
CS 6210: Matrix Computations
Matrix representations and operations

David Bindel

2025-09-03

Matrix algebra versus linear algebra

We share a philosophy about linear algebra: we think basis-free, we write basis-free,
but when the chips are down we close the office door and compute with matrices
like fury.

— Irving Kaplansky on the late Paul Halmos

Linear algebra is fundamentally about the structure of vector spaces and linear maps between
them. A matrix represents a linear map with respect to some bases. Properties of the
underlying linear map may be more or less obvious via the matrix representation associated
with a particular basis, and much of matrix computations is about finding the right basis (or
bases) to make the properties of some linear map obvious. We also care about finding changes
of basis that are “nice” for numerical work.

In some cases, we care not only about the linear map a matrix represents, but about the matrix
itself. For example, the graph associated with a matrix 𝐴 ∈ ℝ𝑛×𝑛 has vertices {1, … , 𝑛} and
an edge (𝑖, 𝑗) if 𝑎𝑖𝑗 ≠ 0. Many of the matrices we encounter in this class are special because of
the structure of the associated graph, which we usually interpret as the “shape” of a matrix
(diagonal, tridiagonal, upper triangular, etc). This structure is a property of the matrix, and
not the underlying linear transformation; change the bases in an arbitrary way, and the graph
changes completely. But identifying and using special graph structures or matrix shapes is
key to building efficient numerical methods for all the major problems in numerical linear
algebra.

In writing, we represent a matrix concretely as an array of numbers. Inside the computer,
a dense matrix representation is a two-dimensional array data structure, usually ordered
row-by-row or column-by-column in order to accomodate the one-dimensional structure of
computer memory address spaces. While much of our work in the class will involve dense
matrix layouts, it is important to realize that there are other data structures! The “best”
representation for a matrix depends on the structure of the matrix and on what we want to do

1

with it. For example, many of the algorithms we will discuss later in the course only require a
black box function to multiply an (abstract) matrix by a vector.

Dense matrix basics

There is one common data structure for dense vectors: we store the vector as a sequential array
of memory cells. In contrast, there are two common data structures for general dense matrices.
In MATLAB (and Fortran), matrices are stored in column-major form. For example, an array
of the first four positive integers interpreted as a two-by-two column major matrix represents
the matrix

[1 3
2 4] .

The same array, when interpreted as a row-major matrix, represents

[1 2
3 4] .

Unless otherwise stated, we will assume all dense matrices are represented in column-major
form for this class. As we will see, this has some concrete effects on the efficiency of different
types of algorithms.

The BLAS

The Basic Linear Algebra Subroutines (BLAS) are a standard library interface for manipulating
dense vectors and matrices. There are three levels of BLAS routines:

• Level 1: These routines act on vectors, and include operations such scaling and dot
products. For vectors of length 𝑛, they take 𝑂(𝑛1) time.

• Level 2: These routines act on a matrix and a vector, and include operations such as
matrix-vector multiplication and solution of triangular systems of equations by back-
substitution. For 𝑛 × 𝑛 matrices and length 𝑛 vectors, they take 𝑂(𝑛2) time.

• Level 3: These routines act on pairs of matrices, and include operations such as matrix-
matrix multiplication. For 𝑛 × 𝑛 matrices, they take 𝑂(𝑛3) time.

All of the BLAS routines are superficially equivalent to algorithms that can be written with
a few lines of code involving one, two, or three nested loops (depending on the level of the
routine). Indeed, except for some refinements involving error checking and scaling for numerical
stability, the reference BLAS implementations involve nothing more than these basic loop
nests. But this simplicity is deceptive — a surprising amount of work goes into producing high
performance implementations.

2

Locality and memory

When we analyze algorithms, we often reason about their complexity abstractly, in terms of
the scaling of the number of operations required as a function of problem size. In numerical
algorithms, we typically measure flops (short for floating point operations). For example,
consider the loop to compute the dot product of two vectors:

function mydot(x, y)

n = length(x)

result = 0.0

for i = 1:n

result += x[i]*y[i] # Two flops/iteration

end

result

end

Because it takes 𝑛 additions and 𝑛 multiplications, we say this code takes 2𝑛 flops, or (a little
more crudely) 𝑂(𝑛) flops.

