Dec 16, 2020

\[A x = b \]

\[PA = LU \]
\[A = LL^T \]

\[k_2(A) = \sigma_{\text{max}}/\sigma_{\text{min}} \]

\[\min \| Ax - b \|_2 \]

\[A = QR \]
\[A = U \Sigma V^T \]

\[\text{orthog. matrices} \]

\[k_2(A) \quad b, \text{range}(A) \]

\[A x = r \]
\[A = V \Lambda V^T \]
\[A = QTQ^T \]
\[A = UH\mathbf{U}^T \]
\[A = U \Sigma V^T \]

\[\text{orthog. matrices} \]

condition number \(\Rightarrow \) sensitivity to perturbations

\[AQ_k = Q_{k+1} T_k \]
\[AQ_k = Q_{k+1} H_k \]

\[A V_k = U_{k+1} B_k \]
\[A^T U_k = V_{k+1} B_{k+1}^T \]

condition number \(\Rightarrow \) convergence

structure matters!!!

sparse

symm

blocked

fast operators

diag dominant

symm

orthog

orthog
Other tools

- Optimization/analysis: CG (Krylov), $2x^T A^T A x = 2A^T b$
 \[r(x) = \frac{x^T A x}{x^T x} \]
 Gauss-Seidel \Rightarrow coord descent. $\Rightarrow A^T A x = A^T b$

- Graph theory: sparse direct
- Hardware: blocking / BLAS 3, layouts, floating point
- Statistics: truncated SVD \Rightarrow reg LS
- Approx theory: convergence of iterative methods
Where to go from here

CS 6220: Data sparse matrix computations
 structure ⇒ super fast
 - rank-structured mats \(Ax = b \) in \(O(n) \) time
 - Rand NLA
 - FMM, FFT

CS 6241: Matrix comps in data science
 - NMF, other facts
 - CPs / kernel methods
 - Graph data
Thank you!