CS 6210: Matrix Computations

LU, Cholesky, refinement, condest

David Bindel
2025-09-17

Diagonally dominant matrices

A matrix A is strictly (column) diagonally dominant if for each column j,

la;| > Z la;l.

iFJ

If we write A = D + F where D is the diagonal and F' the off-diagonal part, strict column
diagonal dominance is equivalent to the statement that

|FD_4]; <1.

Note that we may factor A as
A=(I+FD YD

with D invertible because the diagonal elements are bounded below by zero and I + FD~!
invertible by a Neumann series bound. Therefore A is invertible if it is strictly column diagonally
dominant.

Strict diagonal dominance is a useful structural condition for several reasons: it ensures
nonsingularity, it guarantees convergence of certain iterative methods (we will return to this
later), and it guarantees that LU factorization can be done without pivoting. In fact, Gaussian
elimination without partial pivoting is guaranteed not to even attempt pivoting! To see this,
note that the statement is obvious for the first step: column diagonal dominance implies that
aq; is the largest magnitude element in the first column. What does the Schur complement
look like after one step of Gaussian elimination? By a short computation, it turns out that the
Schur complement is again diagonally dominant (see GVL section 4.1.1).

Diagonally dominant matrices and symmetric positive definite matrices are the two major
classes of matrices for which unpivoted Gaussian elimination is backward stable.

Symmetric matrices

Quadratic forms

A matrix A is symmetric if A = AT, For each symmetric matrix A, there is an associated
quadratic form z7Az. Even if you forgot them from our lightning review of linear algebra, you
are likely familiar with quadratic forms from a multivariate calculus class, where they appear
in the context of the second derivative test. One expands

Fx+u)=F(x)+ F'(x)u+ %UTH(.Z‘)U + O(|u)?),

and notes that at a stationary point where F’(x) = 0, the dominant term is the quadratic term.
When H is positive definite or negative definite, x is a strong local minimum or maximum,
respectively. When H is indefinite, with both negative and positive eigenvalues, z is a saddle
point. When H is semi-definite, one has to take more terms in the Taylor series to determine
whether the point is a local extremum.

If B is a nonsingular matrix, then we can write x = By and #7Az = yT(BTAB)y. So an
“uphill” direction for A corresponds to an “uphill” direction for BTAB; and similarly with
downbhill directions. More generally, A and BT AB have the same inertia, where the inertia of a
symmetric A is the triple

(# pos eigenvalues, # zero eigenvalues, # neg eigenvalues).

Now suppose that A = LU, where L is unit lower triangular and U is upper triangular. If
we let D be the diagonal part of U, we can write A = LDM?”, where L and M are both unit
lower triangular matrices. Noting that AT = (LDMT)T = MDLT = M(LD)T and that the LU
factorization of a matrix is unique, we find M = L and LD = DMT = U. Note that D has the
same inertia as A.

The advantage of the LDL” factorization over the LU factorization is that we need only
compute and store one triangular factor, and so LDL factorization costs about half the flops
and storage of LU factorization. We have the same stability issues for LDL” factorization
that we have for ordinary LU factorization, so in general we might compute $$ P A P™T =
LDL"T,$ $ where the details of various pivoting schemes are described in the book.

Positive definite matrices

A symmetric matrix is positive definite if 7 Az > 0 for all nonzero z. If A is symmetric and
positive definite, then A = LDL” where D has all positive elements (because A and D have the
same inertia). Thus, we can write A = (LDY2)(LDY?)T = LLT. The matrix L is a Cholesky
factor of A.

There are several useful properties of SPD matrices that we will use from time to time:

. The inverse of an SPD matrix is SPD.

Proof: If z7Ax > 0 for all 2 # 0, then we cannot have Az = 0 for nonzero z. So A is
necessarily nonsingular. Moreover,

2TA ' = (A 1a)TA(A 12)
must be positive for nonzero = by positive-definiteness of A. Therefore, A~! is SPD.

