
CS 6210: Matrix Computations
Matrix calculus, sensitivity, conditioning

David Bindel

2025-08-27

Matrix calculus

Numerical linear algebra is not just about algebra, but also about analysis, the branch of
mathematics that deals with real functions and operations such as differentiation and integration
(and their generalizations). This is particularly relevant when we deal with error analysis.

Warm up: derivative of a dot product

Consider the real-valued expression 𝑦𝑇𝑥 as a function of the vector variables 𝑥, 𝑦 ∈ ℝ𝑛. How
would we compute the gradient of 𝑦𝑇𝑥 with respect to these variables? The usual method taught
in a first calculus class would be to write the expression in terms of each of the components of
𝑥 and 𝑦, and then compute partial derivatives, i.e.

𝑦𝑇𝑥 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖

𝜕(𝑦𝑇𝑥)
𝜕𝑥𝑗

= 𝑦𝑗

𝜕(𝑦𝑇𝑥)
𝜕𝑦𝑗

= 𝑥𝑗.

This notation is fine for dealing with a dot product, in which we are summing over only one
variable; but when we deal with more complicated matrix expressions, it quickly becomes
painful to deal with coordinates. A neat trick of notation is to work not with derivatives along
the coordinate directions, but with derivatives in an arbitrary direction (𝛿𝑥, 𝛿𝑦) ∈ ℝ𝑛 × ℝ𝑛:

𝑑
𝑑𝑠

∣
𝑠=0

(𝑦 + 𝑠𝛿𝑦)𝑇(𝑥 + 𝑠𝛿𝑥) = 𝛿𝑦𝑇𝑥 + 𝑦𝑇𝛿𝑥.

1

We denote the directional derivative by 𝛿(𝑦𝑇𝑥), giving the tidy expression

𝛿(𝑦𝑇𝑥) = 𝛿𝑦𝑇𝑥 + 𝑦𝑇𝛿𝑥.

This is variational notation for reasoning about directional (Gateaux) derivatives. It is often
used in mechanics and in PDE theory and functional analysis (where the vector spaces involved
are infinite-dimensional), and I have always felt it deserves to be used more widely.

Some calculus facts

We will make frequent use of the humble product rule in this class:

𝛿(𝐴𝐵) = 𝛿𝐴 𝐵 + 𝐴 𝛿𝐵.

As is always the case, the order of the terms in the products is important. To differentiate a
product of three terms (for example), we would have

𝛿(𝐴𝐵𝐶) = (𝛿𝐴)𝐵𝐶 + 𝐴(𝛿𝐵)𝐶 + 𝐴𝐵(𝛿𝐶).

The product rule and implicit differentiation gives us

0 = 𝛿(𝐴−1𝐴) = 𝛿(𝐴−1)𝐴 + 𝐴−1𝛿𝐴.

Rearranging slightly, we have
𝛿(𝐴−1) = −𝐴−1(𝛿𝐴)𝐴−1,

which is again a matrix version of the familiar rule from Calculus I, differing only in that we
have to be careful about the order of products. This rule also nicely illustrates the advantage
of variational notation; if you are unconvinced, I invite you to write out the elements of the
derivative of a matrix inverse using conventional coordinate notation!

The vector 2-norm and the Frobenius norm for matrices are convenient because the (squared)
norm is a differentiable function of the entries. For the vector 2-norm, we have

𝛿(‖𝑥‖2) = 𝛿(𝑥∗𝑥) = (𝛿𝑥)∗𝑥 + 𝑥∗(𝛿𝑥);

observing that 𝑦∗𝑥 = (𝑥∗𝑦)∗ and 𝑧 + ̄𝑧 = 2ℜ(𝑧), we have

𝛿(‖𝑥‖2) = 2ℜ(𝛿𝑥∗𝑥).

Similarly, the Frobenius norm is associated with a dot product (the unsurprisingly-named
Frobenius inner product) on all the elements of the matrix, which we can write in matrix form
as

⟨𝐴, 𝐵⟩𝐹 = tr(𝐵∗𝐴),

and we therefore have
𝛿(‖𝐴‖2

𝐹) = 𝛿 tr(𝐴∗𝐴) = 2ℜ tr(𝛿𝐴∗𝐴).

2

The 2-norm revisited

In the previous lecture, we discussed the matrix 2-norm in terms of the singular value decompo-
sition. What if we did not know about the SVD? By the definition, we would like to maximize
𝜙(𝑣)2 = ‖𝐴𝑣‖2 subject to ‖𝑣‖2 = 1. Flexing our new variational notation, let’s work through
the first-order condition for a maximum. To enforce the condition, we form an augmented
Lagrangian

𝐿(𝑣, 𝜇) = ‖𝐴𝑣‖2 − 𝜇(‖𝑣‖2 − 1)
and differentiating gives us

𝛿𝐿 = 2ℜ(𝛿𝑣∗(𝐴∗𝐴𝑣 − 𝜇𝑣)) − 𝛿𝜇(‖𝑣‖2 − 1).

