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Logistics

CS 6210 is a graduate-level introduction to numerical linear algebra. We will study direct and
iterative methods for linear systems, least squares problems, eigenvalue problems, and singular
value problems. There is a detailed syllabus and rough schedule at the class web:

http://www.cs.cornell.edu/courses/cs6210/2025fa/

The web page is also your source for the homework, lecture notes, and course announcements.
The web page also points to a discussion forum (Ed Discussions) and the Course Management
System (CMS) used for homework submissions. There is also a link to a GitHub repository
with the source for these notes. If you find an error, feel free to help me fix it!

I will assume that you have already had a course in linear algebra and that you know how
to program. A previous numerical methods course is not required. The course will involve
programming in Julia, so it will also be helpful – but not strictly necessary – for you to
have prior exposure to MATLAB or Julia. If you know neither language but you have prior
programming experience, you can learn them quickly enough.

A good general reference to follow throughout the course is the draft Numerical Methods
for Data Science textbook. In particular, chapters 2 and 4 contain what I consider to be
relevant material about how to program in Julia and about things you should know aobut
linear algebra.

Linear algebra references

We assume some mathematical pre-requisites: linear algebra and “sufficient mathematical
maturity.” This should be enough for most students, but some will want to brush up on their
linear algebra. For those who want to review, or who want a reference while taking the course,
I have a few recommendations.
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There are a few options when it comes to linear algebra basics. At Cornell, our undergrad-
uate linear algebra course uses the text by Lay (Lay, Lay, and McDonald 2016); the texts
by Strang (Strang 2006, 2009) are a nice alternative. Strang’s Introduction to Linear Alge-
bra (Strang 2009) is the textbook for the MIT linear algebra course that is the basis for his
enormously popular video lectures, available on MIT’s OpenCourseWare site; if you prefer
lecture to reading, Strang is known as an excellent lecturer.

These notes reflect the way that I teach matrix computations, but this is far from the only
approach. The style of this class is probably closest to the style of the text by Demmel (Demmel
1997), which I recommend as a course text. The text of Trefethen and Bau (Trefethen and
Bau 1997) covers roughly the same material, but with a different emphasis; I recommend it for
an alternative perspective. At Cornell, our subscription to the SIAM book series means that
both of these books are available as e-books to students on the campus network.

For students who intend to use matrix computations as a serious part of their future research
career, the canonical reference is Matrix Computations by Golub and Van Loan (Golub and
Van Loan 2013).

Basic notational conventions

In this section, we set out some basic notational conventions used in the class.

1. The complex unit is i (not 𝑖 or 𝑗).

2. By default, all spaces in this class are finite dimensional. If there is only one space and
the dimension is not otherwise stated, we use 𝑛 to denote the dimension.

3. Concrete real and complex vector spaces are ℝ𝑛 and ℂ𝑛, respectively.

4. Real and complex matrix spaces are ℝ𝑚×𝑛 and ℂ𝑚×𝑛.

5. Unless otherwise stated, a concrete vector is a column vector.

6. The vector 𝑒 is the vector of all ones.

7. The vector 𝑒𝑖 has all zeros except a one in the 𝑖th place.

8. The basis {𝑒𝑖}𝑛
𝑖=1 is the standard basis in ℝ𝑛 or ℂ𝑛.

9. We use calligraphic math caps for abstract space, e.g. 𝒰, 𝒱, 𝒲.

10. When we say 𝑈 is a basis for a space 𝒰, we mean 𝑈 is an isomorphism 𝒰 → ℝ𝑛. By a
slight abuse of notation, we say 𝑈 is a matrix whose columns are the abstract vectors
𝑢1, … , 𝑢𝑛, and we write the linear combination ∑𝑛

𝑖=1 𝑢𝑖𝑐𝑖 concisely as 𝑈𝑐.

11. Similarly, 𝑈−1𝑥 represents the linear mapping from the abstract vector 𝑥 to a concrete
coefficient vector 𝑐 such that 𝑥 = 𝑈𝑐.
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12. The space of univariate polynomials of degree at most 𝑑 is 𝒫𝑑.