On modern machines, though, counting flops is at best a crude way to reason about how run
times scale with problem size. This is because in many computations, the time to do arithmetic
is dominated by the time to fetch the data into the processor! A detailed discussion of modern
memory architectures is beyond the scope of these notes, but there are at least two basic facts
that everyone working with matrix computations should know:

• Memories are optimized for access patterns with spatial locality: it is faster to access
entries of memory that are close to each other (ideally in sequential order) than to access
memory entries that are far apart. Beyond the memory system, sequential access patterns
are good for vectorization, i.e. for scheduling work to be done in parallel on the vector
arithmetic units that are present on essentially all modern processors.

• Memories are optimized for access patterns with temporal locality; that is, it is much
faster to access a small amount of data repeatedly than to access large amounts of data.

The main mechanism for optimizing access patterns with temporal locality is a system of caches,
fast and (relatively) small memories that can be accessed more quickly (i.e. with lower latency)
than the main memory. To effectively use the cache, it is helpful if the working set (memory
that is repeatedly accessed) is smaller than the cache size. For level 1 and 2 BLAS routines,
the amount of work is proportional to the amount of memory used, and so it is difficult to
take advantage of the cache. On the other hand, level 3 BLAS routines do 𝑂(𝑛3) work with
𝑂(𝑛2) data, and so it is possible for a clever level 3 BLAS implementation to effectively use
the cache.

3

Matrix-vector multiply

Let us start with a very simple Julia function for matrix-vector multiplication:

function matvec1_row(A, x)

m, n = size(A)

y = zeros(m)

for i = 1:m

for j = 1:n

y[i] += A[i,j]*x[j]

end

end

y

end

We could just as well have switched the order of the 𝑖 and 𝑗 loops to give us a column-oriented
rather than row-oriented version of the algorithm:

function matvec1_col(A, x)

m, n = size(A)

y = zeros(m)

for j = 1:n

for i = 1:m

y[i] += A[i,j]*x[j]

end

end

y

end

It’s not too surprising that the builtin matrix-vector multiply routine in Julia runs faster than
either of our matvec variants, but there are some other surprises lurking. The Pluto notebook
accompanying this lecture goes into more detail.

Matrix-matrix multiply

The classic algorithm to compute 𝐶 ∶= 𝐶 + 𝐴𝐵 involves three nested loops

function matmul!(A, B, C)

m, n = size(A)

n, p = size(B)

for i = 1:m

4

for j = 1:n

for k = 1:p

C[i,j] += A[i,k]*B[k,j]

end

end

end

end

This is sometimes called an inner product variant of the algorithm, because the innermost
loop is computing a dot product between a row of 𝐴 and a column of 𝐵. But addition is
commutative and associative, so we can sum the terms in a matrix-matrix product in any order
and get the same result. And we can interpret the orders! A non-exhaustive list is:

• ij(k) or ji(k): Compute entry 𝑐𝑖𝑗 as a product of row 𝑖 from 𝐴 and column 𝑗 from 𝐵
(the inner product formulation)

• k(ij): 𝐶 is a sum of outer products of column 𝑘 of 𝐴 and row 𝑘 of 𝐵 for 𝑘 from 1 to 𝑛
(the outer product formulation)

• i(jk) or i(kj): Each row of 𝐶 is a row of 𝐴 multiplied by 𝐵

• j(ik) or j(ki): Each column of 𝐶 is 𝐴 multiplied by a column of 𝐵

At this point, we could write down all possible loop orderings and run a timing experiment,
similar to what we did with matrix-vector multiplication. But the truth is that high-performance
matrix-matrix multiplication routines use another access pattern altogether, involving more
than three nested loops, and we will describe this now.