The first-order condition for a maximum or minimum is 𝛿𝐿 = 0 for all possible 𝛿𝑣 and 𝛿𝜇; this
gives

𝐴∗𝐴𝑣 = 𝜇𝑣, ‖𝑣‖2 = 1,
which is an eigenvalue problem involving the Gram matrix 𝐴∗𝐴. We will see this eigenvalue
problem again — and the more general idea of the connection between eigenvalue problems
and optimizing quadratic forms — later in the course.

Norms and Neumann series

We will do a great deal of operator norm manipulation this semester, almost all of which boils
down to repeated use of the triangle inequality and the submultiplicative property. For now, we
illustrate the point by a simple, useful example: the matrix version of the geometric series.

Suppose 𝐹 is a square matrix such that ‖𝐹‖ < 1 in some operator norm, and consider the power
series 𝑛

∑
𝑗=0

𝐹 𝑗.

Note that ‖𝐹 𝑗‖ ≤ ‖𝐹‖𝑗 via the submultiplicative property of induced operator norms. By the
triangle inequality, the partial sums satisfy

(𝐼 − 𝐹)
𝑛

∑
𝑗=0

𝐹 𝑗 = 𝐼 − 𝐹 𝑛+1.

Hence, we have that

‖(𝐼 − 𝐹)
𝑛

∑
𝑗=0

𝐹 𝑗 − 𝐼‖ ≤ ‖𝐹‖𝑛+1 → 0 as 𝑛 → ∞,

i.e. 𝐼 − 𝐹 is invertible and the inverse is given by the convergent power series (the geometric
series or Neumann series)

(𝐼 − 𝐹)−1 =
∞

∑
𝑗=0

𝐹 𝑗.

3

By applying submultiplicativity and triangle inequality to the partial sums, we also find that

‖(𝐼 − 𝐹)−1‖ ≤
∞

∑
𝑗=0

‖𝐹‖𝑗 = 1
1 − ‖𝐹‖

.

Note as a consequence of the above that if ‖𝐴−1𝐸‖ < 1 then

‖(𝐴 + 𝐸)−1‖ = ‖(𝐼 + 𝐴−1𝐸)−1𝐴−1‖ ≤ ‖𝐴−1‖
1 − ‖𝐴−1𝐸‖

.

That is, the Neumann series gives us a sense of how a small perturbation to 𝐴 can change the
norm of 𝐴−1.

Notions of error

The art of numerics is finding an approximation with a fast algorithm, a form that is easy to
analyze, and an error bound. Given a task, we want to engineer an approximation that is good
enough, and that composes well with other approximations. To make these goals precise, we
need to define types of errors and error propagation, and some associated notation – which is
the point of this lecture.

Absolute and relative error

Suppose ̂𝑥 is an approximation to 𝑥. The absolute error is

𝑒abs = | ̂𝑥 − 𝑥|.

Absolute error has the same dimensions as 𝑥, and can be misleading without some context. An
error of one meter per second is dramatic if 𝑥 is my walking pace; if 𝑥 is the speed of light, it
is a very small error.

The relative error is a measure with a more natural sense of scale:

𝑒rel = | ̂𝑥 − 𝑥|
|𝑥|

.

Relative error is familiar in everyday life: when someone talks about an error of a few percent,
or says that a given measurement is good to three significant figures, she is describing a relative
error.

We sometimes estimate the relative error in approximating 𝑥 by ̂𝑥 using the relative error in
approximating ̂𝑥 by 𝑥:

̂𝑒rel = | ̂𝑥 − 𝑥|
| ̂𝑥|

.

4

As long as ̂𝑒rel < 1, a little algebra gives that

̂𝑒rel
1 + ̂𝑒rel

≤ 𝑒rel ≤ ̂𝑒rel
1 − ̂𝑒rel

.

If we know ̂𝑒rel is much less than one, then it is a good estimate for 𝑒rel. If ̂𝑒rel is not much less
than one, we know that ̂𝑥 is a poor approximation to 𝑥. Either way, ̂𝑒rel is often just as useful
as 𝑒rel, and may be easier to estimate.

