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Introduction

Nuprl implements constructive type theory (CTT) and has a
continuity principle (CONT) and an induction rule, bar
induction for decidable bars (BID).

So Nuprl can do proofs in Intuitionistic math.

We will discuss the continuity principle and bar induction and
show how these intuitionistic principles allow us to prove
theorems such as Brouwer’s theorem that every function
f : [a, b]→ R is uniformly continuous.

This theorem, and other theorems that follow from CONT,
allow us to simplify the development of analysis in Nuprl.

All the results were formally proved in Nuprl.

One theorem (strong connectedness of R) is new.
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Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms

computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2

derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2

Types are partial equivalence relations (PERs) on terms
PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼

written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T

Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors

Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom

a :A→ B[a], a :A× B[a], A + B⋂
a:A B[a], {a :A | B[a]}, a :A ∩ B[a]

pertype(x , y .R(x , y)
when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B

⋂
a:A B[a], {a :A | B[a]}, a :A ∩ B[a]

pertype(x , y .R(x , y)
when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]

pertype(x , y .R(x , y)
when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base

Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼

Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)

No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



Semantics of Nuprl

primitive collection of terms
computation relation on the terms, t1 7→ t2
derived computational bi-simulation relation, t1 ∼ t2
Types are partial equivalence relations (PERs) on terms

PER for a type T must respect ∼
written t1 = t2 ∈ T
Bishop: to define a set T we must say what its members are
and say when two members represent the same element of the
set.

Universes Ui closed under type constructors
Z, Base, Atom
a :A→ B[a], a :A× B[a], A + B⋂

a:A B[a], {a :A | B[a]}, a :A ∩ B[a]
pertype(x , y .R(x , y)

when R(x , y) is a PER on Base
Base is the type corresponding to ∼
Quotient type T//E is a special case

Extensional (x ∈ A ∧ A = B ∈ U⇒ x ∈ B)
No decidable type checking algorithm!

Mark Bickford Constructive Analysis in Nuprl



The real numbers

We use Bishop’s definition of a regular sequence of rationals, but
normalize so that nth rational has denominator 2n; and then ”clear
denominators”.

Definition

A sequence x1, x2, x3, . . . of integers is regular if

∀n,m :N+. |m ∗ xn − n ∗ xm| ≤ 2(n + m)

The sequence is k-regular if

∀n,m :N+. |m ∗ xn − n ∗ xm| ≤ 2k(n + m)

Definition

R = {x : N+ → Z | x is regular}
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Regularity condition

Lemma

Sequence x is k-regular if and only if for every n,m ∈ N+, the
rational intervals [ xn

2kn −
1
n ,

xn
2kn + 1

n ] and [ xm
2km −

1
m ,

xm
2km + 1

m ]
overlap (i.e. have a common member q ∈ Q).

Proof.

The intervals overlap if and only if xn
2kn + 1

n ≥
xm
2km −

1
m and

xn
2kn −

1
n ≤

xm
2km + 1

m . Multiplying by 2knm to clear the
denominators, these hold if and only if m ∗ xn + 2km ≥ n ∗ xm− 2kn
and m ∗ xn − 2km ≤ n ∗ xm + 2kn, which is the same as
2kn + 2km ≥ n ∗ xm −m ∗ xn and m ∗ xn − n ∗ xm ≤ 2km + 2kn.
These hold if and only if |m ∗ xn − n ∗ xm| ≤ 2k(n + m).
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Equivalence relation on R

Definition

Real numbers x and y are equivalent, (x ≡ y), if and only if
∀n :N+. |xn − yn| ≤ 4

We show next that (x ≡ y) is an equivalence relation on R.

Definition

bnddiff(x , y) ≡ ∃B :N. ∀n :N+. |xn − yn| ≤ B
(the pointwise difference between x and y is bounded).

Lemma

For all x , y ∈ R, (x ≡ y)⇐⇒ bnddiff(x , y)
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Proof

If (x ≡ y) then we may take B = 4.

In the other direction, suppose
∀n :N+. |xn − yn| ≤ B, then, for any n,m ∈ N+, if 5 ≤ |xn − yn|
then
5m ≤ m|xn−yn| ≤ |m∗xn−n∗xm|+|n∗xm−n∗ym|+|n∗ym−m∗yn|,
by the triangle inequality. By regularity and our assumption, the
right side is ≤ 4(n + m) + nB. Thus, 5m ≤ 4(n + m) + nB, so,
m ≤ (4 + B)n and we obtain a contradiction when
m = 1 + (4 + B)n.
Hence, |xn − yn| ≤ 4.

Corollary

≡ is an equivalence relation on R
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Acceleration

We use the symbol ÷ for integer division; it satisfies:

n = k(n ÷ k) + (n rem k) (with |n rem k | < |k |)

Definition

The sequence accel(k , x) = λn. x2kn ÷ 2k is called the
k-acceleration of sequence x .