Blocking and performance

The basic matrix multiply outlined in the previous section will usually be at least an order of
magnitude slower than a well-tuned matrix multiplication routine. There are several reasons
for this lack of performance, but one of the most important is that the basic algorithm makes
poor use of the cache. Modern chips can perform floating point arithmetic operations much
more quickly than they can fetch data from memory; and the way that the basic algorithm is
organized, we spend most of our time reading from memory rather than actually doing useful
computations. Caches are organized to take advantage of spatial locality, or use of adjacent
memory locations in a short period of program execution; and temporal locality, or re-use of
the same memory location in a short period of program execution. The basic matrix multiply
organizations don’t do well with either of these. A better organization would let us move some
data into the cache and then do a lot of arithmetic with that data. The key idea behind this
better organization is blocking.

5

When we looked at the inner product and outer product organizations in the previous sections,
we really were thinking about partitioning 𝐴 and 𝐵 into rows and columns, respectively. For
the inner product algorithm, we wrote 𝐴 in terms of rows and 𝐵 in terms of columns

⎡
⎢
⎢
⎣

𝑎1,∶
𝑎2,∶

⋮
𝑎𝑚,∶

⎤
⎥
⎥
⎦

[𝑏∶,1 𝑏∶,2 ⋯ 𝑏∶,𝑛] ,

and for the outer product algorithm, we wrote 𝐴 in terms of colums and 𝐵 in terms of rows

[𝑎∶,1 𝑎∶,2 ⋯ 𝑎∶,𝑝]
⎡
⎢
⎢
⎣

𝑏1,∶
𝑏2,∶
⋮

𝑏𝑝,∶

⎤
⎥
⎥
⎦

.

More generally, though, we can think of writing 𝐴 and 𝐵 as block matrices:

𝐴 =
⎡
⎢
⎢
⎣

𝐴11 𝐴12 … 𝐴1,𝑝𝑏

𝐴21 𝐴22 … 𝐴2,𝑝𝑏

⋮ ⋮ ⋮
𝐴𝑚𝑏,1 𝐴𝑚𝑏,2 … 𝐴𝑚𝑏,𝑝𝑏

⎤
⎥
⎥
⎦

𝐵 =
⎡
⎢
⎢
⎣

𝐵11 𝐵12 … 𝐵1,𝑝𝑏

𝐵21 𝐵22 … 𝐵2,𝑝𝑏

⋮ ⋮ ⋮
𝐵𝑝𝑏,1 𝐵𝑝𝑏,2 … 𝐵𝑝𝑏,𝑛𝑏

⎤
⎥
⎥
⎦

where the matrices 𝐴𝑖𝑗 and 𝐵𝑗𝑘 are compatible for matrix multiplication. Then we we can
write the submatrices of 𝐶 in terms of the submatrices of 𝐴 and 𝐵

𝐶𝑖𝑗 = ∑
𝑘

𝐴𝑖𝑗𝐵𝑗𝑘.

The lazy man’s approach to performance

An algorithm like matrix multiplication seems simple, but there is a lot under the hood of a
tuned implementation, much of which has to do with the organization of memory. We often get
the best “bang for our buck” by taking the time to formulate our algorithms in block terms, so
that we can spend most of our computation inside someone else’s well-tuned matrix multiply
routine (or something similar). There are several implementations of the Basic Linear Algebra
Subroutines (BLAS), including some implementations provided by hardware vendors and some
automatically generated by tools like ATLAS. The best BLAS library varies from platform
to platform, but by using a good BLAS library and writing routines that spend a lot of time
in level 3 BLAS operations (operations that perform 𝑂(𝑛3) computation on 𝑂(𝑛2) data and

6

can thus potentially get good cache re-use), we can hope to build linear algebra codes that get
good performance across many platforms.

This is also a good reason to use systems like Julia, MATLAB, or NumPy (built appropriately):
they uses pretty good BLAS libraries, and so you can often get surprisingly good performance
from it for the types of linear algebraic computations we will pursue.

Matrix shapes and structures

In linear algebra, we talk about different matrix structures. For example:

• 𝐴 ∈ ℝ𝑛×𝑛 is nonsingular if the inverse exists; otherwise it is singular.

• 𝑄 ∈ ℝ𝑛×𝑛 is orthogonal if 𝑄𝑇𝑄 = 𝐼.