13. Scalars will typically be lower case Greek, e.g. 𝛼, 𝛽. In some cases, we will also use lower
case Roman letters, e.g. 𝑐, 𝑑.

14. Vectors (concrete or abstract) are denoted by lower case Roman, e.g. 𝑥, 𝑦, 𝑧.

15. Matrices and linear maps are both denoted by upper case Roman, e.g. 𝐴, 𝐵, 𝐶.

16. For 𝐴 ∈ ℝ𝑚×𝑛, we denote the entry in row 𝑖 and column 𝑗 by 𝑎𝑖𝑗. We reserve the notation
𝐴𝑖𝑗 to refer to a submatrix at block row 𝑖 and block column 𝑗 in a partitioning of 𝐴.

17. We use a superscript star to denote dual spaces and dual vectors; that is, 𝑣∗ ∈ 𝒱∗ is a
dual vector in the space dual to 𝒱.

18. In ℝ𝑛, we use 𝑥∗ and 𝑥𝑇 interchangeably for the transpose.

19. In ℂ𝑛, we use 𝑥∗ and 𝑥𝐻 interchangeably for the conjugate transpose.

20. Inner products are denoted by angles, e.g. ⟨𝑥, 𝑦⟩. To denote an alternate inner product,
we use subscripts, e.g. ⟨𝑥, 𝑦⟩𝑀 = 𝑦∗𝑀𝑥.

21. The standard inner product in ℝ𝑛 or ℂ𝑛 is also 𝑥 ⋅ 𝑦.

22. In abstract vector spaces with a standard inner product, we use 𝑣∗ to denote the dual
vector associated with 𝑣 through the inner product, i.e. 𝑣∗ = (𝑤 ↦ ⟨𝑤, 𝑣⟩).

23. We use the notation ‖𝑥‖ to denote a norm of the vector 𝑥. As with inner products, we use
subscripts to distinguish between multiple norms. When dealing with two generic norms,
we will sometimes use the notation |||𝑦||| to distinguish the second norm from the first.

24. We use order notation for both algorithm scaling with parameters going to infinity
(e.g. 𝑂(𝑛3) time) and for reasoning about scaling with parameters going to zero (e.g. 𝑂(𝜖2)
error). We will rely on context to distinguish between the two.

25. We use variational notation to denote derivatives of matrix expressions, e.g. 𝛿(𝐴𝐵) =
𝛿𝐴 𝐵 + 𝐴 𝛿𝐵 where 𝛿𝐴 and 𝛿𝐵 represent infinitesimal changes to the matrices 𝐴 and 𝐵.

26. Symbols typeset in Courier font should be interpreted as code or pseudocode, e.g. y =

A*x.

27. The function notation fl(𝑥) refers to taking a real or complex quantity (scalar or vector)
and representing each entry in floating point.
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Vectors

A vector space (or linear space) is a set of vectors that can be added or scaled in a sensible
way – that is, addition is associative and commutative and scaling is distributive. We will
generally denote vector spaces by script letters (e.g. 𝒱, 𝒲), vectors by lower case Roman letters
(e.g. 𝑣, 𝑤), and scalars by lower case Greek letters (e.g. 𝛼, 𝛽). But we feel free to violate these
conventions according to the dictates of our conscience or in deference to other conflicting
conventions.

There are many types of vector spaces. Apart from the ubiquitous spaces ℝ𝑛 and ℂ𝑛, the most
common vector spaces in applied mathematics are different types of function spaces. These
include

𝒫𝑑 = {polynomials of degree at most 𝑑};
𝒱∗ = {linear functions 𝒱 → ℝ (or ℂ)};

𝐿(𝒱, 𝒲) = {linear maps 𝒱 → 𝒲};
𝒞𝑘(Ω) = { 𝑘-times differentiable functions on a set Ω};

and many more. We compute with vectors in ℝ𝑛 and ℂ𝑛, which we represent concretely by
tuples of numbers in memory, usually stored in sequence. To keep a broader perspective,
though, we will also frequently describe examples involving the polynomial spaces 𝒫𝑑.

Spanning sets and bases

We often think of a matrix as a set of vectors

𝑉 = [𝑣1 𝑣2 … 𝑣𝑛] .

