Constructive Analysis in Nuprl

Mark Bickford

Cornell University, Computer Science

September 29, 2017

æ

(★ 문 ► ★ 문 ►

• Introduction to Nuprl

æ

< Ξ

- Introduction to Nuprl
- The Real Numbers

- Introduction to Nuprl
- The Real Numbers
 - Definition

- Introduction to Nuprl
- The Real Numbers
 - Definition
 - Equivalence

- Introduction to Nuprl
- The Real Numbers
 - Definition
 - Equivalence
 - Acceleration

- Introduction to Nuprl
- The Real Numbers
 - Definition
 - Equivalence
 - Acceleration
 - Arithmetic and Ordering

- Introduction to Nuprl
- The Real Numbers
 - Definition
 - Equivalence
 - Acceleration
 - Arithmetic and Ordering
- The Continuity principle

- Introduction to Nuprl
- The Real Numbers
 - Definition
 - Equivalence
 - Acceleration
 - Arithmetic and Ordering
- The Continuity principle
 - A false continuity principle

- Introduction to Nuprl
- The Real Numbers
 - Definition
 - Equivalence
 - Acceleration
 - Arithmetic and Ordering
- The Continuity principle
 - A false continuity principle
 - Function, Product, Quotient, and Equality types

- Introduction to Nuprl
- The Real Numbers
 - Definition
 - Equivalence
 - Acceleration
 - Arithmetic and Ordering
- The Continuity principle
 - A false continuity principle
 - Function, Product, Quotient, and Equality types
 - A true continuity principle

æ

(▲ 문) (▲ 문)

• Theorems derivable from continuity

< E

- Theorems derivable from continuity
 - Weak Markov Principle

< E.

- Theorems derivable from continuity
 - Weak Markov Principle
 - Other derived continuity principles

- Theorems derivable from continuity
 - Weak Markov Principle
 - Other derived continuity principles
 - $\bullet~$ Connectedness of $\mathbb R$

Mark Bickford Constructive Analysis in Nuprl

< 同 ▶

★ 문 ► ★ 문 ►

æ

• Bar Induction

æ

< Ξ

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)

-

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem

э

-

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree
 - Soundness of Bar Induction

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree
 - Soundness of Bar Induction
- Brouwer's uniform continuity theorem

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree
 - Soundness of Bar Induction
- Brouwer's uniform continuity theorem
 - Uniform continuity from Fan

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree
 - Soundness of Bar Induction
- Brouwer's uniform continuity theorem
 - Uniform continuity from Fan
 - Uniform continuity for real functions

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree
 - Soundness of Bar Induction
- Brouwer's uniform continuity theorem
 - Uniform continuity from Fan
 - Uniform continuity for real functions
- Consequences of Brouwer's theorem

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree
 - Soundness of Bar Induction
- Brouwer's uniform continuity theorem
 - Uniform continuity from Fan
 - Uniform continuity for real functions
- Consequences of Brouwer's theorem
 - Simplification of formal theory

- Bar Induction
 - Statement of BID, Realizer for BID (bar recursion)
 - Fan Theorem
 - Kleene's singular tree
 - Soundness of Bar Induction
- Brouwer's uniform continuity theorem
 - Uniform continuity from Fan
 - Uniform continuity for real functions
- Consequences of Brouwer's theorem
 - Simplification of formal theory
 - Two functional equations

Mark Bickford Constructive Analysis in Nuprl

æ

Э

Introduction

• Nuprl implements *constructive type theory* (CTT) and has a *continuity principle* (CONT) and an induction rule, *bar induction for decidable bars* (BID).

• = • •

- Nuprl implements *constructive type theory* (CTT) and has a *continuity principle* (CONT) and an induction rule, *bar induction for decidable bars* (BID).
- So Nuprl can do proofs in Intuitionistic math.

- Nuprl implements *constructive type theory* (CTT) and has a *continuity principle* (CONT) and an induction rule, *bar induction for decidable bars* (BID).
- So Nuprl can do proofs in Intuitionistic math.
- We will discuss the continuity principle and bar induction and show how these intuitionistic principles allow us to prove theorems such as Brouwer's theorem that every function f : [a, b] → ℝ is uniformly continuous.

- Nuprl implements *constructive type theory* (CTT) and has a *continuity principle* (CONT) and an induction rule, *bar induction for decidable bars* (BID).
- So Nuprl can do proofs in Intuitionistic math.
- We will discuss the continuity principle and bar induction and show how these intuitionistic principles allow us to prove theorems such as Brouwer's theorem that every function f : [a, b] → ℝ is uniformly continuous.
- This theorem, and other theorems that follow from CONT, allow us to simplify the development of analysis in Nuprl.