Lemma

If sequence x is k-regular, then accel(k , x) is regular,
and bnddiff(accel(k , x), x).

(See lecture notes for the proof.)
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Arithmetic and Ordering

If x and y are regular sequences then λn. xn + yn is a 2-regular
sequence. So we define

x + y = accel(2, λn. xn + yn)

|x | = λn. |xn| (1)

max(x , y) = λn. max(xn, yn) (2)

min(x , y) = λn. min(xn, yn) (3)

− x = λn.− xn (4)

x/k = λn. x2n ÷ 2k (5)

x ≤ y ⇔ ∀n :N+. xn ≤ yn + 4 (6)

x < y ⇔ ∃n :N+. xn + 4 < yn (7)

Multiplication and 1/x (for x#0) are more complicated.
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More basic facts about R

For every integer z we get a real λn. 2zn that we will also write as
z . It follows from these definitions that

|x − (xm/2m)| ≤ 1/m (8)

Everything in chapter 2 of Bishop and Bridges “Constructive
Analysis” has been formalized, including this important lemma:

Lemma

If x < y then ∀z :R. (x < z) ∨ (z < y)

Proof.

Let n be such that xn + 4 < yn and let m = 12n + 1. Then
regularity of x and y implies xm + 8 < ym (see notes). Now we
must have either xm + 4 < zm or zm + 4 < ym.
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The (false) Continuity Principle

Type Nk = {n :N |n < k}. Let S = N→ N, and Sk = Nk → N.

Brouwer’s continuity principle for numbers: If F has type S→ N
and f has type S then F (f ) depends on only a finite part of f .

∀F :S→ N. ∀f :S. ∃k :N. ∀g :S. (g = f ∈ Sk)⇒ F (g) = F (f )

The instance of the above continuity principle for f = 0 = λi .0 is

∀F :S→ N. ∃k :N. ∀g :S. (g = 0 ∈ Sk)⇒ F (g) = F (0)

Using BHK interpretation there is a modulus of continuity function
M of type (S→ N)→ N such that

∀F :S→ N. ∀g :S. (∀n :N. n < M(F ) => g(n) = 0)⇒ F (g) = F (0)

This is false!
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Escardo and Xu’s proof

We have

∀F :S→ N. ∀g :S. (∀n :N. n < M(F ) => g(n) = 0)⇒ F (g) = F (0)

Let

J = M(λf . 0) D(g) = M(λf . g(f (J))

K = M(D) 0tn = λi . if i < t then 0 else n

G (f ) = if f (J) < K then 0 else 1 H(f ) = f (J)

Note that D(0) = M(λf . 0) = J and therefore, since M(D) = K ,

∀g :S. (∀n :N. n < K => g(n) = 0)⇒ D(g) = J

In particular,
J = D(0K1) = M(λf . 0K1(f (J)) = M(λf . G (f )) = M(G ). If
K > 0 then G (0) = 0 and G (0JK ) = 1 contradicts M(G ) = J. If,
on the other hand, K = 0 then ∀g :S. D(g) = J so
D(λx .x) = M(λf . (f (J)) = M(H) = J. But H(0) = 0 and
H(0J1) = 1 contradicts M(H) = J.
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Why is M impossible?

D(g) = M(λf . g(f (J)) where J = M(λf . 0).

We note that D(0) = M(λf . 0) = J.

D(0) = M(λf . 0(f (J)))

λf . 0(f (J)) extensionally equal to λf . 0 but not intensionally
equal.

Intensional M could have M(λf . 0) = 0 but
M(λf . 0(f (J))) > J

Escardo and Xu show M can not be extensional.
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Function types (Π type)

B is a type family over A, if a1 = a2 ∈ A implies
B[a1] = B[a2] ∈ Ui .

PER for type a :A→ B[a] is defined by f = g ∈ a :A→ B[a]
if and only if, for all terms a1 and a2,
a1 = a2 ∈ A⇒ f (a1) = g(a2) ∈ B[a1]

So function extensionality is built in to definition of
a :A→ B[a].

How can we say for every A there is a B ... without asserting
the existence of an extensional function A→ B?

answer: Change equality in B
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Quotient type

If E (x , y) is an equivalence relation on a type T , then the
quotient type T//E is the type such that
x = y ∈ T//E ⇔ (x ∈ T ∧ y ∈ T ∧ E (x , y)).

For trivial E (x , y) = True then
x = y ∈ T//True⇔ (x ∈ T ∧ y ∈ T ).

We write T//True as �T and call it the half squash of T .

Function f ∈ a :A→�B[a] is a non-extensional function.

Brouwer’s Continuity :

∀F :S→ N. ∀f :S. �∃k :N. ∀g :S. (g = f ∈ Sk)⇒ F (g) = F (f )
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Why is the continuity principle true?

