CS 621: Matrix Computations Fall 2001 **Problem Set 2**

Handed out: Fri., Sep. 21.

Due: Mon., Oct. 1 in lecture.

- 1. The inverse of an $n \times n$ nonsingular lower triangular matrix can be found, one column at a time, by repeatedly applying forward substitution to systems of the form $L\mathbf{x} = \mathbf{e}_i$, where \mathbf{e}_i denotes the *i*th column of the identity matrix. How many flops, accurate to the leading term, are required for this computation? Note that many flops can be saved because you can determine a priori that many entries of the inverse are zeros.
- 2. (GVL P2.2.3) Let $D \in \mathbf{R}^{n \times n}$ be diagonal. Show that $||D||_p = \max_i |D(i,i)|$ for any $p \in [1,\infty]$. [Hint: prove separately that $||D||_p \le \max_i |D(i,i)|$ and $||D||_p \ge \max_i |D(i,i)|$.]
- 3. Consider the "Sort" operation that takes as input a vector in \mathbb{R}^n and returns the entries in sorted (least-to-greatest) order. Show that this operation is well-conditioned for all inputs. In other words, prove that a small normwise relative change to the input vector leads to a small normwise relative change to the output vector.
 - [Hint: To simplify notation, renumber the subscripting of \mathbf{x} according to the order in $\mathrm{Sort}(\mathbf{x})$, so that $x(1) \leq x(2) \leq \cdots \leq x(n)$. The easier case is when a particular perturbed $x(i) + \delta(i)$ ends up also at position i in the sorted perturbed list. The harder case is when $x(i) + \delta(i)$ ends up at a different position $j \neq i$. Start with the case j < i: Argue that on the one hand, $x(i) + \delta(i)$ cannot be much smaller than x(j) since $x(j) \leq x(i)$. Argue on the other hand that $x(i) + \delta(i)$ cannot be much larger than x(j) because otherwise there would be at least j entries in the sorted perturbed list ranked smaller than $x(i) + \delta(i)$ (why?), contradicting the assumption that $x(i) + \delta(i)$ landed at position j.]
- 4. Consider the polynomial $p(x) = (x 1.1)^k$. Write a script in Matlab that plots this function (by evaluating it at closely spaced points) for the domain [.5, 1.5]. Then multiply the factors of p(x) together to obtain the array of coefficients in the standard-form representation $a_0 + a_1x + \cdots + a_kx^k$ of p(x) and evaluate the expanded form of the polynomial again over the interval [.5, 1.5] and plot this. (Use poly to obtain the coefficients and polyval to evaluate the polynomial.)

You should notice a substantial difference between the two plots as k increases. The reason for the difference is that the second plot suffers from cancellation error. Why? (Hint: look at the coefficients in the expanded form. If a sequence of numbers with large absolute values are added together to yield a number with small absolute value, then the answer will suffer from cancellation.)

The largest coefficient of the expanded polynomial will be close to the middle. (Assume k is even.) This coefficient is derived from the binomial formula, which in turn involves

factorials. Using Stirling's approximation for factorials to come up with an inequality, in terms of k and u (where u is unit roundoff), for what is the largest value of k before the relative error due to cancellation reaches 100%. (If you are not familiar with Stirling's approximation, you can locate it on the web.)

Hand in: your m-file, the requested plots, and the analysis described in the last paragraph.