The range space ℛ(𝑉 ) or the span sp{𝑣𝑗}𝑛
𝑗=1 is the set of vectors {𝑉 𝑐 ∶ 𝑐 ∈ ℝ𝑛} (or ℂ𝑛 for

complex spaces). The vectors are linearly independent if any vector in the span has a unique
representation as a linear combination of the spanning vectors; equivalently, the vectors are
linearly independent if there is no linear combination of the spanning vectors that equals zero
except the one in which all coefficients are zero. A linearly independent set of vectors is a basis
for a space 𝒱 if sp{𝑣𝑗}𝑛

𝑗=1 = 𝒱; the number of basis vectors 𝑛 is the dimension of the space.
Spaces like 𝒞𝑘(Ω) do not generally have a finite basis; they are infinite-dimensional. We will
focus on finite-dimensional spaces in the class, but it is useful to know that there are interesting
infinite-dimensional spaces in the broader world.

The standard basis in ℝ𝑛 is the set of column vectors 𝑒𝑗 with a one in the 𝑗th position and
zeros elsewhere:

𝐼 = [𝑒1 𝑒2 … 𝑒𝑛] .

Of course, this is not the only basis. Any other set of 𝑛 linearly independent vectors in ℝ𝑛 is
also a basis

𝑉 = [𝑣1 𝑣2 … 𝑣𝑛] .
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The matrix 𝑉 formed in this way is invertible, with multiplication by 𝑉 corresponding to a
change from the {𝑣𝑗} basis to the standard basis and multiplication by 𝑉 −1 corresponding to a
map from the standard basis into the {𝑣𝑗} basis.

We will use matrix-like notation to describe bases and spanning sets even when we deal with
spaces other than ℝ𝑛. For example, a common basis for 𝒫𝑑 is the power basis

𝑋 = [1 𝑥 𝑥2 … 𝑥𝑑] .

Each “column” in 𝑋 is really a function of one variable (𝑥), and matrix-vector multiplication
with 𝑋 represents a map from a coefficient vector in ℝ𝑑+1 to a polynomial in 𝒫𝑑. That is, we
write polynomials 𝑝 ∈ 𝒫𝑑 in terms of the basis as

𝑝 = 𝑋𝑐 =
𝑑

∑
𝑗=0

𝑐𝑗𝑥𝑗

and, we think of computing the coefficients from the abstract polynomial via a formal inverse:

𝑐 = 𝑋−1𝑝.

We typically think of a map like 𝑌 ∗ = 𝑋−1 in terms of “rows”

𝑌 ∗ =
⎡
⎢
⎢
⎣

𝑦∗
0

𝑦∗
1
⋮

𝑦∗
𝑑

⎤
⎥
⎥
⎦

where each row 𝑦∗
𝑗 is a linear functional or dual vector (i.e. linear mappings from the vector space

to the real or complex numbers). Collectively, {𝑦∗
0, … , 𝑦∗

𝑑} are the dual basis to {1, 𝑥, … , 𝑥𝑑}.

The power basis is not the only basis for 𝒫𝑑. Other common choices include Newton or
Lagrange polynomials with respect to a set of points, which you may have seen in another class
such as CS 4210. In this class, we will sometimes use the Chebyshev1 polynomial basis {𝑇𝑗(𝑥)}
given by the recurrence

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥

𝑇𝑗+1(𝑥) = 2𝑥𝑇𝑗(𝑥) − 𝑇𝑗−1(𝑥), 𝑗 ≥ 1,

and the Legendre polynomial basis {𝑃𝑗(𝑥)}, given by the recurrence

𝑃0(𝑥) = 1
𝑃1(𝑥) = 𝑥

(𝑗 + 1)𝑃𝑗+1(𝑥) = (2𝑗 + 1)𝑥𝑃𝑗(𝑥) − 𝑗𝑃𝑗−1(𝑥).
1Pafnuty Chebyshev was a nineteenth century Russian mathematician, and his name has been transliterated

from the Cyrillic alphabet into the Latin alphabet in several different ways. We inherit our usual spelling
from one of the French transliterations, but the symbol 𝑇 for the polynomials comes from the German
transliteration Tschebyscheff.
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As we will see over the course of the semester, sometimes the “obvious” choice of basis
(e.g. the standard basis in ℝ𝑛 or the power basis in 𝒫𝑑) is not the best choice for numerical
computations.