We can compute (intensionally) a modulus of continuity for F
using the Nuprl computation system.
Let bound-domain(f , n, e) be

λx . if x < 0 then ⊥ else if x < n then f (n) else exception(e,Ax)

diverges on x 6∈ N
agrees with f on x < n
raises exception e on x ≥ n
Ax is a canonical form of type Unit

Kleene M-function for F is

M(n, f ) = νe.F (bound-domain(f , n, e))?e :x .Ax

The try/catch operator ?e :x .G (x) catches an exception with
name e, binds its value to x , and continues with G (x).
ν operator chooses a fresh name e, so F can not catch
exceptions named e.

Iterate M(0, f ),M(1, f ),M(2, f ), . . .M(k , f ) until we get an
number rather than Ax at which point we have the modulus
of continuity k.
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number rather than Ax at which point we have the modulus
of continuity k.

Mark Bickford Constructive Analysis in Nuprl



Why is the continuity principle true?

We can compute (intensionally) a modulus of continuity for F
using the Nuprl computation system.
Let bound-domain(f , n, e) be

λx . if x < 0 then ⊥ else if x < n then f (n) else exception(e,Ax)

diverges on x 6∈ N
agrees with f on x < n
raises exception e on x ≥ n
Ax is a canonical form of type Unit

Kleene M-function for F is

M(n, f ) = νe.F (bound-domain(f , n, e))?e :x .Ax

The try/catch operator ?e :x .G (x) catches an exception with
name e, binds its value to x , and continues with G (x).

ν operator chooses a fresh name e, so F can not catch
exceptions named e.

Iterate M(0, f ),M(1, f ),M(2, f ), . . .M(k , f ) until we get an
number rather than Ax at which point we have the modulus
of continuity k.

Mark Bickford Constructive Analysis in Nuprl



Why is the continuity principle true?

We can compute (intensionally) a modulus of continuity for F
using the Nuprl computation system.
Let bound-domain(f , n, e) be

λx . if x < 0 then ⊥ else if x < n then f (n) else exception(e,Ax)

diverges on x 6∈ N
agrees with f on x < n
raises exception e on x ≥ n
Ax is a canonical form of type Unit

Kleene M-function for F is

M(n, f ) = νe.F (bound-domain(f , n, e))?e :x .Ax

The try/catch operator ?e :x .G (x) catches an exception with
name e, binds its value to x , and continues with G (x).
ν operator chooses a fresh name e, so F can not catch
exceptions named e.

Iterate M(0, f ),M(1, f ),M(2, f ), . . .M(k , f ) until we get an
number rather than Ax at which point we have the modulus
of continuity k.

Mark Bickford Constructive Analysis in Nuprl



Why is the continuity principle true?

We can compute (intensionally) a modulus of continuity for F
using the Nuprl computation system.
Let bound-domain(f , n, e) be

λx . if x < 0 then ⊥ else if x < n then f (n) else exception(e,Ax)

diverges on x 6∈ N
agrees with f on x < n
raises exception e on x ≥ n
Ax is a canonical form of type Unit

Kleene M-function for F is

M(n, f ) = νe.F (bound-domain(f , n, e))?e :x .Ax

The try/catch operator ?e :x .G (x) catches an exception with
name e, binds its value to x , and continues with G (x).
ν operator chooses a fresh name e, so F can not catch
exceptions named e.

Iterate M(0, f ),M(1, f ),M(2, f ), . . .M(k , f ) until we get an
number rather than Ax at which point we have the modulus
of continuity k.

Mark Bickford Constructive Analysis in Nuprl



CONT :

∀F :S→ N. ∀f :S. �∃k :N. ∀g :S. (g = f ∈ Sk)⇒ F (g) = F (f )

What can we prove with this?
Come back for Lecture 2
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Product (Σ) type, Set type, Squash type

Dependent product type a :A× B[a].

p = q ∈ a :A× B[a] iff p 7→ 〈a1, b1〉 and q 7→ 〈a2, b2〉 and
a1 = a2 ∈ A and b1 = b2 ∈ B[a1].

Set type (aka refinement type) {a :A | B[a]}
a ∈ {a :A | B[a]} iff a = fst(p) for some p ∈ a :A× B[a]

Squash type ↓T = {x :Unit | T}
T ⇒ (�T )⇒ (↓T )⇒ ¬¬T
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Stable and Squash Stable Propositions

P is stable if ¬¬P ⇒ P

Markov’s Principle (MP) says that for decidable P(n),
∃n :N. P(n) is stable.

Nuprl does not prove MP, but is consistent with MP.

P is squash stable if ↓P ⇒ P

For decidable P(n), ∃n :N. P(n) is squash stable, because
µn. P(n) ∈ ∃n :N. P(n) if ↓∃n :N. P(n)
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