Routing & Addressing: Multihoming 10/25/04

Hong Tat Tong

STGCOMM

Introduction

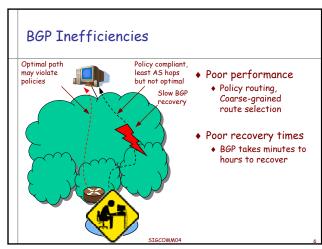
- Two attempts to control/ensure best performance over the Internet
 - Multihoming from the endpoints
 - Overlay with some help from middle-boxes overlay routers
- Solutions both use multiple ISPs
- Reflects reality of traffic flows on Internet; traffic has to flow through multiple ISPs most of the time
- An early solution: multiple hierarchical addresses
 - Attempt to deal with scaling problem
 - Routing table inflation one of the consequences of multihoming!

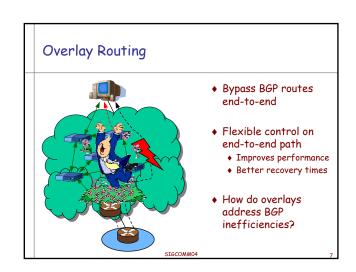
TECOMMON

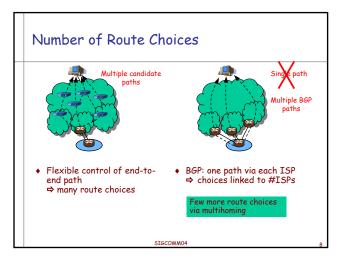
The two SIGCOMM papers

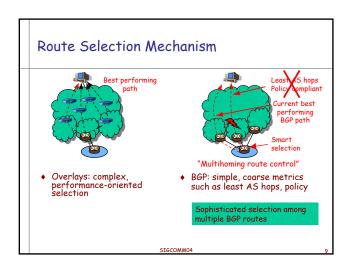
- ◆ A comparison of overlay routing and multihoming route control - Akella et al @ SIGCOMM '04
- ♦ Efficient and Robust Policy Routing Using Multiple Hierarchical Addresses - Paul Tsuchiya (Francis) @ SIGCOMM '91

SIGCOMM04


A Comparison of Overlay Routing and Multihoming Route Control

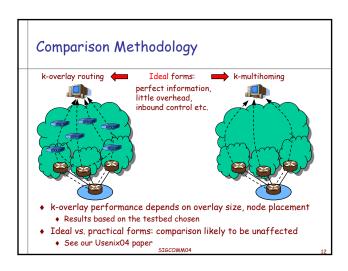

Aditya Akella CMU

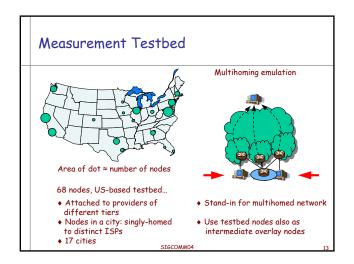

with Jeffrey Pang, Bruce Maggs, Srinivasan Seshan (CMU) and Anees Shaikh (IBM Research)

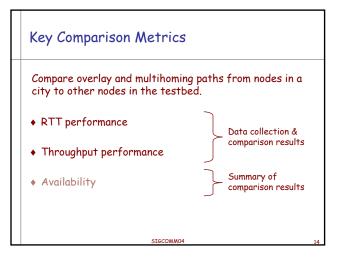

ACM SIGCOMM Aug 31, 2004

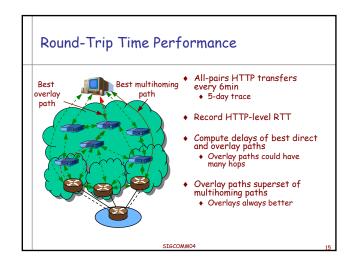
Overlay Routing vs. Multihoming Route Control

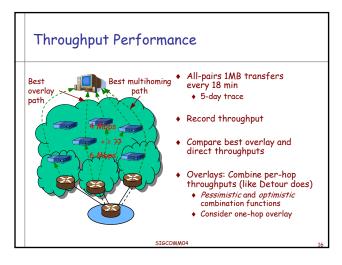
Is multihoming route control competitive with the flexibility of overlay routing systems?

