
CS 6210: Matrix Computations
Gaussian elimination

David Bindel

2025-09-15

Introduction

For the next few lectures, we will explore methods to solve linear systems. Our main tool will
be the factorization 𝑃𝐴 = 𝐿𝑈, where 𝑃 is a permutation, 𝐿 is a unit lower triangular matrix,
and 𝑈 is an upper triangular matrix. As we will see, the Gaussian elimination algorithm learned
in a first linear algebra class implicitly computes this decomposition; but by thinking about
the decomposition explicitly, we can come up with other organizations for the computation.

We emphasize a few points up front:

• Some matrices are singular. Errors in this part of the class often involve attempting to
invert a matrix that has no inverse. A matrix does not have to be invertible to admit an
LU factorization. We will also see more subtle problems from almost singular matrices.

• Some matrices are rectangular. In this part of the class, we will deal almost exclusively
with square matrices; if a rectangular matrix shows up, we will try to be explicit about
dimensions. That said, LU factorization makes sense for rectangular matrices as well as
for square matrices — and it is sometimes useful.

• inv is evil. The inv command is one of the most abused commands in . The backslash
operator is the preferred way to solve a linear system absent other information:
x = A \ b # Good

x = inv(A) * b # Evil

Homework solutions that feature inappropriate explicit inv commands will lose points.

• LU is not for linear solves alone. One can solve a variety of other interesting problems
with an LU factorization.

• LU is not the only way to solve systems. Gaussian elimination and variants will be our
default solver, but there are other solver methods that are appropriate for problems with
more structure. We will touch on other methods throughout the class.

1

Gaussian elimination by example

Let’s start our discussion of 𝐿𝑈 factorization by working through these ideas with a concrete
example:

𝐴 = ⎡⎢
⎣

1 4 7
2 5 8
3 6 10

⎤⎥
⎦

.

To eliminate the subdiagonal entries 𝑎21 and 𝑎31, we subtract twice the first row from the
second row, and thrice the first row from the third row:

𝐴(1) = ⎡⎢
⎣

1 4 7
2 5 8
3 6 10

⎤⎥
⎦

− ⎡⎢
⎣

0 ⋅ 1 0 ⋅ 4 0 ⋅ 7
2 ⋅ 1 2 ⋅ 4 2 ⋅ 7
3 ⋅ 1 3 ⋅ 4 3 ⋅ 7

⎤⎥
⎦

= ⎡⎢
⎣

1 4 7
0 −3 −6
0 −6 −11

⎤⎥
⎦

.

That is, the step comes from a rank-1 update to the matrix:

𝐴(1) = 𝐴 − ⎡⎢
⎣

0
2
3
⎤⎥
⎦

[1 4 7] .

Another way to think of this step is as a linear transformation 𝐴(1) = 𝑀1𝐴, where the rows
of 𝑀1 describe the multiples of rows of the original matrix that go into rows of the updated
matrix:

𝑀1 = ⎡⎢
⎣

1 0 0
−2 1 0
−3 0 1

⎤⎥
⎦

= 𝐼 − ⎡⎢
⎣

0
2
3
⎤⎥
⎦

[1 0 0] = 𝐼 − 𝜏1𝑒𝑇
1 .

Similarly, in the second step of the algorithm, we subtract twice the second row from the third
row:

⎡⎢
⎣

1 4 7
0 −3 −6
0 0 1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 1 0
0 −2 1

⎤⎥
⎦

⎡⎢
⎣

1 4 7
0 −3 −6
0 −6 −11

⎤⎥
⎦

= ⎛⎜
⎝

𝐼 − ⎡⎢
⎣

0
0
2
⎤⎥
⎦

[0 1 0]⎞⎟
⎠

𝐴(1).

More compactly: 𝑈 = (𝐼 − 𝜏2𝑒𝑇
2)𝐴(1).

Putting everything together, we have computed

𝑈 = (𝐼 − 𝜏2𝑒𝑇
2)(𝐼 − 𝜏1𝑒𝑇

1)𝐴.