Vector norms

A norm ‖ ⋅ ‖ measures vector lengths. It is positive definite, homogeneous, and sub-additive:

‖𝑣‖ ≥ 0 and ‖𝑣‖ = 0 iff 𝑣 = 0
‖𝛼𝑣‖ = |𝛼|‖𝑣‖

‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖.

The three most common vector norms we work with in ℝ𝑛 are the Euclidean norm (aka the
2-norm), the ∞-norm (or max norm), and the 1-norm:

‖𝑣‖2 = √∑
𝑗

|𝑣𝑗|2

‖𝑣‖∞ = max
𝑗

|𝑣𝑗|

‖𝑣‖1 = ∑
𝑗

|𝑣𝑗|

Many other norms can be related to one of these three norms. In particular, a “natural” norm
in an abstract vector space will often look strange in the corresponding concrete representation
with respect to some basis function. For example, consider the vector space of polynomials
with degree at most 2 on [−1, 1]. This space also has a natural Euclidean norm, max norm,
and 1-norm; for a given polynomial 𝑝(𝑥) these are

‖𝑝‖2 = √∫
1

−1
|𝑝(𝑥)|2 𝑑𝑥

‖𝑝‖∞ = max
𝑥∈[−1,1]

|𝑝(𝑥)|

‖𝑝‖1 = ∫
1

−1
|𝑝(𝑥)| 𝑑𝑥.

But when we write 𝑝(𝑥) in terms of the coefficient vector with respect to the power basis (for
example), the max norm of the polynomial is not the same as the max norm of the coefficient
vector. In fact, if we consider a polynomial 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥, then the max norm of the
polynomial 𝑝 is the same as the one-norm of the coefficient vector — the proof of which is left
as a useful exercise to the reader.

In a finite-dimensional vector space, all norms are equivalent: that is, if ‖ ⋅ ‖ and |||⋅||| are two
norms on the same finite-dimensional vector space, then there exist constants 𝑐 and 𝐶 such
that for any 𝑣 in the space,

𝑐‖𝑣‖ ≤ |||𝑣||| ≤ 𝐶‖𝑣‖.
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Of course, there is no guarantee that the constants are small!

An isometry is a mapping that preserves vector norms. For ℝ𝑛, the only isometries for the
1-norm and the ∞-norm are permutations. For Euclidean space, though, there is a much richer
set of isometries, represented by the orthogonal matrices (matrices s.t. 𝑄∗𝑄 = 𝐼).

Inner products

An inner product ⟨⋅, ⋅⟩ is a function from two vectors into the real numbers (or complex numbers
for an complex vector space). It is positive definite, linear in the first slot, and symmetric (or
Hermitian in the case of complex vectors); that is:

⟨𝑣, 𝑣⟩ ≥ 0 and ⟨𝑣, 𝑣⟩ = 0 iff 𝑣 = 0
⟨𝛼𝑢, 𝑤⟩ = 𝛼⟨𝑢, 𝑤⟩ and ⟨𝑢 + 𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑤⟩

⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩,

where the overbar in the latter case corresponds to complex conjugation. A vector space with
an inner product is sometimes called an inner product space or a Euclidean space.

Every inner product defines a corresponding norm

‖𝑣‖ = √⟨𝑣, 𝑣⟩

The inner product and the associated norm satisfy the Cauchy-Schwarz inequality

⟨𝑢, 𝑣⟩ ≤ ‖𝑢‖‖𝑣‖.

The standard inner product on ℂ𝑛 is

𝑥 ⋅ 𝑦 = 𝑦∗𝑥 =
𝑛

∑
𝑗=1

̄𝑦𝑗𝑥𝑗.

But the standard inner product is not the only inner product, just as the standard Euclidean
norm is not the only norm.

Just as norms allow us to reason about size, inner products let us reason about angles. In
particular, we define the cosine of the angle 𝜃 between nonzero vectors 𝑣 and 𝑤 as

cos 𝜃 = ⟨𝑣, 𝑤⟩
‖𝑣‖‖𝑤‖

.