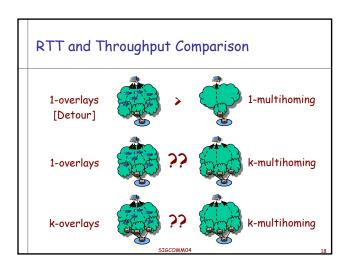

Yes ⇒ good performance and resilience achievable with BGP routing

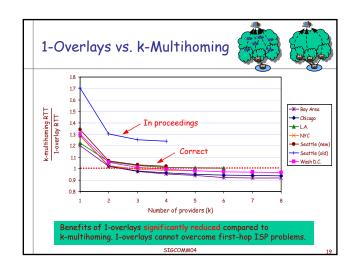

No ⇒ bypass mechanisms or changes to BGP may be necessary for improved performance and resilience

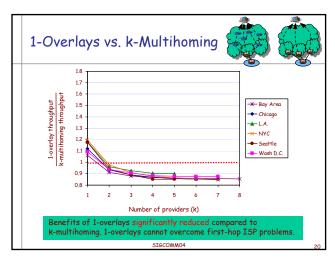

eTCCOH NO

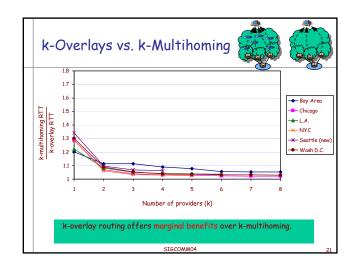

Methodology of comparison Comparison results Discussion and summary

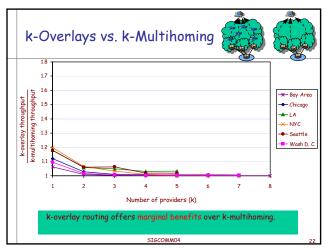

SIGCOMM04

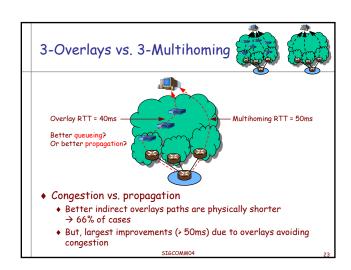


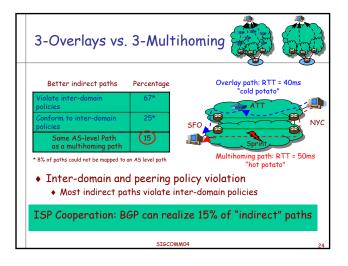


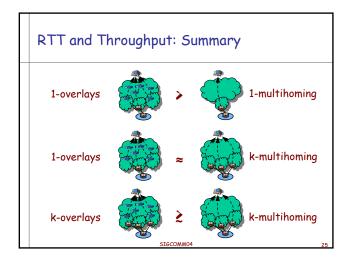


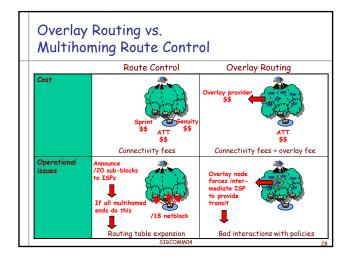



Talk Outline • Methodology of comparison • Comparison results • Discussion and summary









Availability Comparison: Summary

- Use active ping measurements and RON failure data
- k-overlays offer almost perfect availability
 - Multihoming may be necessary to avoid first-hop failures
- ♦ k-multihoming, k > 1, is not as perfect
 - 3-multihoming: availability of 100% on 96% of city-dst pairs
 - ♦ 1-multihoming: only 70% of pairs have 100% availability
 - ♦ May be good enough for practical purposes

SIGCOMMO

Talk Outline • Methodology of comparison • Comparison results • Discussion and summary

Summary

- Route control similar to overlay routing for most practical purposes
- Overlays very useful for deploying functionality
 Multicast, VPNs, QoS, security
- But overlays may be overrated for end-to-end performance and resilience
- ♦ Don't abandon BGP there's still hope

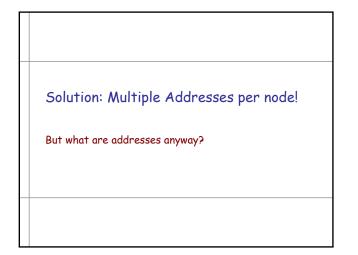
SIGCOMMO4

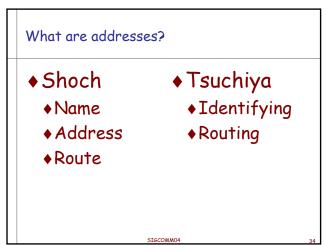
Comments

- Overall, a well-constructed study
- Good sample size but US-centric (what about international links?)
- "The most marked improvements in RTT were due to overlay paths avoiding congestion"
 - Will the performance gap between overlay and multihoming be greater in more congested networks?
 - ◆ Problems of oscillation?
- Problem: study only deals with snapshots, does not see trends over time (e.g. oscillatory behavior) that might be caused by these route control mechanisms...