• 𝐴 ∈ ℝ𝑛×𝑛 is symmetric if 𝐴 = 𝐴𝑇.

• 𝑆 ∈ ℝ𝑛×𝑛 is skew-symmetric if 𝑆 = −𝑆𝑇.

• 𝐿 ∈ ℝ𝑛×𝑚 is low rank if 𝐿 = 𝑈𝑉 𝑇 for 𝑈 ∈ ℝ𝑛×𝑘 and 𝑉 ∈ ℝ𝑚×𝑘 where 𝑘 ≪ min(𝑚, 𝑛).

These are properties of an underlying linear map or quadratic form; if we write a different
matrix associated with an (appropriately restricted) change of basis, it will also have the same
properties.

In matrix computations, we also talk about the shape (nonzero structure) of a matrix. For
example:

• 𝐷 is diagonal if 𝑑𝑖𝑗 = 0 for 𝑖 ≠ 𝑗.

• 𝑇 is tridiagonal if 𝑡𝑖𝑗 = 0 for 𝑖 ∉ {𝑗 − 1, 𝑗, 𝑗 + 1}.

• 𝑈 is upper triangular if 𝑢𝑖𝑗 = 0 for 𝑖 > 𝑗 and strictly upper triangular if 𝑢𝑖𝑗 = 0 for 𝑖 ≥ 𝑗
(lower triangular and strictly lower triangular are similarly defined).

• 𝐻 is upper Hessenberg if ℎ𝑖𝑗 = 0 for 𝑖 > 𝑗 + 1.

• 𝐵 is banded if 𝑏𝑖𝑗 = 0 for |𝑖 − 𝑗| > 𝛽.

• 𝑆 is sparse if most of the entries are zero. The position of the nonzero entries in the
matrix is called the sparsity structure.

7

We often represent the shape of a matrix by marking where the nonzero elements are (usually
leaving empty space for the zero elements); for example:

Diagonal
⎡
⎢
⎢
⎢
⎣

×
×

×
×

×

⎤
⎥
⎥
⎥
⎦

Tridiagonal
⎡
⎢
⎢
⎢
⎣

× ×
× × ×

× × ×
× × ×

× ×

⎤
⎥
⎥
⎥
⎦

Triangular
⎡
⎢
⎢
⎢
⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥
⎥
⎥
⎦

Hessenberg
⎡
⎢
⎢
⎢
⎣

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

⎤
⎥
⎥
⎥
⎦

We also sometimes talk about the graph of a (square) matrix 𝐴 ∈ ℝ𝑛×𝑛: if we assign a node
to each index {1, … , 𝑛}, an edge (𝑖, 𝑗) in the graph corresponds to 𝑎𝑖𝑗 ≠ 0. There is a close
connection between certain classes of graph algorithms and algorithms for factoring sparse
matrices or working with different matrix shapes. For example, the matrix 𝐴 can be permuted
so that 𝑃𝐴𝑃 𝑇 is upper triangular iff the associated directed graph is acyclic.

The shape of a matrix (or graph of a matrix) is not intrinsically associated with a more abstract
linear algebra concept; apart from permutations, sometimes, almost any change of basis will
completely destroy the shape.

Sparse matrices

We say a matrix is sparse if the vast majority of the entries are zero. Because we only need to
explicitly keep track of the nonzero elements, sparse matrices require less than 𝑂(𝑛2) storage,
and we can perform many operations more cheaply with sparse matrices than with dense
matrices. In general, the cost to store a sparse matrix, and to multiply a sparse matrix by a
vector, is 𝑂(nnz(𝐴)), where nnz(𝐴) is the number of nonzeros in 𝐴.

Two specific classes of sparse matrices are such ubiquitous building blocks that it is worth pulling
them out for special attention. These are diagonal matrices and permutation matrices. Many
linear algebra libraries also have support for banded matrices (and sometimes for generalizations
such as skyline matrices). also provides explicit support for general sparse matrices in which
the nonzeros can appear in any position.