Therefore,
𝐴 = (𝐼 − 𝜏1𝑒𝑇

1)−1(𝐼 − 𝜏2𝑒𝑇
2)−1𝑈 = 𝐿𝑈.

Now, note that

(𝐼 − 𝜏1𝑒𝑇
1)(𝐼 + 𝜏1𝑒𝑇

1) = 𝐼 − 𝜏1𝑒𝑇
1 + 𝜏1𝑒𝑇

1 − 𝜏1𝑒𝑇
1 𝜏1𝑒𝑇

1 = 𝐼,

2

since 𝑒𝑇
1 𝜏1 (the first entry of 𝜏1) is zero. Therefore,

(𝐼 − 𝜏1𝑒𝑇
1)−1 = (𝐼 + 𝜏1𝑒𝑇

1)

Similarly,
(𝐼 − 𝜏2𝑒𝑇

2)−1 = (𝐼 + 𝜏2𝑒𝑇
2)

Thus,
𝐿 = (𝐼 + 𝜏1𝑒𝑇

1)(𝐼 + 𝜏2𝑒𝑇
2).

Now, note that because 𝜏2 is only nonzero in the third element, 𝑒𝑇
1 𝜏2 = 0; thus,

𝐿 = (𝐼 + 𝜏1𝑒𝑇
1)(𝐼 + 𝜏2𝑒𝑇

2)
= (𝐼 + 𝜏1𝑒𝑇

1 + 𝜏2𝑒𝑇
2 + 𝜏1(𝑒𝑇

1 𝜏2)𝑒𝑇
2

= 𝐼 + 𝜏1𝑒𝑇
1 + 𝜏2𝑒𝑇

2

= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

+ ⎡⎢
⎣

0 0 0
2 0 0
3 0 0

⎤⎥
⎦

+ ⎡⎢
⎣

0 0 0
0 0 0
0 2 0

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
2 1 0
3 2 1

⎤⎥
⎦

.

The final factorization is

𝐴 = ⎡⎢
⎣

1 4 7
2 5 8
3 6 10

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
2 1 0
3 2 1

⎤⎥
⎦

⎡⎢
⎣

1 4 7
0 −3 −6
0 0 1

⎤⎥
⎦

= 𝐿𝑈.

Note that the subdiagonal elements of 𝐿 are easy to read off: for 𝑗 > 𝑖, 𝑙𝑖𝑗 is the multiple of
row 𝑗 that we subtract from row 𝑖 during elimination. This means that it is easy to read off
the subdiagonal entries of 𝐿 during the elimination process.

Basic LU factorization

Let’s generalize our previous algorithm and write a simple code for 𝐿𝑈 factorization. We
will leave the issue of pivoting to a later discussion. We’ll start with a purely loop-based
implementation:

#

Compute LU factors in separate storage

#

function mylu_v1(A)

n = size(A)[1]

L = Matrix(1.0I, n, n)

U = copy(A)

for j = 1:n-1

3

for i = j+1:n

Figure out multiple of row j to subtract from row i

L[i,j] = U[i,j]/U[j,j]

Subtract off the appropriate multiple of row j from row i

U[i,j] = 0.0

for k = j+1:n

U[i,k] -= L[i,j]*U[j,k]

end

end

end

L, U

end

Note that we can write the two innermost loops more concisely by thinking of them in terms
of applying a Gauss transformation 𝑀𝑗 = 𝐼 − 𝜏𝑗𝑒𝑇

𝑗 , where 𝜏𝑗 is the vector of multipliers that
appear when eliminating in column 𝑗. Also, note that in 𝐿𝑈 factorization, the locations where
we write the multipliers in 𝐿 are exactly the same locations where we introduce zeros in 𝐴 as
we transform to 𝑈. Thus, we can re-use the storage space for 𝐴 to store both 𝐿 (except for the
diagonal ones, which are implicit) and 𝑈. Using this strategy, we have the following code:

#

Compute LU factors in packed storage

#

function mylu_v2(A)

n = size(A)[1]

A = copy(A)

for j = 1:n-1

A[j+1:n,j] /= A[j,j] # Form vector of multipliers

A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]' # Update Schur complement

end

UnitLowerTriangular(A), UpperTriangular(A)

end

The bulk of the work at step 𝑗 of the elimination algorithm is in the computation of a rank-one
update to the trailing submatrix. How much work is there in total? In eliminating column
𝑗, we do (𝑛 − 𝑗)2 multiplies and the same number of subtractions; so in all, the number of
multiplies (and adds) is

𝑛−1
∑
𝑗=1

(𝑛 − 𝑗)2 =
𝑛−1
∑
𝑘=1

𝑘2 = 1
3

𝑛3 + 𝑂(𝑛2)

4

We also perform 𝑂(𝑛2) divisions. Thus, Gaussian elimination, like matrix multiplication, is an
𝑂(𝑛3) algorithm operating on 𝑂(𝑛2) data.

Schur complements

The idea of expressing a step of Gaussian elimination as a low-rank submatrix update turns
out to be sufficiently useful that we give it a name. At any given step of Gaussian elimination,
the trailing submatrix is called a Schur complement. We investigate the structure of the Schur
complements by looking at an 𝐿𝑈 factorization in block 2-by-2 form:

[𝐴11 𝐴12
𝐴21 𝐴22

] = [𝐿11 0
𝐿21 𝐿22

] [𝑈11 𝑈12
0 𝑈22

] = [𝐿11𝑈11 𝐿11𝑈12
𝐿21𝑈11 𝐿22𝑈22 + 𝐿21𝑈12

] .

We can compute 𝐿11 and 𝑈11 as 𝐿𝑈 factors of the leading sub-block 𝐴11, and

𝑈12 = 𝐿−1
11 𝐴12

𝐿21 = 𝐴21𝑈−1
11 .

What about 𝐿22 and 𝑈22? We have

𝐿22𝑈22 = 𝐴22 − 𝐿21𝑈12

= 𝐴22 − 𝐴21𝑈−1
11 𝐿−1

11 𝐴12

= 𝐴22 − 𝐴21𝐴−1
11 𝐴12.

This matrix 𝑆 = 𝐴22 − 𝐴21𝐴−1
11 𝐴12 is the block analogue of the rank-1 update computed in

the first step of the standard Gaussian elimination algorithm.

For our purposes, the idea of a Schur complement is important because it will allow us to write
blocked variants of Gaussian elimination — an idea we will take up in more detail shortly.
But the Schur complement actually has meaning beyond being a matrix that mysteriously
appears as a by-product of Gaussian elimination. In particular, note that if 𝐴 and 𝐴11 are
both invertible, then

[𝐴11 𝐴12
𝐴21 𝐴22

] [𝑋
𝑆−1] = [0

𝐼] ,

i.e. 𝑆−1 is the (2, 2) submatrix of 𝐴−1.

Blocked Gaussian elimination

Just as we could rewrite matrix multiplication in block form, we can also rewrite Gaussian
elimination in block form. For example, if we want

[𝐴11 𝐴12
𝐴21 𝐴22

] = [𝐿11 0
𝐿21 𝐿22

] [𝑈11 𝑈12
0 𝑈22

]

5

then we can write Gaussian elimination as:

1. Factor 𝐴11 = 𝐿11𝑈11.

2. Compute 𝐿21 = 𝐴21𝑈−1
11 and 𝑈12 = 𝐿−1

11 𝐴12.

3. Form the Schur complement 𝑆 = 𝐴22 − 𝐿21𝑈12 and factor 𝐿22𝑈22 = 𝑆.

This same idea works for more than a block 2-by-2 matrix. As with matrix multiply, thinking
about Gaussian elimination in this blocky form lets us derive variants that have better cache
efficiency. Notice that all the operations in this blocked code involve matrix-matrix multiplies
and multiple back solves with the same matrix. These routines can be written in a cache-
efficient way, since they do many floating point operations relative to the total amount of data
involved.