Relative error makes no sense for 𝑥 = 0, and may be too pessimistic when the property of 𝑥 we
care about is “small enough.” A natural intermediate between absolute and relative errors is
the mixed error

𝑒mixed = | ̂𝑥 − 𝑥|
|𝑥| + 𝜏

where 𝜏 is some natural scale factor associated with 𝑥.

Errors beyond scalars

Absolute and relative error make sense for vectors as well as scalars. If ‖ ⋅ ‖ is a vector norm
and ̂𝑥 and 𝑥 are vectors, then the (normwise) absolute and relative errors are

𝑒abs = ‖ ̂𝑥 − 𝑥‖, 𝑒rel = ‖ ̂𝑥 − 𝑥‖
‖𝑥‖

.

We might also consider the componentwise absolute or relative errors

𝑒abs,𝑖 = | ̂𝑥𝑖 − 𝑥𝑖| 𝑒rel,𝑖 = | ̂𝑥𝑖 − 𝑥𝑖|
|𝑥𝑖|

.

The two concepts are related: the maximum componentwise relative error can be computed as
a normwise error in a norm defined in terms of the solution vector:

max
𝑖

𝑒rel,𝑖 = ||| ̂𝑥 − 𝑥|||

where |||𝑧||| = ‖ diag(𝑥)−1𝑧‖∞. More generally, absolute error makes sense whenever we can
measure distances between the truth and the approximation; and relative error makes sense
whenever we can additionally measure the size of the truth. However, there are often many
possible notions of distance and size; and different ways to measure give different notions of
absolute and relative error. In practice, this deserves some care.

5

Dimensions and scaling

The first step in analyzing many application problems is nondimensionalization: combining
constants in the problem to obtain a small number of dimensionless constants. Examples
include the aspect ratio of a rectangle, the Reynolds number in fluid mechanics1, and so forth.
There are three big reasons to nondimensionalize:

• Typically, the physics of a problem only really depends on dimensionless constants, of
which there may be fewer than the number of dimensional constants. This is important
for parameter studies, for example.

• For multi-dimensional problems in which the unknowns have different units, it is hard
to judge an approximation error as “small” or “large,” even with a (normwise) relative
error estimate. But one can usually tell what is large or small in a non-dimensionalized
problem.

• Many physical problems have dimensionless parameters much less than one or much
greater than one, and we can approximate the physics in these limits. Often when
dimensionless constants are huge or tiny and asymptotic approximations work well, naive
numerical methods work work poorly. Hence, nondimensionalization helps us choose how
to analyze our problems — and a purely numerical approach may be silly.

Forward and backward error

We often approximate a function 𝑓 by another function ̂𝑓. For a particular 𝑥, the forward
(absolute) error is

| ̂𝑓(𝑥) − 𝑓(𝑥)|.

In words, forward error is the function output. Sometimes, though, we can think of a slightly
wrong input:

̂𝑓(𝑥) = 𝑓(̂𝑥).

In this case, |𝑥 − ̂𝑥| is called the backward error. An algorithm that always has small backward
error is backward stable.

A condition number a tight constant relating relative output error to relative input error. For
example, for the problem of evaluating a sufficiently nice function 𝑓(𝑥) where 𝑥 is the input
and ̂𝑥 = 𝑥 + ℎ is a perturbed input (relative error |ℎ|/|𝑥|), the condition number 𝜅[𝑓(𝑥)] is the
smallest constant such that

|𝑓(𝑥 + ℎ) − 𝑓(𝑥)|
|𝑓(𝑥)|

≤ 𝜅[𝑓(𝑥)] |ℎ|
|𝑥|

+ 𝑜(|ℎ|)

1Or any of a dozen other named numbers in fluid mechanics. Fluid mechanics is a field that appreciates the
power of dimensional analysis

6

If 𝑓 is differentiable, the condition number is

𝜅[𝑓(𝑥)] = lim
ℎ≠0

|𝑓(𝑥 + ℎ) − 𝑓(𝑥)|/|𝑓(𝑥)|
|(𝑥 + ℎ) − 𝑥|/|𝑥|

= |𝑓 ′(𝑥)||𝑥|
|𝑓(𝑥)|

.

If 𝑓 is Lipschitz in a neighborhood of 𝑥 (locally Lipschitz), then

𝜅[𝑓(𝑥)] =
𝑀𝑓(𝑥)|𝑥|
|𝑓(𝑥)|

.

where 𝑀𝑓 is the smallest constant such that |𝑓(𝑥 + ℎ) − 𝑓(𝑥)| ≤ 𝑀𝑓|ℎ| + 𝑜(|ℎ|). When the
problem has no linear bound on the output error relative to the input error, we sat the problem
has an infinite condition number. An example is 𝑥1/3 at 𝑥 = 0.