- Nuprl implements *constructive type theory* (CTT) and has a *continuity principle* (CONT) and an induction rule, *bar induction for decidable bars* (BID).
- So Nuprl can do proofs in Intuitionistic math.
- We will discuss the continuity principle and bar induction and show how these intuitionistic principles allow us to prove theorems such as Brouwer's theorem that every function f : [a, b] → ℝ is uniformly continuous.
- This theorem, and other theorems that follow from CONT, allow us to simplify the development of analysis in Nuprl.
- All the results were formally proved in Nuprl.

- Nuprl implements *constructive type theory* (CTT) and has a *continuity principle* (CONT) and an induction rule, *bar induction for decidable bars* (BID).
- So Nuprl can do proofs in Intuitionistic math.
- We will discuss the continuity principle and bar induction and show how these intuitionistic principles allow us to prove theorems such as Brouwer's theorem that every function f : [a, b] → ℝ is uniformly continuous.
- This theorem, and other theorems that follow from CONT, allow us to simplify the development of analysis in Nuprl.
- All the results were formally proved in Nuprl.
- One theorem (strong connectedness of \mathbb{R}) is new.
Mark Bickford Constructive Analysis in Nuprl

æ

• primitive collection of *terms*

э

- primitive collection of *terms*
- computation relation on the terms, $t_1\mapsto t_2$

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- derived computational bi-simulation relation, $t_1 \sim t_2$

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set T we must say what its members are and say when two members represent the same element of the set.

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - $\bullet \mathbb{Z}$, Base, Atom

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - $\bullet \mathbb{Z}$, Base, Atom
 - $a: A \rightarrow B[a], a: A \times B[a], A + B$

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - \mathbb{Z} , Base, Atom
 - $a: A \rightarrow B[a], \quad a: A \times B[a], \quad A + B$
 - $\bigcap_{a:A} B[a], \{a:A \mid B[a]\}, a:A \cap B[a]$

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - \mathbb{Z} , Base, Atom
 - $a: A \to B[a], \quad a: A \times B[a], \quad A + B$
 - $\bigcap_{a:A} B[a], \{a:A \mid B[a]\}, a:A \cap B[a]$
 - pertype(x, y.R(x, y)

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - \mathbb{Z} , Base, Atom
 - $a: A \rightarrow B[a], a: A \times B[a], A + B$
 - $\bigcap_{a:A} B[a], \{a:A \mid B[a]\}, a:A \cap B[a]$
 - pertype(x, y.R(x, y)
 - when R(x, y) is a PER on Base

- primitive collection of terms
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - \mathbb{Z} , Base, Atom
 - $a: A \rightarrow B[a], a: A \times B[a], A + B$
 - $\bigcap_{a:A} B[a], \{a:A \mid B[a]\}, a:A \cap B[a]$
 - pertype(x, y.R(x, y)
 - when R(x, y) is a PER on Base
 - $\, \bullet \,$ Base is the type corresponding to $\sim \,$

- primitive collection of *terms*
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - \mathbb{Z} , Base, Atom
 - $a: A \rightarrow B[a], a: A \times B[a], A + B$
 - $\bigcap_{a:A} B[a], \{a:A \mid B[a]\}, a:A \cap B[a]$
 - pertype(x, y.R(x, y)
 - when R(x, y) is a PER on Base
 - $\, \bullet \,$ Base is the type corresponding to $\sim \,$
 - Quotient type T//E is a special case

- primitive collection of *terms*
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - \mathbb{Z} , Base, Atom
 - $a: A \to B[a], \quad a: A \times B[a], \quad A + B$
 - $\bigcap_{a:A} B[a], \{a:A \mid B[a]\}, a:A \cap B[a]$
 - pertype(x, y.R(x, y)
 - when R(x, y) is a PER on Base
 - $\, \bullet \,$ Base is the type corresponding to $\sim \,$
 - Quotient type T//E is a special case
- Extensional $(x \in A \land A = B \in \mathbb{U} \Rightarrow x \in B)$

- primitive collection of *terms*
- computation relation on the terms, $t_1\mapsto t_2$
- \bullet derived computational bi-simulation relation, $t_1 \sim t_2$
- Types are partial equivalence relations (PERs) on terms
 - PER for a type T must respect \sim
 - written $t_1 = t_2 \in T$
 - Bishop: to define a set *T* we must say what its members are and say when two members represent the same element of the set.
- Universes \mathbb{U}_i closed under type constructors
 - \mathbb{Z} , Base, Atom
 - $a: A \to B[a], \quad a: A \times B[a], \quad A + B$
 - $\bigcap_{a:A} B[a], \{a:A \mid B[a]\}, a:A \cap B[a]$
 - pertype(x, y.R(x, y)
 - when R(x, y) is a PER on Base
 - $\, \bullet \,$ Base is the type corresponding to $\sim \,$
 - Quotient type T//E is a special case
- Extensional $(x \in A \land A = B \in \mathbb{U} \Rightarrow x \in B)$

We use Bishop's definition of a regular sequence of rationals, but normalize so that *nth* rational has denominator 2n; and then "clear denominators".