Diagonal matrices

A diagonal matrix is zero except for the entries on the diagonal. We often associate a diagonal
matrix with the vector of these entries, and we will adopt in class the notational convention

8

used in : the operator diag maps a vector to the corresponding diagonal matrix, and maps a
matrix to the vector of diagonal entries. For example, for the vector and matrix

𝑑 = ⎡⎢
⎣

𝑑1
𝑑2
𝑑3

⎤⎥
⎦

, 𝐷 = ⎡⎢
⎣

𝑑1
𝑑2

𝑑3

⎤⎥
⎦

we would write 𝐷 = diag(𝑑) and 𝑑 = diag(𝐷).

The Julia Diagonal type represents diagonal matrices.

Permutations

A permutation matrix is a 0-1 matrix in which one appears exactly once in each row and
column. We typically use 𝑃 or Π to denote permutation matrices; if there are two permutations
in a single expression, we might use 𝑃 and 𝑄.

A permutation matrix is so named because it permutes the entries of a vector. As with diagonal
matrices, it is usually best to work with permutations implicitly in computational practice.
For any given permutation vector 𝑃, we can define an associated mapping vector 𝑝 such that
𝑝(𝑖) = 𝑗 iff 𝑃𝑖𝑗 = 1. We can then apply the permutation to a vector or matrix using ’s indexing
operations:

B = P*A # Straightforward, but slow if P is a dense rep'n

C = A*P'

B = A[p,:] # Better

C = A[:,p]

To apply a transpose permutation, we would usually use the permuted indexing on the
destination rather than the source:

y = P'*x # Implies that P*y = x

y[p] = x # Apply the transposed permutation via indexing

Narrowly banded matrices

If a matrix 𝐴 has zero entries outside a narrow band near the diagonal, we say that 𝐴 is a
banded matrix. More precisely, if 𝑎𝑖𝑗 = 0 for 𝑗 < 𝑖 − 𝑘1 or 𝑗 > 𝑖 + 𝑘2, we say that 𝐴 has lower
bandwidth 𝑘1 and upper bandwidth 𝑘2. The most common narrowly-banded matrices in matrix
computations (other than diagonal matrices) are tridiagonal matrices in which 𝑘1 = 𝑘2 = 1.

9

In the conventional storage layout for band matrices (used by LAPACK) the nonzero entries
for a band matrix 𝐴 are stored in a packed storage matrix 𝐵 such that each column of 𝐵
corresponds to a diagonal of 𝐴 and each row of 𝐵 corresponds to a column of 𝐴. For example,

⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23 𝑎24

𝑎32 𝑎33 𝑎34 𝑎35
𝑎43 𝑎44 𝑎45

𝑎54 𝑎55

⎤
⎥
⎥
⎥
⎦

→
⎡
⎢
⎢
⎢
⎣

𝑎21 𝑎11
𝑎32 𝑎22 𝑎12
𝑎43 𝑎33 𝑎23 𝑎35
𝑎52 𝑎44 𝑎34 𝑎45

𝑎55 𝑎45 𝑎55

⎤
⎥
⎥
⎥
⎦

Julia does not provide easy specialized support for band matrices (though it is possible to
access the band matrix routines if you are tricky). Instead, the simplest way to work with
narrowly banded matrices in Julia is to use a general sparse representation.

General sparse matrices

For diagonal and band matrices, we are able to store nonzero matrix entries explicitly, but (as
with the dense matrix format) the locations of those nonzero entries in the matrix are implicit.
For permutation matrices, the values of the nonzero entries are implicit (they are always one),
but we must store their positions explicitly. In a general sparse matrix format, we store both
the positions and the values of nonzero entries explicitly.

For input and output, Julia uses a coordinate format for sparse matrices consisting of three
parallel arrays (i, j, and aij). Each entry in the parallel arrays represents a nonzero in the
matrix with value aij(k) at row i(k) and column j(k). For input, repeated entries with the
same row and column are allowed; in this case, all the entries for a given location are summed
together in the final matrix. This functionality is useful in some applications (e.g. for assembling
finite element matrices).

