elements are bounded below by zero and 𝐼 + 𝐹𝐷−1

invertible by a Neumann series bound. Therefore 𝐴 is invertible if it is strictly column diagonally
dominant.

Strict diagonal dominance is a useful structural condition for several reasons: it ensures
nonsingularity, it guarantees convergence of certain iterative methods (we will return to this
later), and it guarantees that 𝐿𝑈 factorization can be done without pivoting. In fact, Gaussian
elimination without partial pivoting is guaranteed not to even attempt pivoting! To see this,
note that the statement is obvious for the first step: column diagonal dominance implies that
𝑎11 is the largest magnitude element in the first column. What does the Schur complement
look like after one step of Gaussian elimination? By a short computation, it turns out that the
Schur complement is again diagonally dominant (see GVL section 4.1.1).

Diagonally dominant matrices and symmetric positive definite matrices are the two major
classes of matrices for which unpivoted Gaussian elimination is backward stable.

1

Symmetric matrices

Quadratic forms

A matrix 𝐴 is symmetric if 𝐴 = 𝐴𝑇. For each symmetric matrix 𝐴, there is an associated
quadratic form 𝑥𝑇𝐴𝑥. Even if you forgot them from our lightning review of linear algebra, you
are likely familiar with quadratic forms from a multivariate calculus class, where they appear
in the context of the second derivative test. One expands

𝐹(𝑥 + 𝑢) = 𝐹(𝑥) + 𝐹 ′(𝑥)𝑢 + 1
2

𝑢𝑇𝐻(𝑥)𝑢 + 𝑂(‖𝑢‖3),

and notes that at a stationary point where 𝐹 ′(𝑥) = 0, the dominant term is the quadratic term.
When 𝐻 is positive definite or negative definite, 𝑥 is a strong local minimum or maximum,
respectively. When 𝐻 is indefinite, with both negative and positive eigenvalues, 𝑥 is a saddle
point. When 𝐻 is semi-definite, one has to take more terms in the Taylor series to determine
whether the point is a local extremum.

If 𝐵 is a nonsingular matrix, then we can write 𝑥 = 𝐵𝑦 and 𝑥𝑇𝐴𝑥 = 𝑦𝑇(𝐵𝑇𝐴𝐵)𝑦. So an
“uphill” direction for 𝐴 corresponds to an “uphill” direction for 𝐵𝑇𝐴𝐵; and similarly with
downhill directions. More generally, 𝐴 and 𝐵𝑇𝐴𝐵 have the same inertia, where the inertia of a
symmetric 𝐴 is the triple

(# pos eigenvalues, # zero eigenvalues, # neg eigenvalues).

Now suppose that 𝐴 = 𝐿𝑈, where 𝐿 is unit lower triangular and 𝑈 is upper triangular. If
we let 𝐷 be the diagonal part of 𝑈, we can write 𝐴 = 𝐿𝐷𝑀𝑇, where 𝐿 and 𝑀 are both unit
lower triangular matrices. Noting that 𝐴𝑇 = (𝐿𝐷𝑀𝑇)𝑇 = 𝑀𝐷𝐿𝑇 = 𝑀(𝐿𝐷)𝑇 and that the 𝐿𝑈
factorization of a matrix is unique, we find 𝑀 = 𝐿 and 𝐿𝐷 = 𝐷𝑀𝑇 = 𝑈. Note that 𝐷 has the
same inertia as 𝐴.

The advantage of the 𝐿𝐷𝐿𝑇 factorization over the 𝐿𝑈 factorization is that we need only
compute and store one triangular factor, and so 𝐿𝐷𝐿𝑇 factorization costs about half the flops
and storage of 𝐿𝑈 factorization. We have the same stability issues for 𝐿𝐷𝐿𝑇 factorization
that we have for ordinary 𝐿𝑈 factorization, so in general we might compute $$ P A P^T =
LDL^T,$ $ where the details of various pivoting schemes are described in the book.

Positive definite matrices

A symmetric matrix is positive definite if 𝑥𝑇𝐴𝑥 > 0 for all nonzero 𝑥. If 𝐴 is symmetric and
positive definite, then 𝐴 = 𝐿𝐷𝐿𝑇 where 𝐷 has all positive elements (because 𝐴 and 𝐷 have the
same inertia). Thus, we can write 𝐴 = (𝐿𝐷1/2)(𝐿𝐷1/2)𝑇 = 𝐿̂𝐿̂𝑇. The matrix 𝐿̂ is a Cholesky
factor of 𝐴.