Though some of you might make use of cache blocking ideas in your own work, most of you
will never try to write a cache-efficient Gaussian elimination routine of your own. The routines
in LAPACK and Julia (really the same routines) are plenty efficient, so you would most likely
turn to them. Still, it is worth knowing how to think about block Gaussian elimination, because
sometimes the ideas can be specialized to build fast solvers for linear systems when there are
fast solvers for sub-matrices

For example, consider the bordered matrix

𝐴 = [𝐵 𝑊
𝑉 𝑇 𝐶] ,

where 𝐵 is an 𝑛-by-𝑛 matrix for which we have a fast solver and 𝐶 is a 𝑝-by-𝑝 matrix, 𝑝 ≪ 𝑛.
We can factor 𝐴 into a product of block lower and upper triangular factors with a simple
form:

[𝐵 𝑊
𝑉 𝑇 𝐶] = [𝐵 0

𝑉 𝑇 𝐿22
] [𝐼 𝐵−1𝑊

0 𝑈22
]

where 𝐿22𝑈22 = 𝐶 − 𝑉 𝑇𝐵−1𝑊 is an ordinary (small) factorization of the trailing Schur
complement. To solve the linear system

[𝐵 𝑊
𝑉 𝑇 𝐶] [𝑥1

𝑥2
] = [𝑏1

𝑏2
] ,

we would then run block forward and backward substitution:

𝑦1 = 𝐵−1𝑏1

𝑦2 = 𝐿−1
22 (𝑏2 − 𝑉 𝑇𝑦1)

𝑥2 = 𝑈−1
22 𝑦2

𝑥1 = 𝑦1 − 𝐵−1(𝑊𝑥2)

6

Backward error in Gaussian elimination

Solving 𝐴𝑥 = 𝑏 in finite precision using Gaussian elimination followed by forward and backward
substitution yields a computed solution ̂𝑥 exactly satisfies

(𝐴 + 𝛿𝐴) ̂𝑥 = 𝑏,

where |𝛿𝐴| ≲ 3𝑛𝜖mach|𝐿̂|| ̂𝑈 |, assuming 𝐿̂ and ̂𝑈 are the computed 𝐿 and 𝑈 factors.

I will now briefly sketch a part of the error analysis following Demmel’s treatment (§2.4.2).
Mostly, this is because I find the treatment in §3.3.1 of Van Loan less clear than I would like –
but also, the bound in Demmel’s book is marginally tighter. Here is the idea. Suppose 𝐿̂ and

̂𝑈 are the computed 𝐿 and 𝑈 factors. We obtain 𝑢̂𝑗𝑘 by repeatedly subtracting 𝑙𝑗𝑖𝑢𝑖𝑘 from the
original 𝑎𝑗𝑘, i.e.

𝑢̂𝑗𝑘 = fl (𝑎𝑗𝑘 −
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘) .

Regardless of the order of the sum, we get an error that looks like

𝑢̂𝑗𝑘 = 𝑎𝑗𝑘(1 + 𝛿0) −
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(1 + 𝛿𝑖) + 𝑂(𝜖2
mach)

where |𝛿𝑖| ≤ (𝑗 − 1)𝜖mach. Turning this around gives

𝑎𝑗𝑘 = 1
1 + 𝛿0

(̂𝑙𝑗𝑗𝑢̂𝑗𝑘 +
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(1 + 𝛿𝑖)) + 𝑂(𝜖2
mach)

= ̂𝑙𝑗𝑗𝑢̂𝑗𝑘(1 − 𝛿0) +
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(1 + 𝛿𝑖 − 𝛿0) + 𝑂(𝜖2
mach)

= (𝐿̂ ̂𝑈)
𝑗𝑘

+ 𝑒𝑗𝑘,

where

𝑒𝑗𝑘 = − ̂𝑙𝑗𝑗𝑢̂𝑗𝑘𝛿0 +
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(𝛿𝑖 − 𝛿0) + 𝑂(𝜖2
mach)

is bounded in magnitude by (𝑗 − 1)𝜖mach(|𝐿||𝑈|)𝑗𝑘 + 𝑂(𝜖2
mach)1. A similar argument for the

components of 𝐿̂ yields

𝐴 = 𝐿̂ ̂𝑈 + 𝐸, where |𝐸| ≤ 𝑛𝜖mach|𝐿̂|| ̂𝑈 | + 𝑂(𝜖2
mach).