. Any minor of an SPD matrix is SPD.
Proof: Without loss of generality, let M = A;;. Then for any appropriately sized z,

T
2TMx = [x] A [g] >0
for x # 0. Therefore, M is positive definite.
. Any Schur complement of an SPD matrix is SPD

Proof: A Schur complement in A is the inverse of a minor of an inverse of A. By the
two arguments above, this implies that any Schur complement of an SPD matrix is SPD.

. If M is a minor of A, ky(M) < ky(A).

Proof: The largest and smallest singular values of an SPD matrix are the same as the
largest and smallest eigenvalues; they can be written as

o,(A) = max 2TAz, 0,,,(A) = min 2TAxz.
lzl2=1 lzl2=1

Without loss of generality, let M = A;;. Then

T
o,(M) = max 2"Mz = max [w] A [ﬂ < max 274z =0, (A
1(M) lz]o=1 lz|,=1 |0 0 l2lo=1 1(4)

and similarly o, ;, (M) > 0,,;,(A). The condition numbers are therefore
o1 (M) o,(A)
M)=-— < = Ko (A).
HQ() Umin<M) N Umin(A) HQ()

. If S'is a Schur complement in A, ky(S) < ky(A).

Proof: This is left as an exercise.

Cholesky

The algorithm to compute the Cholesky factor of an SPD matrix is close to the Gaussian
elimination algorithm. In the first step, we would write

|:a11 arépl} _ [511 0 } [111 l2Tl}
agy; Ay lyy Loy 0 ng ’

_ 72
a;; =13

or

gy = lgyly
Agy = Ly Ly + 19113
The first two equations allow us to compute the first column of L; the last equation tells us that

the rest of L is the Cholesky factor of a Schur complement, Ly, LI, = Ay — 1511, Continuing
in this fashion, we have the algorithm

#
Overwrite with Cholesky factorization
#
function mychol! (A)
A = copy(A)
n = size(A)[1]
for j = 1:n
if A[j,j] < 0.0
error("Indefinite matrix")
end
Alj,31 = sart(Alj,il])
A[j+1l:end,j] /= A[j,]]
A[j+1l:end,j+1l:end] -= A[j+1l:end,j]*A[j+1l:end,j]"
end
LowerTriangular(A)
end

Like the nearly-identical Gaussian elimination algorithm, we can rewrite the Cholesky algorithm
in block form for better cache use. Unlike Gaussian elimination, we do just fine using Cholesky
without pivoting?.

Iterative refinement

If we have a solver for A = A + E with E small, then we can use iterative refinement to “clean
up” the solution. The matrix A could come from finite precision Gaussian elimination of A, for

IPivoting can still be useful for near-singular matrices, but unpivoted Cholesky is backward stable

example, possibly with a less stringent pivoting strategy than partial pivoting. Or it might
come from some factorization of a nearby “easier” matrix. To get the refinement iteration, we
take the equation R

Ax = Ax — Ex =0,

and think of x as the fixed point for an iteration
A\xk_,’_l - Exk — b

Note that this is the same as

Axy, — (A= Az, = b,

or)
Ty = 2 + A0 — Azy,).

If we subtract ([fixedp]) from ([itref-fixedp]), we see

A(@py —2) — E(z), —2) =0,
or A
Ty —x = A" E(z, —).

Taking norms, we have ~
|21 — 2 < AT E||z), — 2.

Thus, if HA*IEH < 1, we are guaranteed that x;, — = as k — oo. In fact, this holds even if the
backward error varies from step to step, as long as it satisfies some uniform bound that is less
than one. At least, this is what happens in exact arithmetic.

In practice, the residual is usually computed with only finite precision, and so we would
stop making progress at some point — usually at the point where we have a truly backward
stable solution. In general, iterative refinement is mainly used when either the residual can be
computed with extra precision or when the original solver suffers from relatively large backward
error.