Internally, Julia’s sparse package uses a compressed sparse column format for sparse matrices.
In this format, the row position and value for each nonzero are stored in parallel arrays, in
column-major order (i.e. all the elements of column 𝑘 appear before elements of column 𝑘 + 1).
The column positions are not stored explicitly for every element; instead, a pointer array
indicates the offset in the row and entry arrays of the start of the data for each column;
a pointer array entry at position 𝑛 + 1 indicates the total number of nonzeros in the data
structure.

The compressed sparse column format has some features that may not be obvious at first:

• For very sparse matrices, multiplying a sparse format matrix by a vector is much faster
than multiplying a dense format matrix by a vector — but this is not true if a significant
fraction of the matrix is nonzeros. The tradeoff depends on the matrix size and machine
details, but sparse matvecs will often have the same speed as — or even be slower than

— dense matvecs when the sparsity is above a few percent.

10

• Adding contributions into a sparse matrix is relatively slow, as each sum requires recom-
puting the sparse indexing data structure and reallocating memory. To build up a sparse
matrix as the sum of many components, it is usually best to use the coordinate form first.

In general, though, the sparse matrix format has a great deal to recommend it for genuinely
sparse matrices. uses the sparse matrix format not only for general sparse matrices, but also
for the special case of banded matrices.

Data-sparse matrices

A sparse matrix has mostly zero entries; this lets us design compact storage formats with
space proportional to the number of nonzeros, and fast matrix-vector multiplication with time
proportional to the number of nonzeros. A data-sparse matrix can be described with far fewer
than 𝑛2 parameters, even if it is not sparse. Such matrices usually also admit compact storage
schemes and fast matrix-vector products. This is significant because many of the iterative
algorithms we describe later in the semester do not require any particular representation of the
matrix; they only require that we be able to multiply by a vector quickly.

The study of various data sparse representations has blossomed into a major field of study
within matrix computations; in this section we give a taste of a few of the most common types
of data sparsity. We will see several of these structures in model problems used over the course
of the class.

(Nearly) low-rank matrices

The simplest and most common data-sparse matrices are low-rank matrices. If 𝐴 ∈ ℝ𝑚×𝑛 has
rank 𝑘, it can be written in outer product form as

𝐴 = 𝑈𝑉 𝑇, 𝑈 ∈ ℝ𝑚×𝑘, 𝑉 ∈ ℝ𝑛×𝑘.

This factored form has a storage cost of (𝑛 + 𝑚)𝑘, a significant savings over the 𝑚𝑛 cost of the
dense representation in the case 𝑘 ≪ max(𝑚, 𝑛). To multiply a low-rank matrix by a vector
fast, we need only to use associativity of matrix operations

y = (U*V')*x # O(mn) storage, O(mnk) flops

y = U*(V'*x) # O((m+n) k) storage and flops

11

Circulant, Toeplitz, and Hankel structure

A Toeplitz matrix is a matrix in which each (off)-diagonal is constant, e.g.

𝐴 =
⎡
⎢
⎢
⎣

𝑎0 𝑎1 𝑎2 𝑎3
𝑎−1 𝑎0 𝑎1 𝑎2
𝑎−2 𝑎−1 𝑎0 𝑎1
𝑎−3 𝑎−2 𝑎−1 𝑎0

⎤
⎥
⎥
⎦

.

Toeplitz matrices play a central role in the theory of constant-coefficient finite difference
equations and in many applications in signal processing.

Multiplication of a Toeplitz matrix by a vector represents (part of) a convolution; and afficiona-
dos of Fourier analysis and signal processing may already know that this implies that matrix
multiplication can be done in 𝑂(𝑛 log 𝑛) time using a discrete Fourier transforms. The trick to
this is to view the Toeplitz matrix as a block in a larger circulant matrix

𝐶 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 𝑎1 𝑎2 𝑎3 𝑎−3 𝑎−2 𝑎−1
𝑎−1 𝑎0 𝑎1 𝑎2 𝑎3 𝑎−3 𝑎−2
𝑎−2 𝑎−1 𝑎0 𝑎1 𝑎2 𝑎3 𝑎−3
𝑎−3 𝑎−2 𝑎−1 𝑎0 𝑎1 𝑎2 𝑎3
𝑎3 𝑎−3 𝑎−2 𝑎−1 𝑎0 𝑎1 𝑎2
𝑎2 𝑎3 𝑎−3 𝑎−2 𝑎−1 𝑎0 𝑎1
𝑎1 𝑎2 𝑎3 𝑎−3 𝑎−2 𝑎−1 𝑎0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
3