In addition to the backward error due to the computation of the 𝐿𝑈 factors, there is also
backward error in the forward and backward substitution phases, which gives the overall bound
([gauss-bnd]).

1It’s obvious that 𝑒𝑗𝑘 is bounded in magnitude by 2(𝑗 − 1)𝜖mach(|𝐿||𝑈|)𝑗𝑘 + 𝑂(𝜖2
mach). We cut a factor of two

if we go down to the level of looking at the individual rounding errors during the dot product, because some
of those errors cancel.

7

Pivoting

The backward error analysis in the previous section is not completely satisfactory, since |𝐿||𝑈|
may be much larger than |𝐴|, yielding a large backward error overall. For example, consider
the matrix

𝐴 = [𝛿 1
1 1] = [1 0

𝛿−1 1] [𝛿 1
0 1 − 𝛿−1] .

If 0 < 𝛿 ≪ 1 then ‖𝐿‖∞‖𝑈‖∞ ≈ 𝛿−2, even though ‖𝐴‖∞ ≈ 2. The problem is that we ended
up subtracting a huge multiple of the first row from the second row because 𝛿 is close to
zero — that is, the leading principle minor is nearly singular. If 𝛿 were exactly zero, then the
factorization would fall apart even in exact arithmetic. The solution to the woes of singular and
near singular minors is pivoting; instead of solving a system with 𝐴, we re-order the equations
to get

̂𝐴 = [1 1
𝛿 1] = [1 0

𝛿 1] [1 1
0 1 − 𝛿] .

Now the triangular factors for the re-ordered system matrix ̂𝐴 have very modest norms, and so
we are happy. If we think of the re-ordering as the effect of a permutation matrix 𝑃, we can
write

𝐴 = [𝛿 1
1 1] = [0 1

1 0] [1 0
𝛿 1] [1 1

0 1 − 𝛿] = 𝑃 𝑇𝐿𝑈.

Note that this is equivalent to writing 𝑃𝐴 = 𝐿𝑈 where 𝑃 is another permutation (which undoes
the action of 𝑃 𝑇).

If we wish to control the multipliers, it’s natural to choose the permutation 𝑃 so that each of
the multipliers is at most one. This standard choice leads to the following algorithm:

#

Compute partial pivoted LU factors in packed storage

#

function mypivlu(A)

n = size(A)[1]

A = copy(A)

p = Vector(1:n)

for j = 1:n-1

Find pivot and do a swap

_, jj = findmax(abs.(A[j:n,j]))

jj += j-1

for k = 1:n

A[jj,k], A[j,k] = A[j,k], A[jj,k]

end

p[jj], p[j] = p[j], p[jj]

8

Compute multipliers and update Schur complement

A[j+1:n,j] /= A[j,j]

A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'

end

p, UnitLowerTriangular(A), UpperTriangular(A)

end

In practice, we would typically use a strategy of deferred updating: that is, rather than applying
the pivot immediately across all columns, we would only apply the pivoting within a block of
columns. At the end of the block, we would apply all the pivots simultaneously. As with other
blocking strategies we have discussed, this has no impact on the total amount of work done in
some abstract machine model, but it is much more friendly to the memory architecture of real
machines.