We use Bishop's definition of a regular sequence of rationals, but normalize so that *nth* rational has denominator 2n; and then "clear denominators".

Definition

A sequence x_1, x_2, x_3, \ldots of integers is regular if

$$\forall n, m : \mathbb{N}^+. |m * x_n - n * x_m| \leq 2(n+m)$$

The sequence is k-regular if

$$\forall n, m : \mathbb{N}^+. |m * x_n - n * x_m| \le 2k(n+m)$$

We use Bishop's definition of a regular sequence of rationals, but normalize so that *nth* rational has denominator 2n; and then "clear denominators".

Definition

A sequence x_1, x_2, x_3, \ldots of integers is regular if

$$\forall n, m : \mathbb{N}^+. |m * x_n - n * x_m| \leq 2(n+m)$$

The sequence is k-regular if

$$\forall n, m \colon \mathbb{N}^+. \ |m * x_n - n * x_m| \le 2k(n+m)$$

Definition

 $\mathbb{R} = \{ x : \mathbb{N}^+ \to \mathbb{Z} \mid x \text{ is regular} \}$

Regularity condition

Mark Bickford Constructive Analysis in Nuprl

æ

Lemma

Sequence x is k-regular if and only if for every $n, m \in \mathbb{N}^+$, the rational intervals $\left[\frac{x_n}{2kn} - \frac{1}{n}, \frac{x_n}{2kn} + \frac{1}{n}\right]$ and $\left[\frac{x_m}{2km} - \frac{1}{m}, \frac{x_m}{2km} + \frac{1}{m}\right]$ overlap (i.e. have a common member $q \in \mathbb{Q}$).

< ∃ >

Lemma

Sequence x is k-regular if and only if for every $n, m \in \mathbb{N}^+$, the rational intervals $\left[\frac{x_n}{2kn} - \frac{1}{n}, \frac{x_n}{2kn} + \frac{1}{n}\right]$ and $\left[\frac{x_m}{2km} - \frac{1}{m}, \frac{x_m}{2km} + \frac{1}{m}\right]$ overlap (i.e. have a common member $q \in \mathbb{Q}$).

Proof.

The intervals overlap if and only if $\frac{x_n}{2kn} + \frac{1}{n} \ge \frac{x_m}{2km} - \frac{1}{m}$ and $\frac{x_n}{2kn} - \frac{1}{n} \le \frac{x_m}{2km} + \frac{1}{m}$. Multiplying by 2knm to clear the denominators, these hold if and only if $m * x_n + 2km \ge n * x_m - 2kn$ and $m * x_n - 2km \le n * x_m + 2kn$, which is the same as $2kn + 2km \ge n * x_m - m * x_n$ and $m * x_n - n * x_m \le 2km + 2kn$. These hold if and only if $|m * x_n - n * x_m| \le 2k(n + m)$.

伺 ト く ヨ ト く ヨ ト

Equivalence relation on $\mathbb R$

Mark Bickford Constructive Analysis in Nuprl

Definition

Real numbers x and y are equivalent, $(x \equiv y)$, if and only if $\forall n: \mathbb{N}^+$. $|x_n - y_n| \leq 4$

We show next that $(x \equiv y)$ is an equivalence relation on \mathbb{R} .

Definition

Real numbers x and y are equivalent, $(x \equiv y)$, if and only if $\forall n: \mathbb{N}^+$. $|x_n - y_n| \leq 4$

We show next that $(x \equiv y)$ is an equivalence relation on \mathbb{R} .

Definition

bnddiff $(x, y) \equiv \exists B : \mathbb{N}. \forall n : \mathbb{N}^+. |x_n - y_n| \le B$ (the pointwise difference between x and y is bounded).

Definition

Real numbers x and y are equivalent, $(x \equiv y)$, if and only if $\forall n: \mathbb{N}^+$. $|x_n - y_n| \leq 4$

We show next that $(x \equiv y)$ is an equivalence relation on \mathbb{R} .

Definition

bnddiff $(x, y) \equiv \exists B : \mathbb{N}$. $\forall n : \mathbb{N}^+$. $|x_n - y_n| \le B$ (the pointwise difference between x and y is bounded).

Lemma

For all
$$x, y \in \mathbb{R}$$
, $(x \equiv y) \iff \mathsf{bnddiff}(x, y)$

白 と く ヨ と く ヨ

If $(x \equiv y)$ then we may take B = 4.

A ►

(★ 문 ► ★ 문 ►

æ

If $(x \equiv y)$ then we may take B = 4. In the other direction, suppose $\forall n : \mathbb{N}^+$. $|x_n - y_n| \leq B$, then, for any $n, m \in \mathbb{N}^+$, if $5 \leq |x_n - y_n|$ then

 $5m \le m|x_n-y_n| \le |m*x_n-n*x_m|+|n*x_m-n*y_m|+|n*y_m-m*y_n|,$ by the triangle inequality.