There are several useful properties of SPD matrices that we will use from time to time:

2

1. The inverse of an SPD matrix is SPD.

Proof: If 𝑥𝑇𝐴𝑥 > 0 for all 𝑥 ≠ 0, then we cannot have 𝐴𝑥 = 0 for nonzero 𝑥. So 𝐴 is
necessarily nonsingular. Moreover,

𝑥𝑇𝐴−1𝑥 = (𝐴−1𝑥)𝑇𝐴(𝐴−1𝑥)

must be positive for nonzero 𝑥 by positive-definiteness of 𝐴. Therefore, 𝐴−1 is SPD.

2. Any minor of an SPD matrix is SPD.

Proof: Without loss of generality, let 𝑀 = 𝐴11. Then for any appropriately sized 𝑥,

𝑥𝑇𝑀𝑥 = [𝑥
0]

𝑇

𝐴 [𝑥
0] > 0

for 𝑥 ≠ 0. Therefore, 𝑀 is positive definite.

3. Any Schur complement of an SPD matrix is SPD

Proof: A Schur complement in 𝐴 is the inverse of a minor of an inverse of 𝐴. By the
two arguments above, this implies that any Schur complement of an SPD matrix is SPD.

4. If 𝑀 is a minor of 𝐴, 𝜅2(𝑀) ≤ 𝜅2(𝐴).

Proof: The largest and smallest singular values of an SPD matrix are the same as the
largest and smallest eigenvalues; they can be written as

𝜎1(𝐴) = max
‖𝑥‖2=1

𝑥𝑇𝐴𝑥, 𝜎min(𝐴) = min
‖𝑥‖2=1

𝑥𝑇𝐴𝑥.

Without loss of generality, let 𝑀 = 𝐴11. Then

𝜎1(𝑀) = max
‖𝑥‖2=1

𝑥𝑇𝑀𝑥 = max
‖𝑥‖2=1

[𝑥
0]

𝑇

𝐴 [𝑥
0] ≤ max

‖𝑧‖2=1
𝑧𝑇𝐴𝑧 = 𝜎1(𝐴)

and similarly 𝜎min(𝑀) ≥ 𝜎min(𝐴). The condition numbers are therefore

𝜅2(𝑀) = 𝜎1(𝑀)
𝜎min(𝑀)

≤ 𝜎1(𝐴)
𝜎min(𝐴)

= 𝜅2(𝐴).

5. If 𝑆 is a Schur complement in 𝐴, 𝜅2(𝑆) ≤ 𝜅2(𝐴).

Proof: This is left as an exercise.

3

Cholesky

The algorithm to compute the Cholesky factor of an SPD matrix is close to the Gaussian
elimination algorithm. In the first step, we would write

[𝑎11 𝑎𝑇
21

𝑎21 𝐴22
] = [𝑙11 0

𝑙21 𝐿22
] [𝑙11 𝑙𝑇21

0 𝐿𝑇
22

] ,

or
𝑎11 = 𝑙211

𝑎21 = 𝑙21𝑙11

𝐴22 = 𝐿22𝐿𝑇
22 + 𝑙21𝑙𝑇21.

The first two equations allow us to compute the first column of 𝐿; the last equation tells us that
the rest of 𝐿 is the Cholesky factor of a Schur complement, 𝐿22𝐿𝑇

22 = 𝐴22 − 𝑙21𝑙𝑇21. Continuing
in this fashion, we have the algorithm

#

Overwrite with Cholesky factorization

#

function mychol!(A)

A = copy(A)

n = size(A)[1]

for j = 1:n

if A[j,j] < 0.0

error("Indefinite matrix")

end

A[j,j] = sqrt(A[j,j])

A[j+1:end,j] /= A[j,j]

A[j+1:end,j+1:end] -= A[j+1:end,j]*A[j+1:end,j]'

end

LowerTriangular(A)

end

Like the nearly-identical Gaussian elimination algorithm, we can rewrite the Cholesky algorithm
in block form for better cache use. Unlike Gaussian elimination, we do just fine using Cholesky
without pivoting1.