Returning to our example of a vector space of polynomials, the standard 𝐿2([−1, 1]) inner
product is

⟨𝑝, 𝑞⟩𝐿2([−1,1]) = ∫
1

−1
𝑝(𝑥) ̄𝑞(𝑥) 𝑑𝑥.
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If we express 𝑝 and 𝑞 with respect to a basis (e.g. the power basis), we find that we can
represent this inner product via a symmetric positive definite matrix. For example, let
𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 and let 𝑞(𝑥) = 𝑑0 + 𝑑1𝑥 + 𝑑2𝑥2. Then

⟨𝑝, 𝑞⟩𝐿2([−1,1]) = ⎡⎢
⎣

𝑑0
𝑑1
𝑑2

⎤⎥
⎦

∗

⎡⎢
⎣

𝑎00 𝑎01 𝑎02
𝑎10 𝑎11 𝑎12
𝑎20 𝑎21 𝑎22

⎤⎥
⎦

⎡⎢
⎣

𝑐0
𝑐1
𝑐2

⎤⎥
⎦

= 𝑑∗𝐴𝑐 = ⟨𝑐, 𝑑⟩𝐴

where

𝑎𝑖𝑗 = ∫
1

−1
𝑥𝑖−1𝑥𝑗−1 𝑑𝑥 = {

2/(𝑖 + 𝑗 − 1), 𝑖 + 𝑗 even
0, otherwise

The symmetric positive definite matrix 𝐴 is what is sometimes called the Gram matrix for the
basis {1, 𝑥, 𝑥2}.

We say two vectors 𝑢 and 𝑣 are orthogonal with respect to an inner product if ⟨𝑢, 𝑣⟩ = 0. If 𝑢
and 𝑣 are orthogonal, we have the Pythagorean theorem:

‖𝑢 + 𝑣‖2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ = ⟨𝑢, 𝑢⟩ + ⟨𝑣, 𝑢⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩ = ‖𝑢‖2 + ‖𝑣‖2

Two vectors 𝑢 and 𝑣 are orthonormal if they are orthogonal with respect to the inner product
and have unit length in the associated norm. When we work in an inner product space, we often
use an orthonormal basis, i.e. a basis in which all the vectors are orthonormal. For example,
the normalized Legendre polynomials

√ 2
2𝑗 + 1

𝑃𝑗(𝑥)

form orthonormal bases for the 𝒫𝑑 inner product with respect to the 𝐿2([−1, 1]) inner product.

Matrices and mappings

A matrix represents a mapping between two vector spaces. That is, if 𝐿 ∶ 𝒱 → 𝒲 is a linear
map, then the associated matrix 𝐴 with respect to bases 𝑉 and 𝑊 satisfies 𝐴 = 𝑊 −1𝐿𝑉. The
same linear mapping corresponds to different matrices depending on the choices of basis. But
matrices can reresent several other types of mappings as well. Over the course of this class, we
will see several interpretations of matrices:

• Linear maps. A map 𝐿 ∶ 𝒱 → 𝒲 is linear if 𝐿(𝑥 + 𝑦) = 𝐿𝑥 + 𝐿𝑦 and 𝐿(𝛼𝑥) = 𝛼𝐿𝑥.
The corresponding matrix is 𝐴 = 𝑊 −1𝐿𝑉.

• Linear operators. A linear map from a space to itself (𝐿 ∶ 𝒱 → 𝒱) is a linear operator.
The corresponding (square) matrix is 𝐴 = 𝑉 −1𝐿𝑉.
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• Bilinear forms. A map 𝑎 ∶ 𝒱 × 𝒲 → ℝ (or ℂ for complex spaces) is bilinear if it is linear
in both slots: 𝑎(𝛼𝑢 + 𝑣, 𝑤) = 𝛼𝑎(𝑢, 𝑤) + 𝑎(𝑣, 𝑤) and 𝑎(𝑣, 𝛼𝑢 + 𝑤) = 𝛼𝑎(𝑣, 𝑢) + 𝑎(𝑣, 𝑤).
The corresponding matrix has elements 𝐴𝑖𝑗 = 𝑎(𝑣𝑖, 𝑤𝑗); if 𝑣 = 𝑉 𝑐 and 𝑤 = 𝑊𝑑 then
𝑎(𝑣, 𝑤) = 𝑑𝑇𝐴𝑐.