By design, this algorithm produces an 𝐿 factor in which all the elements are bounded by one.
But what about the 𝑈 factor? There exist pathological matrices for which the elements of 𝑈
grow exponentially with 𝑛. But these examples are extremely uncommon in practice, and so,
in general, Gaussian elimination with partial pivoting does indeed have a small backward error.
Of course, the pivot growth is something that we can monitor, so in the unlikely event that it
does look like things are blowing up, we can tell there is a problem and try something different.
But when problems do occur, it is more frequently the result of ill-conditioning in the problem
than of pivot growth during the factorization.

Beyond partial pivoting

Gaussian elimination with partial pivoting has been the mainstay of linear system solving for
many years. But the partial pivoting strategy is far from the end of the story! GECP, or
Gaussian elimination with complete pivoting (involving both rows and columns), is often held
up as the next step beyond partial pivoting, but this is really a strawman — though complete
pivoting fixes the aesthetically unsatisfactory lack of backward stability in the partial pivoted
variant, the cost of the GECP pivot search is more expensive than is usually worthwhile in
practice. We instead briefly describe two other pivoting strategies that are generally useful:
rook pivoting and tournament pivoting. Next week, we will also briefly mention threshold
pivoting, which is relevant to sparse Gaussian elimination.

Rook pivoting

In Gaussian elimination with rook pivoting, we choose a pivot at each step by choosing the
largest magnitude element in the first row or column of the current Schur complement. This

9

eliminates the possibility of exponential pivot growth that occurs in the partial pivoting strategy,
but does not involve the cost of searching the entire Schur complement for a pivot (as occurs
in the GECP case).

For the problem of solving linear systems, it is unclear whether rook pivoting really holds a
practical edge over partial pivoting. The complexity is not really worse than partial pivoting,
but there is more overhead (both in runtime and in implementation cost) to handle deferred
pivoting for performance. Where rook pivoting has a great deal of potential is in Gaussian
elimination on (nearly) singular matrices. If 𝐴 ∈ ℝ𝑚×𝑛 has a large gap between 𝜎𝑘 and 𝜎𝑘+1
for 𝑘 < min(𝑚, 𝑛), then GERP on 𝐴 tends to yield the factorization

𝑃𝐴𝑄 = 𝐿𝑈, 𝑈 = [𝑈11 𝑈12
0 𝑈22

]

where 𝑈11 ∈ ℝ𝑘×𝑘 and ‖𝑈22‖ is very small (on the order of 𝜎𝑘+1).

Rook pivoting and the closely-related threshold rook pivoting are particularly useful in con-
strained optimization problems in which constraints can become redundant. Apart from its
speed, the rook pivoting strategy has the advantage over other rank-revealing factorizations
that when 𝐴 is sparse, as one can often control the fill (nonzeros in 𝐿 and 𝑈 that are not
present in 𝐴). The LUSOL package of Michael Saunders is a particularly effective example.

Tournament pivoting

In parallel dense linear algebra libraries, a major disadvantage of partial pivoting is that the
pivot search is a communication bottleneck, even with deferred pivoting. This is increasingly
an issue, as communication between processors is far more expensive than arithmetic, and
(depending on the matrix layout) GEPP requires communication each time a pivot is selected.
For this reason, a number of recent communication-avoiding LU variants use an alternate
pivoting strategy called tournament pivoting.

The idea behind tournament pivoting is to choose 𝑏 pivot rows in one go, rather than iterating
between choosing a pivot row and performing elimination. The algorithm involves each processor
proposing several candidate pivot rows for a heirarchical tournament. There are different
methods for managing this tournament, with different levels of complexity. One intriguing
variant, for example, is the remarkable (though awkwardly named) CALU_PRRP algorithm, which
uses rank-revealing QR factorizations to choose the pivots in the tournament. The CALU_PRRP

algorithm does a modest amount of work beyond what is done by partial pivoting, but has better
behavior both in terms of communication complexity and in terms of numerical stability.

10

	Introduction
	Gaussian elimination by example
	Basic LU factorization
	Schur complements
	Blocked Gaussian elimination
	Backward error in Gaussian elimination
	Pivoting
	Beyond partial pivoting
	Rook pivoting
	Tournament pivoting