If $(x \equiv y)$ then we may take B = 4. In the other direction, suppose $\forall n : \mathbb{N}^+$. $|x_n - y_n| \leq B$, then, for any $n, m \in \mathbb{N}^+$, if $5 \leq |x_n - y_n|$ then

 $5m \le m|x_n-y_n| \le |m*x_n-n*x_m|+|n*x_m-n*y_m|+|n*y_m-m*y_n|$, by the triangle inequality. By regularity and our assumption, the right side is $\le 4(n+m)+nB$. Thus, $5m \le 4(n+m)+nB$, so, $m \le (4+B)n$ and we obtain a contradiction when m = 1 + (4+B)n.

If $(x \equiv y)$ then we may take B = 4. In the other direction, suppose $\forall n : \mathbb{N}^+$. $|x_n - y_n| \leq B$, then, for any $n, m \in \mathbb{N}^+$, if $5 \leq |x_n - y_n|$ then

 $5m \le m|x_n-y_n| \le |m*x_n-n*x_m|+|n*x_m-n*y_m|+|n*y_m-m*y_n|$, by the triangle inequality. By regularity and our assumption, the right side is $\le 4(n+m) + nB$. Thus, $5m \le 4(n+m) + nB$, so, $m \le (4+B)n$ and we obtain a contradiction when m = 1 + (4+B)n. Hence, $|x_n - y_n| \le 4$.

If $(x \equiv y)$ then we may take B = 4. In the other direction, suppose $\forall n : \mathbb{N}^+$. $|x_n - y_n| \leq B$, then, for any $n, m \in \mathbb{N}^+$, if $5 \leq |x_n - y_n|$ then

 $5m \le m|x_n-y_n| \le |m*x_n-n*x_m|+|n*x_m-n*y_m|+|n*y_m-m*y_n|$, by the triangle inequality. By regularity and our assumption, the right side is $\le 4(n+m) + nB$. Thus, $5m \le 4(n+m) + nB$, so, $m \le (4+B)n$ and we obtain a contradiction when m = 1 + (4+B)n. Hence, $|x_n - y_n| \le 4$.

Corollary

 \equiv is an equivalence relation on $\mathbb R$

We use the symbol \div for integer division; it satisfies:

 $n = k(n \div k) + (n \text{ rem } k)$ (with |n rem k| < |k|)

э

We use the symbol \div for integer division; it satisfies:

 $n = k(n \div k) + (n \text{ rem } k)$ (with |n rem k| < |k|)

Definition

The sequence $\operatorname{accel}(k, x) = \lambda n$. $x_{2kn} \div 2k$ is called the *k*-acceleration of sequence *x*.

We use the symbol \div for integer division; it satisfies:

 $n = k(n \div k) + (n \text{ rem } k)$ (with |n rem k| < |k|)

Definition

The sequence $accel(k, x) = \lambda n$. $x_{2kn} \div 2k$ is called the *k*-acceleration of sequence *x*.

Lemma

If sequence x is k-regular, then accel(k, x) is regular, and bnddiff(accel(k, x), x).

(See lecture notes for the proof.)
If x and y are regular sequences then $\lambda n. x_n + y_n$ is a 2-regular sequence. So we define

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

If x and y are regular sequences then $\lambda n. x_n + y_n$ is a 2-regular sequence. So we define

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$
$$|x| = \lambda n. |x_n|$$
(1)

If x and y are regular sequences then $\lambda n. x_n + y_n$ is a 2-regular sequence. So we define

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

$$|x| = \lambda n. |x_n|$$
(1)
$$\max(x, y) = \lambda n. \max(x_n, y_n)$$
(2)

If x and y are regular sequences then $\lambda n. x_n + y_n$ is a 2-regular sequence. So we define

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

$$|x| = \lambda n. |x_n| \tag{1}$$

$$\max(x, y) = \lambda n. \max(x_n, y_n)$$
(2)

$$\min(x, y) = \lambda n. \min(x_n, y_n)$$
(3)

If x and y are regular sequences then $\lambda n. x_n + y_n$ is a 2-regular sequence. So we define

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

$$|x| = \lambda n. |x_n| \tag{1}$$

$$\max(x, y) = \lambda n. \max(x_n, y_n)$$
(2)

$$\min(x, y) = \lambda n. \min(x_n, y_n)$$
(3)

$$-x = \lambda n. - x_n \tag{4}$$

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

$$|x| = \lambda n. |x_n| \tag{1}$$

$$\max(x, y) = \lambda n. \max(x_n, y_n)$$
(2)

$$\min(x, y) = \lambda n. \min(x_n, y_n)$$
(3)

$$-x = \lambda n - x_n \tag{4}$$

$$x/k = \lambda n. \ x_{2n} \div 2k \tag{5}$$

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

$$|x| = \lambda n. |x_n| \tag{1}$$

$$\max(x, y) = \lambda n. \max(x_n, y_n)$$
(2)

$$\min(x, y) = \lambda n. \min(x_n, y_n)$$
(3)

$$-x = \lambda n. - x_n \tag{4}$$

$$x/k = \lambda n. \ x_{2n} \div 2k \tag{5}$$

< ∃ ►

$$x \leq y \quad \Leftrightarrow \quad \forall n : \mathbb{N}^+. \ x_n \leq y_n + 4$$
 (6)