We call a bilinear form on 𝒱 × 𝒱 symmetric if 𝑎(𝑣, 𝑤) = 𝑎(𝑤, 𝑣); in this case, the
corresponding matrix 𝐴 is also symmetric (𝐴 = 𝐴𝑇). A symmetric form and the
corresponding matrix are called positive semi-definite if 𝑎(𝑣, 𝑣) ≥ 0 for all 𝑣. The form
and matrix are positive definite if 𝑎(𝑣, 𝑣) > 0 for any 𝑣 ≠ 0.

A skew-symmetric matrix (𝐴 = −𝐴𝑇) corresponds to a skew-symmetric or anti-symmetric
bilinear form, i.e. 𝑎(𝑣, 𝑤) = −𝑎(𝑤, 𝑣).

• Sesquilinear forms. A map 𝑎 ∶ 𝒱 × 𝒲 → ℂ (where 𝒱 and 𝒲 are complex vector spaces)
is sesquilinear if it is linear in the first slot and the conjugate is linear in the second slot:
𝑎(𝛼𝑢 + 𝑣, 𝑤) = 𝛼𝑎(𝑢, 𝑤) + 𝑎(𝑣, 𝑤) and 𝑎(𝑣, 𝛼𝑢 + 𝑤) = ̄𝛼𝑎(𝑣, 𝑢) + 𝑎(𝑣, 𝑤). The matrix has
elements 𝐴𝑖𝑗 = 𝑎(𝑣𝑖, 𝑤𝑗); if 𝑣 = 𝑉 𝑐 and 𝑤 = 𝑊𝑑 then 𝑎(𝑣, 𝑤) = 𝑑∗𝐴𝑐.

We call a sesquilinear form on 𝒱 × 𝒱 Hermitian if 𝑎(𝑣, 𝑤) = ̄𝑎(𝑤, 𝑣); in this case,
the corresponding matrix 𝐴 is also Hermitian (𝐴 = 𝐴∗). A Hermitian form and the
corresponding matrix are called positive semi-definite if 𝑎(𝑣, 𝑣) ≥ 0 for all 𝑣. The form
and matrix are positive definite if 𝑎(𝑣, 𝑣) > 0 for any 𝑣 ≠ 0.

A skew-Hermitian matrix (𝐴 = −𝐴∗) corresponds to a skew-Hermitian or anti-Hermitian
bilinear form, i.e. 𝑎(𝑣, 𝑤) = −𝑎(𝑤, 𝑣).

• Quadratic forms. A quadratic form 𝜙 ∶ 𝒱 → ℝ (or ℂ) is a homogeneous quadratic
function on 𝒱, i.e. 𝜙(𝛼𝑣) = 𝛼2𝜙(𝑣) for which the map 𝑏(𝑣, 𝑤) = 𝜙(𝑣 + 𝑤) − 𝜙(𝑣) − 𝜙(𝑤)
is bilinear. Any quadratic form on a finite-dimensional space can be represented as
𝑐∗𝐴𝑐 where 𝑐 is the coefficient vector for some Hermitian matrix 𝐴. The formula for the
elements of 𝐴 given 𝜙 is left as an exercise.

We care about linear maps and linear operators almost everywhere, and most students come
out of a first linear algebra class with some notion that these are important. But apart from
very standard examples (inner products and norms), many students have only a vague notion
of what a bilinear form, sesquilinear form, or quadratic form might be. Bilinear forms and
sesquilinear forms show up when we discuss large-scale solvers based on projection methods.
Quadratic forms are important in optimization, physics (where they often represent energy),
and statistics (e.g. for understanding variance and covariance).

Matrix norms

The space of matrices forms a vector space; and, as with other vector spaces, it makes sense
to talk about norms. In particular, we frequently want norms that are consistent with vector
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norms on the range and domain spaces; that is, for any 𝑤 and 𝑣, we want

𝑤 = 𝐴𝑣 ⟹ ‖𝑤‖ ≤ ‖𝐴‖‖𝑣‖.