A problem with a small condition number is called well-conditioned; a problem with a large
condition number is ill-conditioned. A backward stable algorithm applied to a well-conditioned
problem has a small forward error.

Perturbing matrix problems

To make the previous discussion concrete, suppose I want 𝑦 = 𝐴𝑥, but because of a small error
in 𝐴 (due to measurement errors or roundoff effects), I instead compute ̂𝑦 = (𝐴 + 𝐸)𝑥 where 𝐸
is “small.” The expression for the absolute error is trivial:

‖ ̂𝑦 − 𝑦‖ = ‖𝐸𝑥‖.

But I usually care more about the relative error :

‖ ̂𝑦 − 𝑦‖
‖𝑦‖

= ‖𝐸𝑥‖
‖𝑦‖

.

If we assume that 𝐴 is invertible and that we are using consistent norms (which we will usually
assume), then

‖𝐸𝑥‖ = ‖𝐸𝐴−1𝑦‖ ≤ ‖𝐸‖‖𝐴−1‖‖𝑦‖,

which gives us
‖ ̂𝑦 − 𝑦‖

‖𝑦‖
≤ ‖𝐴‖‖𝐴−1‖‖𝐸‖

‖𝐴‖
= 𝜅(𝐴)‖𝐸‖

‖𝐴‖
.

That is, the relative error in the output is the relative error in the input multiplied by the
condition number 𝜅(𝐴) = ‖𝐴‖‖𝐴−1‖. Technically, this is the condition number for the problem
of matrix multiplication (or solving linear systems, as we will see) with respect to a particular
(consistent) norm; different problems have different condition numbers. Nonetheless, it is
common to call this “the” condition number of 𝐴.

For some problems, we are given more control over the structure of the error matrix 𝐸. For
example, we might suppose that 𝐴 is symmetric, and ask whether we can get a tighter bound

7

if in addition to assuming a bound on ‖𝐸‖, we also assume 𝐸 is symmetric. In this particular
case, the answer is “no” — we have the same condition number either way, at least for the
2-norm or Frobenius norm2. In other cases, assuming a structure to the perturbation does
indeed allow us to achieve tighter bounds.

As an example of a refined bound, we consider moving from condition numbers based on small
norm-wise perturbations to condition numbers based on small element-wise perturbations.
Suppose 𝐸 is elementwise small relative to 𝐴, i.e. |𝐸| ≤ 𝜖|𝐴|. Suppose also that we are dealing
with a norm such that ‖𝑋‖ ≤ ‖ |𝑋| ‖, as is true of all the norms we have seen so far. Then

‖ ̂𝑦 − 𝑦‖
‖𝑦‖

≤ ‖𝐸𝐴−1‖ ≤ ‖ |𝐴| |𝐴−1| ‖𝜖.

The quantity 𝜅rel(𝐴) = ‖ |𝐴| |𝐴−1| ‖ is the relative condition number ; it is closely related to
the Skeel condition number which we will see in our discussion of linear systems 3. Unlike the
standard condition number, the relative condition number is invariant under column scaling of
𝐴; that is 𝜅rel(𝐴𝐷) = 𝜅rel(𝐴) where 𝐷 is a nonsingular diagonal matrix.

What if, instead of perturbing 𝐴, we perturb 𝑥? That is, if ̂𝑦 = 𝐴 ̂𝑥 and 𝑦 = 𝐴𝑥, what is the
condition number relating ‖ ̂𝑦 − 𝑦‖/‖𝑦‖ to ‖ ̂𝑥 − 𝑥‖/‖𝑥‖? We note that

‖ ̂𝑦 − 𝑦‖ = ‖𝐴(̂𝑥 − 𝑥)‖ ≤ ‖𝐴‖‖ ̂𝑥 − 𝑥‖;

and
‖𝑥‖ = ‖𝐴−1𝑦‖ ≤ ‖𝐴−1‖‖𝑦‖ ⟹ ‖𝑦‖ ≥ ‖𝐴−1‖−1‖𝑥‖.

Put together, this implies
‖ ̂𝑦 − 𝑦‖

‖𝑦‖
≤ ‖𝐴‖‖𝐴−1‖‖ ̂𝑥 − 𝑥‖

‖𝑥‖
.

The same condition number appears again!

2This is left as an exercise for the student
3The Skeel condition number involves the two factors in the reverse order.

8

	Matrix calculus
	Warm up: derivative of a dot product
	Some calculus facts
	The 2-norm revisited
	Norms and Neumann series

	Notions of error
	Absolute and relative error
	Errors beyond scalars
	Dimensions and scaling

	Forward and backward error
	Perturbing matrix problems