Iterative refinement

If we have a solver for ̂𝐴 = 𝐴 + 𝐸 with 𝐸 small, then we can use iterative refinement to “clean
up” the solution. The matrix ̂𝐴 could come from finite precision Gaussian elimination of 𝐴, for

1Pivoting can still be useful for near-singular matrices, but unpivoted Cholesky is backward stable

4

example, possibly with a less stringent pivoting strategy than partial pivoting. Or it might
come from some factorization of a nearby “easier” matrix. To get the refinement iteration, we
take the equation

𝐴𝑥 = ̂𝐴𝑥 − 𝐸𝑥 = 𝑏,

and think of 𝑥 as the fixed point for an iteration

̂𝐴𝑥𝑘+1 − 𝐸𝑥𝑘 = 𝑏.

Note that this is the same as
̂𝐴𝑥𝑘+1 − (̂𝐴 − 𝐴)𝑥𝑘 = 𝑏,

or
𝑥𝑘+1 = 𝑥𝑘 + ̂𝐴−1(𝑏 − 𝐴𝑥𝑘).

If we subtract ([fixedp]) from ([itref-fixedp]), we see

̂𝐴(𝑥𝑘+1 − 𝑥) − 𝐸(𝑥𝑘 − 𝑥) = 0,

or
𝑥𝑘+1 − 𝑥 = ̂𝐴−1𝐸(𝑥𝑘 − 𝑥).

Taking norms, we have
‖𝑥𝑘+1 − 𝑥‖ ≤ ‖ ̂𝐴−1𝐸‖‖𝑥𝑘 − 𝑥‖.

Thus, if ‖ ̂𝐴−1𝐸‖ < 1, we are guaranteed that 𝑥𝑘 → 𝑥 as 𝑘 → ∞. In fact, this holds even if the
backward error varies from step to step, as long as it satisfies some uniform bound that is less
than one. At least, this is what happens in exact arithmetic.

In practice, the residual is usually computed with only finite precision, and so we would
stop making progress at some point — usually at the point where we have a truly backward
stable solution. In general, iterative refinement is mainly used when either the residual can be
computed with extra precision or when the original solver suffers from relatively large backward
error.

In floating point arithmetic, we actually compute something like

𝑥𝑘+1 = 𝑥𝑘 + ̂𝐴−1
𝑘 (𝑏 − 𝐴𝑥𝑘 + 𝛿𝑘) + 𝜇𝑘,

where ̂𝐴𝑘 = 𝐴 + 𝐸𝑘 accounts for the backward error 𝐸𝑘 in the approximate solve, 𝛿𝑘 is an
error associated with computing the residual, and 𝜇𝑘 is an error associated with the update.
This gives us the error recurrence

𝑒𝑘+1 = ̂𝐴−1
𝑘 𝐸𝑘𝑒𝑘 + ̂𝐴−1𝛿𝑘 + 𝜇𝑘.

If ‖𝛿𝑘‖ < 𝛼, ‖𝜇𝑘‖ < 𝛽, and ‖𝐴−1𝐸𝑘‖ < 𝛾 < 1 for all 𝑘, then we can show that

‖𝑥𝑘 − 𝑥‖ ≤ 𝛾𝑘‖𝑥0 − 𝑥‖ + 𝛼‖𝐴−1‖ + 𝛽
1 − 𝛾

.

5

If we evaluate the residual in the obvious way, we typically have

𝛼 ≤ 𝑐1𝜖mach‖𝐴‖‖𝑥‖,
𝛽 ≤ 𝑐2𝜖mach‖𝑥‖,

for some modest 𝑐1 and 𝑐2; and for large enough 𝑘, we end up with

‖𝑥𝑘 − 𝑥‖
‖𝑥‖

≤ 𝐶1𝜖mach𝜅(𝐴) + 𝐶2𝜖mach.

That is, iterative refinement leads to a relative error not too much greater than we would
expect due to a small relative perturbation to 𝐴; and we can show that in this case the result
is backward stable. And if we use mixed precision to evaluate the residual accurately enough
relative to 𝜅(𝐴) (i.e. 𝛼𝜅(𝐴) ≲ 𝛽) we can actually achieve a small forward error.