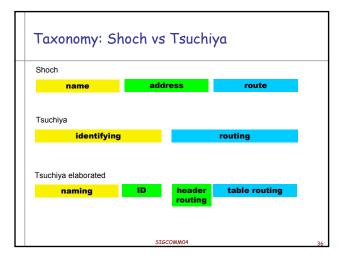
SIGCOMMO-

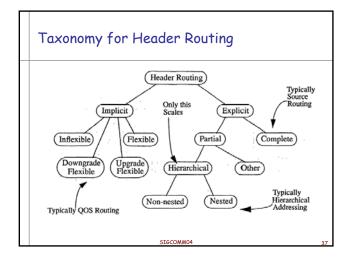
Efficient and Robust Poliy Routing Using Multiple Hierarchical Addresses


Paul Tsuchiya Bellcore


ACM SIGCOMM 1991

Problems


- ◆ IP Address/routing algorithms do not scale well - O(N^2)
- Policy routing increasingly required
- Scaling vs policy problem!
 - Hierarchical addresses for scaling
 - Hierarchy restricts policy control options not able to send packet via different network
 - For policy routers have to keep track of individual networks - not scalable!


SIGCOMM04

Issues and choices

- Use telephone-style multiple hierarchy for network addressing?
 - ♦ Provider access code area code switch id
 - ♦ Inappropriate can't assume that terminal can be reached through a particular backbone
- Where to put routing information in header?
 - ♦ Source route field? encoding is inefficient
 - ♦ QoS field? Not commonly implemented
 - ♦ DNS/X.500 return addresses, not these fields!
 - ADDRESSES the most expedient/compatible place to put this information

STGCOMMO

Hierarchical Routing - division of labor

- ◆ Scalable each router needs RHR[^](1/H) entries instead of R[^]2
- Table routing finds the paths to the backbones
- ♦ Header (directory) routing defines the path from the backbone to the destination
 - Directory service works well if response is independent of source

SIGCOMM04

Hierarchical routing + policy routing

- ♦ Need P paths between routers!
- ◆ Hence, need P paths from source to backbone by table routing
- But common policy to have multiple backbones
- Hence, we also need P addresses (one associated with each backbone) by header routing

SIGCOMM04

Static vs Dynamic Addressing

- Statically pre-assign routes for destination; choose from this set of routes
 - ♦ Can only handle a certain set of failures
 - But Internet has generally stable topology/good reliability
 - Since topology is stable, no great need to use dynamic addresses for header routing (backbones don't normally change that frequently)
- ♦ Dynamically calculate routes from scratch
 - Can handle arbitrary set of failures
 - BUT dynamic addressing is beyond state of the art

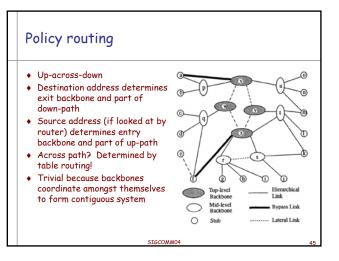
SIGCOMMO

Proposed connection steps

- Source gets address set from directory service
- 2. Prune address set based on policy
- 3. Negotiate address set with destination
 - Need change in TCP for this
- 4. Establish communications with preferred address
- 5. Change address if current one fails
 - Need change in TCP for this

SIGCOMMO

Changes required in TCP


- Initiator sends connection request packet with list of possible addresses
 - But what address is this packet sent to? Unclear...
 - ♦ What if the address is invalid? Have to try again...
- Receiver prunes list and responds
- On ICMP unreachable error, host tries next address in list instead of giving up

SIGCOMM04

Policy routing

- ♦ Find path that:
 - ◆ Satisfies minimum performance requirements of application
 - ♦ Satisfies constraints placed on path by sender, receiver, or backbone
 - Gives best price/performance ratio to whoever is paying (sender/receiver/both)

SIGCOMMO

Problems with across path

- Non contiguous policy
 - ♦ Some stubs just don't want to go through backbone X
 - Billing policies
 - Such cases are not very common or plausible
- Different services on same backbone
 - Certain stubs have high speed access but not others
 - ♦ Qo5 parameter
 - 2 address spaces

SIGCOMM04

Problems with multiple hierarchical addresses

- Added burden on forwarding algorithm in browsers
 - Optimize search: check routing table entry for "internal" address space first
 - ◆ If most traffic stays within private domain... (?)
- Address assignments to hosts may change often
 - Better network management systems to configure addresses?
 - Incorporate address assignment into intra-domain routing protocol

DMM04

Problems with multiple hierarchical addresses

- Proliferation of addresses due to multiple backbones
 - But hierarchies tend to be shallow
 - No need to have one address for every path!
- How does source know the type of backbone associated with an address?
 - Either DNS returns this type, or source keeps table
- Idea of shifting burden to ends is consistent with end-to-end principle, but is problematic
 - No incentive for ends to solve a problem of the middle!

SIGCOMMO