One “obvious” consistent norm is the Frobenius norm,

‖𝐴‖𝐹 = √∑
𝑖,𝑗

𝑎2
𝑖𝑗.

Even more useful are induced norms (or operator norms)

‖𝐴‖ = sup
𝑣≠0

‖𝐴𝑣‖
‖𝑣‖

= sup
‖𝑣‖=1

‖𝐴𝑣‖.

The induced norms corresponding to the vector 1-norm and ∞-norm are

‖𝐴‖1 = max
𝑗

∑
𝑖

|𝑎𝑖𝑗| (max column sum)

‖𝐴‖∞ = max
𝑖

∑
𝑗

|𝑎𝑖𝑗| (max row sum)

The norm induced by the vector Euclidean norm (variously called the matrix 2-norm or the
spectral norm) is more complicated.

The Frobenius norm and the matrix 2-norm are both orthogonally invariant (or unitarily
invariant in a complex vector space. That is, if 𝑄 is a square matrix with 𝑄∗ = 𝑄−1 (an
orthogonal or unitary matrix) of the appropriate dimensions

‖𝑄𝐴‖𝐹 = ‖𝐴‖𝐹, ‖𝐴𝑄‖𝐹 = ‖𝐴‖𝐹,
‖𝑄𝐴‖2 = ‖𝐴‖2, ‖𝐴𝑄‖2 = ‖𝐴‖2.

This property will turn out to be frequently useful throughout the course.

Decompositions and canonical forms

Matrix decompositions (also known as matrix factorizations) are central to numerical linear
algebra. We will get to know six such factorizations well:

• 𝑃𝐴 = 𝐿𝑈 (a.k.a. Gaussian elimination). Here 𝐿 is unit lower triangular (triangular with
1 along the main diagonal), 𝑈 is upper triangular, and 𝑃 is a permutation matrix.

• 𝐴 = 𝐿𝐿∗ (a.k.a. Cholesky factorization). Here 𝐴 is Hermitian and positive definite, and
𝐿 is a lower triangular matrix.

• 𝐴 = 𝑄𝑅 (a.k.a. QR decomposition). Here 𝑄 has orthonormal columns and 𝑅 is upper
triangular. If we think of the columns of 𝐴 as a basis, QR decomposition corresponds to
the Gram-Schmidt orthogonalization process you have likely seen in the past (though we
rarely compute with Gram-Schmidt).
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• 𝐴 = 𝑈Σ𝑉 ∗ (a.k.a. the singular value decomposition or SVD). Here 𝑈 and 𝑉 have
orthonormal columns and Σ is diagonal with non-negative entries.

• 𝐴 = 𝑄Λ𝑄∗ (a.k.a. symmetric eigendecomposition). Here 𝐴 is Hermitian (symmetric in
the real case), 𝑄 is orthogonal or unitary, and Λ is a diagonal matrix with real numbers
on the diagonal.

• 𝐴 = 𝑄𝑇 𝑄∗ (a.k.a. Schur form). Here 𝐴 is a square matrix, 𝑄 is orthogonal or unitary,
and 𝑇 is upper triangular (or nearly so).

The last three of these decompositions correspond to canonical forms for abstract operators.
That is, we can view these decompositions as finding bases in which the matrix representation
of some operator or form is particularly simple. In a first linear algebra course, one generally
considers canonical forms associated with general bases (not restricted to be orthogonal):

• For a linear map, we have the canonical form

𝐴 = 𝑈−1𝒜𝑉 = [𝐼𝑘 0
0 0]

where 𝑘 is the rank of the matrix and the zero blocks are sized so the dimensions make
sense.

• For an operator, we have the Jordan canonical form,

𝐽 = 𝑉 −1𝒜𝑉 = ⎡
⎢
⎣

𝐽𝜆1

𝐽𝜆2

⋱ 𝐽𝜆𝑟

⎤
⎥
⎦

where each 𝐽𝜆 is a Jordan block with 𝜆 down the main diagonal and 1 on the first
superdiagonal.