In floating point arithmetic, we actually compute something like
$k+1 =Ty, + Agl(b — Axk + 5k) + M

where fik = A+ E), accounts for the backward error E), in the approximate solve, J, is an
error associated with computing the residual, and p,, is an error associated with the update.
This gives us the error recurrence

6k5+1 = A;lEkek + Ailék + :U“k
If |6,] < o, g < B, and |[A'E,| < v < 1 for all k, then we can show that

Laatvs

oy — 2l < Az — = -
1

If we evaluate the residual in the obvious way, we typically have

a < ¢répaenl Al

B < C2EmacthH7
for some modest ¢; and c¢,; and for large enough k, we end up with

w < Clemach"{("éD + 612E

||$|| mach*

That is, iterative refinement leads to a relative error not too much greater than we would
expect due to a small relative perturbation to A; and we can show that in this case the result
is backward stable. And if we use mixed precision to evaluate the residual accurately enough

relative to k(A) (i.e. ar(A) < f) we can actually achieve a small forward error.

Condition estimation

Suppose now that we want to compute 5, (A4) (or k. (A) = r,(AT)). The most obvious approach
would be to compute A~!, and then to evaluate |A~!|; and |A|;. But the computation of A1
involves solving n linear systems for a total cost of O(n3) — the same order of magnitude as
the initial factorization. Error estimates that cost too much typically don’t get used, so we
want a different approach to estimating r(A), one that does not cost so much. The only piece
that is expensive is the evaluation of |[A™!||;, so we will focus on this.

Note that |4~ x|, is a convex function of z, and that |z[; < 1 is a convex set. So finding

|A7H, = max A a],
ol <1

is a convex optimization problem. Also, note that | - |; is differentiable almost everywhere: if
all the components of y are nonzero, then

&y = |lyll;, for & = sign(y);

and if dy is small enough so that all the components of y + dy have the same sign as the
corresponding components of y, then

My + o) =y + oyl
More generally, we have
&' < elloollully = Tull;,

i.e. even when Jy is big enough so that the linear approximation to |y + dy[; no longer holds,
we at least have a lower bound.

Since y = A~'z, we actually have that
7A@ + 0z)| < AT (z + 0z),

with equality when dz is sufficiently small (assuming y has no zero components). This suggests

that we move from an initial guess = to a new guess x,.,, by maximizing

€TA e

new ‘

over |z, | < 1. This actually yields z,
2T = ¢TA71 has the greatest magnitude.

= e;, where j is chosen so that the jth component of

Putting everything together, we have the following algorithm

function hager(n, solveA, solveAT)
X = ones(n)/n
invA normest = 0.0
while true

y = solveA(x) # Evaluate y = A™-1 x
xi = sign.(y) # and z = A”-T sign(y), the
z = solveAT(xi) # subgradient of x -> |A®-1 x| 1

Find the largest magnitude component of z
znorm, j = findmax(abs.(z))

Check for convergence
if znorm <= dot(z,x)

return norm(y,1)
end

Update x to e j and repeat
x[:] .= 0.0
x[j] = 1.0

end
invA normest
end

This method is not infallible, but it usually gives estimates that are the right order of magnitude.
There are various alternatives, refinements, and extensions to Hager’s method, but they generally
have the same flavor of probing A~! through repeated solves with A and A”.

Scaling

Suppose we wish to solve Az = b where A is ill-conditioned. Sometimes, the ill-conditioning is
artificial because we made a poor choice of units, and it appears to be better conditioned if we

write
D AD,y = Db,

where D, and D, are diagonal scaling matrices. If the original problem was poorly scaled,
we will likely find k(D AD,) < k(A), which may be great for Gaussian elimination. But by
scaling the matrix, we are really changing the norms that we use to measure errors — and that
may not be the right thing to do.

For physical problems, a good rule of thumb is to non-dimensionalize before computing. The
non-dimensionalization will usually reveal a good scaling that (one hopes) simultaneously is
appropriate for measuring errors and does not lead to artificially inflated condition numbers.

	Diagonally dominant matrices
	Symmetric matrices
	Quadratic forms
	Positive definite matrices

	Cholesky
	Iterative refinement
	Condition estimation
	Scaling