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

$$|x| = \lambda n. |x_n| \tag{1}$$

$$\max(x, y) = \lambda n. \max(x_n, y_n)$$
(2)

$$\min(x, y) = \lambda n. \min(x_n, y_n)$$
(3)

$$-x = \lambda n. - x_n \tag{4}$$

$$x/k = \lambda n. \ x_{2n} \div 2k \tag{5}$$

(7)

$$x \leq y \iff \forall n : \mathbb{N}^+. x_n \leq y_n + 4$$
 (6)

$$x < y \iff \exists n : \mathbb{N}^+. x_n + 4 < y_n$$

$$x + y = \operatorname{accel}(2, \lambda n. x_n + y_n)$$

$$|x| = \lambda n. |x_n| \tag{1}$$

$$\max(x, y) = \lambda n. \max(x_n, y_n)$$
(2)

$$\min(x, y) = \lambda n. \min(x_n, y_n)$$
(3)

$$-x = \lambda n. - x_n \tag{4}$$

$$x/k = \lambda n. \ x_{2n} \div 2k \tag{5}$$

$$x \leq y \quad \Leftrightarrow \quad \forall n : \mathbb{N}^+. \ x_n \leq y_n + 4$$
 (6)

$$x < y \quad \Leftrightarrow \quad \exists n : \mathbb{N}^+ . \ x_n + 4 < y_n \tag{7}$$

Multiplication and 1/x (for $x \neq 0$) are more complicated.

$$|x - (x_m/2m)| \leq 1/m$$
 (8)

$$|x - (x_m/2m)| \leq 1/m$$
 (8)

Everything in chapter 2 of Bishop and Bridges "Constructive Analysis" has been formalized,

$$|x - (x_m/2m)| \leq 1/m$$
 (8)

Everything in chapter 2 of Bishop and Bridges "Constructive Analysis" has been formalized, including this important lemma:

Lemma

If
$$x < y$$
 then $\forall z : \mathbb{R}$. $(x < z) \lor (z < y)$

$$|x - (x_m/2m)| \leq 1/m$$
 (8)

Everything in chapter 2 of Bishop and Bridges "Constructive Analysis" has been formalized, including this important lemma:

Lemma

If
$$x < y$$
 then $\forall z : \mathbb{R}$. $(x < z) \lor (z < y)$

Proof.

Let *n* be such that $x_n + 4 < y_n$ and let m = 12n + 1. Then regularity of *x* and *y* implies $x_m + 8 < y_m$ (see notes). Now we must have either $x_m + 4 < z_m$ or $z_m + 4 < y_m$.

Type $\mathbb{N}_k = \{n : \mathbb{N} \mid n < k\}$. Let $\mathbb{S} = \mathbb{N} \to \mathbb{N}$, and $\mathbb{S}_k = \mathbb{N}_k \to \mathbb{N}$.

御 と く き と く き とう

э

Type $\mathbb{N}_k = \{n: \mathbb{N} \mid n < k\}$. Let $\mathbb{S} = \mathbb{N} \to \mathbb{N}$, and $\mathbb{S}_k = \mathbb{N}_k \to \mathbb{N}$. Brouwer's continuity principle for numbers: If F has type $\mathbb{S} \to \mathbb{N}$ and f has type \mathbb{S} then F(f) depends on only a finite part of f.

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

Type $\mathbb{N}_k = \{n: \mathbb{N} \mid n < k\}$. Let $\mathbb{S} = \mathbb{N} \to \mathbb{N}$, and $\mathbb{S}_k = \mathbb{N}_k \to \mathbb{N}$. Brouwer's continuity principle for numbers: If F has type $\mathbb{S} \to \mathbb{N}$ and f has type \mathbb{S} then F(f) depends on only a finite part of f.

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

The instance of the above continuity principle for $f = \overline{0} = \lambda i.0$ is

$$\forall F : \mathbb{S} \to \mathbb{N}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = \overline{0} \in \mathbb{S}_k) \Rightarrow F(g) = F(\overline{0})$$

Type $\mathbb{N}_k = \{n: \mathbb{N} \mid n < k\}$. Let $\mathbb{S} = \mathbb{N} \to \mathbb{N}$, and $\mathbb{S}_k = \mathbb{N}_k \to \mathbb{N}$. Brouwer's continuity principle for numbers: If F has type $\mathbb{S} \to \mathbb{N}$ and f has type \mathbb{S} then F(f) depends on only a finite part of f.