∑
𝑘=−3

𝑎−𝑘𝑃 𝑘,

where 𝑃 is the cyclic permutation matrix

𝑃 =
⎡
⎢
⎢
⎢
⎣

0 0 … 0 1
1 0

1 0
⋱ ⋮

1 0

⎤
⎥
⎥
⎥
⎦

.

As we will see later in the course, the discrete Fourier transform matrix is the eigenvector
matrix for this cyclic permutation, and this is a gateway to fast matrix-vector multiplication
algorithms.

Closely-related to Toeplitz matrices are Hankel matrices, which are constant on skew-diagonals
(that is, they are Toeplitz matrices flipped upside down). Hankel matrices appear in numerous
applications in control theory.

12

Separability and Kronecker product structure

The Kronecker product 𝐴⊗𝐵 ∈ ℝ(𝑚𝑝)×(𝑛𝑞) of matrices 𝐴 ∈ ℝ𝑚×𝑛 and 𝐵 ∈ ℝ𝑝×𝑞 is the (gigantic)
matrix

𝐴 ⊗ 𝐵 =
⎡
⎢
⎢
⎣

𝑎11𝐵 𝑎12𝐵 … 𝑎1𝑛𝐵
𝑎21𝐵 𝑎22𝐵 … 𝑎2𝑛𝐵

⋮ ⋮ ⋮
𝑎𝑚1𝐵 𝑎𝑚2𝐵 … 𝑎𝑚𝑛𝐵

⎤
⎥
⎥
⎦

.

Multiplication of a vector by a Kronecker product represents a matrix triple product:

(𝐴 ⊗ 𝐵) vec(𝑋) = vec(𝐵𝑋𝐴𝑇)

where vec(𝑋) represents the vector formed by listing the elements of a matrix in column major
order, e.g.

vec [1 3
2 4] =

⎡
⎢
⎢
⎣

1
2
3
4

⎤
⎥
⎥
⎦

.

Kronecker product structure appears often in control theory applications and in problems that
arise from difference or differential equations posed on regular grids — you should expect to
see it for regular discretizations of differential equations where separation of variables works
well. There is also a small industry of people working on tensor decompositions, which feature
sums of Kronecker products.

Low-rank block structure

In problems that come from certain areas of mathematical physics, integral equations, and PDE
theory, one encounters matrices that are not low rank, but have low-rank submatrices. The fast
multipole method computes a matrix-vector product for one such class of matrices; and again,
there is a cottage industry of related methods, including the ℋ matrices studied by Hackbush
and colleagues, the sequentially semi-separable (SSS) and heirarchically semi-separable (HSS)
matrices, quasi-separable matrices, and a horde of others. A good reference is the pair of
books by Vandebril, Van Barel and Mastronardi (Vandebril, Van Barel, and Mastonardi 2010b,
2010a).

References

Vandebril, Raf, Marc Van Barel, and Nicola Mastonardi. 2010a. Matrix Computations and
Semiseparable Matrices: Eigenvalue and Singular Value Methods. John Hopkins University
Press.

13

———. 2010b. Matrix Computations and Semiseparable Matrices: Linear Systems. John
Hopkins University Press.

14

	Matrix algebra versus linear algebra
	Dense matrix basics
	The BLAS
	Locality and memory
	Matrix-vector multiply
	Matrix-matrix multiply
	Blocking and performance
	The lazy man's approach to performance

	Matrix shapes and structures
	Sparse matrices
	Diagonal matrices
	Permutations
	Narrowly banded matrices
	General sparse matrices

	Data-sparse matrices
	(Nearly) low-rank matrices
	Circulant, Toeplitz, and Hankel structure
	Separability and Kronecker product structure
	Low-rank block structure

	References