• For a quadratic form, we have the canonical form

𝑎(𝑉 𝑥) =
𝑘+

∑
𝑖=1

𝑥2
𝑖 −

𝑘++𝑘−

∑
𝑖=𝑘++1

𝑥2
𝑖 = 𝑥𝑇𝐴𝑥, 𝐴 = ⎡

⎢
⎣

𝐼𝑘+

−𝐼𝑘−

0𝑘0

⎤
⎥
⎦

.

The integer triple (𝑘+, 𝑘0, 𝑘−) is sometimes called the inertia of the quadratic form (or
Sylvester’s inertia).

As beautiful as these canonical forms are, they are terrible for computation. In general, they
need not even be continuous! However, if 𝑉 and 𝑈 have inner products, it makes sense to
restrict our attention to orthonormal bases. This restriction gives canonical forms that we tend
to prefer in practice:
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• For a linear map, we have the canonical form

𝑈−1𝒜𝑉 = [Σ𝑘 0
0 0]

where 𝑘 is the rank of the matrix and the zero blocks are sized so the dimensions make
sense. The matrix Σ𝑘 is a diagonal matrix of singular values

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑘 > 0,

and the bases 𝑈 and 𝑉 consist of the singular vectors.

• For an operator, we have the Schur canonical form,

𝑉 −1𝒜𝑉 = 𝑇

where 𝑇 is an upper triangular matrix (in the complex case) or a quasi-upper triangular
matrix that may have 2-by-2 blocks (in the case of a real matrix with complex eigenvalues).
In this case, the basis vectors span nested invariant subspaces of 𝒜.

• For a quadratic form, we have the canonical form

𝑎(𝑉 𝑥) =
𝑛

∑
𝑖=1

𝜆𝑖𝑥2
𝑖 = 𝑥𝑇Λ𝑥,

where Λ is a diagonal matrix with 𝜆1, … , 𝜆𝑛 on the diagonal.

The SVD and the 2-norm

The singular value decomposition is useful for a variety of reasons; we close off the lecture by
showing one such use.

Suppose 𝐴 = 𝑈Σ𝑉 ∗ is the singular value decomposition of some matrix. Using orthogonal
invariance (unitary invariance) of the 2-norm, we have

‖𝐴‖2 = ‖𝑈 ∗𝐴𝑉 ‖2 = ‖Σ‖2,

i.e.

‖𝐴‖2 = max
‖𝑣‖2=1

∑𝑗 𝜎𝑗|𝑣𝑗|2

∑ |𝑣𝑗|2
.

That is, the spectral norm is the largest weighted average of the singular values, which is the
same as just the largest singular value.

The small singular values also have a meaning. If 𝐴 is a square, invertible matrix then

‖𝐴−1‖2 = ‖𝑉 Σ−1𝑈∗‖2 = ‖Σ−1‖2,
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i.e. ‖𝐴−1‖2 is the inverse of the smallest singular value of 𝐴.

The smallest singular value of a nonsingular matrix 𝐴 can also be interpreted as the “distance
to singularity”: if 𝜎𝑛 is the smallest singular value of 𝐴, then there is a matrix 𝐸 such that
‖𝐸‖2 = 𝜎𝑛 and 𝐴 + 𝐸 is singular; and there is no such matrix with smaller norm.

These facts about the singular value decomposition are worth pondering, as they will be
particularly useful in the next lecture when we ponder sensitivity and conditioning.

References

Demmel, James. 1997. Applied Numerical Linear Algebra. SIAM.
Golub, Gene, and Charles Van Loan. 2013. Matrix Computations. Fourth. Johns Hopkins

University Press.
Lay, David, Steven Lay, and Judi McDonald. 2016. Linear Algebra and Its Applications. Fifth.

Pearson.
Strang, Gilbert. 2006. Linear Algebra and Its Applications. Fourth. Brooks/Cole Publishing.
———. 2009. Introduction to Linear Algebra. Fourth. Wellesley-Cambridge Press.
Trefethen, Lloyd N, and David Bau III. 1997. Numerical Linear Algebra. SIAM.

13


	Logistics
	Linear algebra references
	Basic notational conventions
	Vectors
	Spanning sets and bases
	Vector norms
	Inner products

	Matrices and mappings
	Matrix norms
	Decompositions and canonical forms
	The SVD and the 2-norm

	References