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

The instance of the above continuity principle for $f = \overline{0} = \lambda i.0$ is

$$\forall F : \mathbb{S} \to \mathbb{N}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = \overline{0} \in \mathbb{S}_k) \Rightarrow F(g) = F(\overline{0})$$

Using BHK interpretation there is a *modulus of continuity* function M of type $(\mathbb{S} \to \mathbb{N}) \to \mathbb{N}$ such that

$$\forall F : \mathbb{S} \to \mathbb{N}. \ \forall g : \mathbb{S}. \ (\forall n : \mathbb{N}. \ n < M(F) => g(n) = 0) \Rightarrow F(g) = F(\overline{0})$$

Type $\mathbb{N}_k = \{n: \mathbb{N} \mid n < k\}$. Let $\mathbb{S} = \mathbb{N} \to \mathbb{N}$, and $\mathbb{S}_k = \mathbb{N}_k \to \mathbb{N}$. Brouwer's continuity principle for numbers: If F has type $\mathbb{S} \to \mathbb{N}$ and f has type \mathbb{S} then F(f) depends on only a finite part of f.

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

The instance of the above continuity principle for $f = \overline{0} = \lambda i.0$ is

$$\forall F : \mathbb{S} \to \mathbb{N}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = \overline{0} \in \mathbb{S}_k) \Rightarrow F(g) = F(\overline{0})$$

Using BHK interpretation there is a *modulus of continuity* function M of type $(\mathbb{S} \to \mathbb{N}) \to \mathbb{N}$ such that

$$\forall F : \mathbb{S} \to \mathbb{N}. \ \forall g : \mathbb{S}. \ (\forall n : \mathbb{N}. \ n < M(F) => g(n) = 0) \Rightarrow F(g) = F(\overline{0})$$

This is false!

We have

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall g : \mathbb{S}. \ (\forall n : \mathbb{N}. \ n < M(F) => g(n) = 0) \Rightarrow F(g) = F(\overline{0})$

We have

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall g : \mathbb{S}. \ (\forall n : \mathbb{N}. \ n < M(F) => g(n) = 0) \Rightarrow F(g) = F(\overline{0})$ Let

 $J = M(\lambda f. 0)$ K = M(D)

 $G(f) = \text{if } f(J) < K \text{ then 0 else 1} \qquad H(f) = f(J)$

 $D(g) = M(\lambda f. g(f(J)))$ $0^{t}\overline{n} = \lambda i. \text{ if } i < t \text{ then } 0 \text{ else } n$ H(f) = f(J)

We have

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall g : \mathbb{S}. \ (\forall n : \mathbb{N}. \ n < M(F) => g(n) = 0) \Rightarrow F(g) = F(\overline{0})$ Let

 $J = M(\lambda f. 0) \qquad D(g) = M(\lambda f. g(f(J)))$ $K = M(D) \qquad 0^{t}\overline{n} = \lambda i. \text{ if } i < t \text{ then } 0 \text{ else } n$ $G(f) = \text{ if } f(J) < K \text{ then } 0 \text{ else } 1 \qquad H(f) = f(J)$ Note that $D(\overline{0}) = M(\lambda f. 0) = J$ and therefore, since M(D) = K, $\forall g: \mathbb{S}. (\forall n: \mathbb{N}. n < K => g(n) = 0) \Rightarrow D(g) = J$

We have

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall g : \mathbb{S}. \ (\forall n : \mathbb{N}. \ n < M(F) => g(n) = 0) \Rightarrow F(g) = F(\overline{0})$ Let

 $J = M(\lambda f. 0) \qquad D(g) = M(\lambda f. g(f(J)))$ $K = M(D) \qquad 0^{t}\overline{n} = \lambda i. \text{ if } i < t \text{ then } 0 \text{ else } n$ $G(f) = \text{ if } f(J) < K \text{ then } 0 \text{ else } 1 \qquad H(f) = f(J)$

Note that $D(\overline{0}) = M(\lambda f. 0) = J$ and therefore, since M(D) = K,

$$\forall g: \mathbb{S}. \ (\forall n: \mathbb{N}. \ n < K => g(n) = 0) \Rightarrow D(g) = J$$

In particular,

$$J = D(0^{K}\overline{1}) = M(\lambda f. \ 0^{K}\overline{1}(f(J)) = M(\lambda f. \ G(f)) = M(G).$$
 If $K > 0$ then $G(\overline{0}) = 0$ and $G(0^{J}\overline{K}) = 1$ contradicts $M(G) = J.$

We have

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall g : \mathbb{S}. \ (\forall n : \mathbb{N}. \ n < M(F) => g(n) = 0) \Rightarrow F(g) = F(\overline{0})$ Let

 $J = M(\lambda f. 0) \qquad D(g) = M(\lambda f. g(f(J)))$ $K = M(D) \qquad 0^{t}\overline{n} = \lambda i. \text{ if } i < t \text{ then } 0 \text{ else } n$ $G(f) = \text{if } f(J) < K \text{ then } 0 \text{ else } 1 \qquad H(f) = f(J)$