Condition estimation

Suppose now that we want to compute 𝜅1(𝐴) (or 𝜅∞(𝐴) = 𝜅1(𝐴𝑇)). The most obvious approach
would be to compute 𝐴−1, and then to evaluate ‖𝐴−1‖1 and ‖𝐴‖1. But the computation of 𝐴−1

involves solving 𝑛 linear systems for a total cost of 𝑂(𝑛3) — the same order of magnitude as
the initial factorization. Error estimates that cost too much typically don’t get used, so we
want a different approach to estimating 𝜅1(𝐴), one that does not cost so much. The only piece
that is expensive is the evaluation of ‖𝐴−1‖1, so we will focus on this.

Note that ‖𝐴−1𝑥‖1 is a convex function of 𝑥, and that ‖𝑥‖1 ≤ 1 is a convex set. So finding

‖𝐴−1‖1 = max
‖𝑥‖1≤1

‖𝐴−1𝑥‖1

is a convex optimization problem. Also, note that ‖ ⋅ ‖1 is differentiable almost everywhere: if
all the components of 𝑦 are nonzero, then

𝜉𝑇𝑦 = ‖𝑦‖1, for 𝜉 = sign(𝑦);

and if 𝛿𝑦 is small enough so that all the components of 𝑦 + 𝛿𝑦 have the same sign as the
corresponding components of 𝑦, then

𝜉𝑇(𝑦 + 𝛿𝑦) = ‖𝑦 + 𝛿𝑦‖1.

More generally, we have
𝜉𝑇𝑢 ≤ ‖𝜉‖∞‖𝑢‖1 = ‖𝑢‖1,

i.e. even when 𝛿𝑦 is big enough so that the linear approximation to ‖𝑦 + 𝛿𝑦‖1 no longer holds,
we at least have a lower bound.

6

Since 𝑦 = 𝐴−1𝑥, we actually have that

|𝜉𝑇𝐴−1(𝑥 + 𝛿𝑥)| ≤ ‖𝐴−1(𝑥 + 𝛿𝑥)‖,

with equality when 𝛿𝑥 is sufficiently small (assuming 𝑦 has no zero components). This suggests
that we move from an initial guess 𝑥 to a new guess 𝑥new by maximizing

|𝜉𝑇𝐴−1𝑥new|

over ‖𝑥new‖ ≤ 1. This actually yields 𝑥new = 𝑒𝑗, where 𝑗 is chosen so that the 𝑗th component of
𝑧𝑇 = 𝜉𝑇𝐴−1 has the greatest magnitude.

Putting everything together, we have the following algorithm

function hager(n, solveA, solveAT)

x = ones(n)/n

invA_normest = 0.0

while true

y = solveA(x) # Evaluate y = A^-1 x

xi = sign.(y) # and z = A^-T sign(y), the

z = solveAT(xi) # subgradient of x -> |A^-1 x|_1

Find the largest magnitude component of z

znorm, j = findmax(abs.(z))

Check for convergence

if znorm <= dot(z,x)

return norm(y,1)

end

Update x to e_j and repeat

x[:] .= 0.0

x[j] = 1.0

end

invA_normest

end

This method is not infallible, but it usually gives estimates that are the right order of magnitude.
There are various alternatives, refinements, and extensions to Hager’s method, but they generally
have the same flavor of probing 𝐴−1 through repeated solves with 𝐴 and 𝐴𝑇.

7

Scaling

Suppose we wish to solve 𝐴𝑥 = 𝑏 where 𝐴 is ill-conditioned. Sometimes, the ill-conditioning is
artificial because we made a poor choice of units, and it appears to be better conditioned if we
write

𝐷1𝐴𝐷2𝑦 = 𝐷1𝑏,

where 𝐷1 and 𝐷2 are diagonal scaling matrices. If the original problem was poorly scaled,
we will likely find 𝜅(𝐷1𝐴𝐷2) ≪ 𝜅(𝐴), which may be great for Gaussian elimination. But by
scaling the matrix, we are really changing the norms that we use to measure errors — and that
may not be the right thing to do.

For physical problems, a good rule of thumb is to non-dimensionalize before computing. The
non-dimensionalization will usually reveal a good scaling that (one hopes) simultaneously is
appropriate for measuring errors and does not lead to artificially inflated condition numbers.

8

	Diagonally dominant matrices
	Symmetric matrices
	Quadratic forms
	Positive definite matrices

	Cholesky
	Iterative refinement
	Condition estimation
	Scaling