Note that $D(\overline{0}) = M(\lambda f. 0) = J$ and therefore, since M(D) = K,

$$\forall g: \mathbb{S}. \ (\forall n: \mathbb{N}. \ n < K => g(n) = 0) \Rightarrow D(g) = J$$

In particular,

 $J = D(0^{K}\overline{1}) = M(\lambda f. \ 0^{K}\overline{1}(f(J)) = M(\lambda f. \ G(f)) = M(G).$ If K > 0 then $G(\overline{0}) = 0$ and $G(0^{J}\overline{K}) = 1$ contradicts M(G) = J. If, on the other hand, K = 0 then $\forall g : \mathbb{S}. \ D(g) = J$ so $D(\lambda x.x) = M(\lambda f. \ (f(J)) = M(H) = J.$ But $H(\overline{0}) = 0$ and $H(0^{J}\overline{1}) = 1$ contradicts M(H) = J.

Mark Bickford Constructive Analysis in Nuprl

æ

<> E ► < E</p>

P.

• $D(g) = M(\lambda f. g(f(J)) \text{ where } J = M(\lambda f. 0).$

御 と く き と く き とう

æ

•
$$D(g) = M(\lambda f. g(f(J)) \text{ where } J = M(\lambda f. 0).$$

• We note that $D(\overline{0}) = M(\lambda f. 0) = J.$

(▲ 문) (▲ 문)

э

- $D(g) = M(\lambda f. g(f(J)) \text{ where } J = M(\lambda f. 0).$
- We note that $D(\overline{0}) = M(\lambda f. 0) = J.$
- $D(\overline{0}) = M(\lambda f. \ \overline{0}(f(J)))$

A B + A B +

A D

- $D(g) = M(\lambda f. g(f(J)) \text{ where } J = M(\lambda f. 0).$
- We note that $D(\overline{0}) = M(\lambda f. 0) = J.$
- $D(\overline{0}) = M(\lambda f. \ \overline{0}(f(J)))$
- λf. 0(f(J)) extensionally equal to λf. 0 but not intensionally equal.

< ∃ >

- $D(g) = M(\lambda f. g(f(J)) \text{ where } J = M(\lambda f. 0).$
- We note that $D(\overline{0}) = M(\lambda f. 0) = J.$
- $D(\overline{0}) = M(\lambda f. \ \overline{0}(f(J)))$
- λf. 0(f(J)) extensionally equal to λf. 0 but not intensionally equal.
- Intensional M could have M(λf. 0) = 0 but M(λf. 0(f(J))) > J

- $D(g) = M(\lambda f. g(f(J)) \text{ where } J = M(\lambda f. 0).$
- We note that $D(\overline{0}) = M(\lambda f. 0) = J.$
- $D(\overline{0}) = M(\lambda f. \ \overline{0}(f(J)))$
- λf. 0(f(J)) extensionally equal to λf. 0 but not intensionally equal.
- Intensional *M* could have $M(\lambda f. 0) = 0$ but $M(\lambda f. \overline{0}(f(J))) > J$
- Escardo and Xu show *M* can not be extensional.

Mark Bickford Constructive Analysis in Nuprl

< ≣ >

æ

• *B* is a type family over *A*, if $a_1 = a_2 \in A$ implies $B[a_1] = B[a_2] \in \mathbb{U}_i$.

(*) *) *) *)

A D

- *B* is a *type family* over *A*, if $a_1 = a_2 \in A$ implies $B[a_1] = B[a_2] \in \mathbb{U}_i$.
- PER for type a: A → B[a] is defined by f = g ∈ a: A → B[a] if and only if, for all terms a₁ and a₂,

$$a_1 = a_2 \in A \Rightarrow f(a_1) = g(a_2) \in B[a_1]$$

- *B* is a *type family* over *A*, if $a_1 = a_2 \in A$ implies $B[a_1] = B[a_2] \in \mathbb{U}_i$.
- PER for type $a: A \rightarrow B[a]$ is defined by $f = g \in a: A \rightarrow B[a]$ if and only if, for all terms a_1 and a_2 , $a_1 = a_2 \in A \Rightarrow f(a_1) = g(a_2) \in B[a_1]$
- So function extensionality is built in to definition of a: A → B[a].

- *B* is a *type family* over *A*, if $a_1 = a_2 \in A$ implies $B[a_1] = B[a_2] \in \mathbb{U}_i$.
- PER for type a: A → B[a] is defined by f = g ∈ a: A → B[a] if and only if, for all terms a₁ and a₂, a₁ = a₂ ∈ A ⇒ f(a₁) = g(a₂) ∈ B[a₁]
- So function extensionality is built in to definition of a: A → B[a].
- How can we say for every A there is a B ... without asserting the existence of an extensional function A → B?

- *B* is a *type family* over *A*, if $a_1 = a_2 \in A$ implies $B[a_1] = B[a_2] \in \mathbb{U}_i$.
- PER for type a: A → B[a] is defined by f = g ∈ a: A → B[a] if and only if, for all terms a₁ and a₂, a₁ = a₂ ∈ A ⇒ f(a₁) = g(a₂) ∈ B[a₁]
- So function extensionality is built in to definition of a: A → B[a].
- How can we say for every A there is a B ... without asserting the existence of an extensional function A → B?
- answer: Change equality in B
Mark Bickford Constructive Analysis in Nuprl

æ

< 문 > < 문

If E(x, y) is an equivalence relation on a type T, then the quotient type T//E is the type such that
 x = y ∈ T//E ⇔ (x ∈ T ∧ y ∈ T ∧ E(x, y)).

< ∃ >

- If E(x, y) is an equivalence relation on a type T, then the quotient type T//E is the type such that $x = y \in T//E \Leftrightarrow (x \in T \land y \in T \land E(x, y)).$
- For trivial E(x, y) = True then $x = y \in T//$ True $\Leftrightarrow (x \in T \land y \in T)$.

- If E(x, y) is an equivalence relation on a type T, then the quotient type T//E is the type such that $x = y \in T//E \Leftrightarrow (x \in T \land y \in T \land E(x, y)).$
- For trivial E(x, y) = True then $x = y \in T / /$ True $\Leftrightarrow (x \in T \land y \in T)$.
- We write $T//\text{True as} \downarrow T$ and call it the *half squash* of T.

- If E(x, y) is an equivalence relation on a type T, then the quotient type T//E is the type such that $x = y \in T//E \Leftrightarrow (x \in T \land y \in T \land E(x, y)).$
- For trivial E(x, y) = True then $x = y \in T / /$ True $\Leftrightarrow (x \in T \land y \in T)$.
- We write $T//\text{True as} \downarrow T$ and call it the *half squash* of T.
- Function $f \in a: A \rightarrow B[a]$ is a non-extensional function.

- If E(x, y) is an equivalence relation on a type T, then the quotient type T//E is the type such that $x = y \in T//E \Leftrightarrow (x \in T \land y \in T \land E(x, y)).$
- For trivial E(x, y) = True then $x = y \in T / /$ True $\Leftrightarrow (x \in T \land y \in T)$.
- We write $T//\text{True as} \downarrow T$ and call it the *half squash* of T.
- Function $f \in a: A \rightarrow B[a]$ is a non-extensional function.
- Brouwer's Continuity :

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \mid \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

• We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be

 λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be

 λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)• diverges on $x \notin \mathbb{N}$

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be
 - λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)
 - diverges on $x \notin \mathbb{N}$
 - agrees with f on x < n

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be
 - λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)
 - diverges on $x \notin \mathbb{N}$
 - agrees with f on x < n
 - raises exception e on $x \ge n$

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be
 - λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)
 - diverges on $x \notin \mathbb{N}$
 - agrees with f on x < n
 - raises exception e on $x \ge n$
 - Ax is a canonical form of type Unit

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be

 λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)

- diverges on $x \notin \mathbb{N}$
- agrees with f on x < n
- raises exception e on $x \ge n$
- Ax is a canonical form of type Unit
- Kleene M-function for F is

$$M(n, f) = \nu e.F(bound-domain(f, n, e))?e:x.Ax$$

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be

 λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)

- diverges on $x \notin \mathbb{N}$
- agrees with f on x < n
- raises exception e on $x \ge n$
- Ax is a canonical form of type Unit
- Kleene M-function for F is

 $M(n, f) = \nu e.F(bound-domain(f, n, e))?e:x.Ax$

• The *try/catch* operator __?*e*:*x*.*G*(*x*) catches an exception with name *e*, binds its value to *x*, and continues with *G*(*x*).

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be

 λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)

- diverges on $x \notin \mathbb{N}$
- agrees with f on x < n
- raises exception e on $x \ge n$
- Ax is a canonical form of type Unit
- Kleene M-function for F is

 $M(n, f) = \nu e.F(bound-domain(f, n, e))?e:x.Ax$

- The *try/catch* operator __?*e*:*x*.*G*(*x*) catches an exception with name *e*, binds its value to *x*, and continues with *G*(*x*).
- ν operator chooses a *fresh* name e, so F can not catch exceptions named e.

- We can compute (intensionally) a modulus of continuity for *F* using the Nuprl computation system.
- Let bound-domain(f, n, e) be

 λx . if x < 0 then \perp else if x < n then f(n) else exception(e, Ax)

- diverges on $x \notin \mathbb{N}$
- agrees with f on x < n
- raises exception e on $x \ge n$
- Ax is a canonical form of type Unit
- Kleene M-function for F is

 $M(n, f) = \nu e.F(bound-domain(f, n, e))?e:x.Ax$

- The *try/catch* operator __?*e*:*x*.*G*(*x*) catches an exception with name *e*, binds its value to *x*, and continues with *G*(*x*).
- ν operator chooses a *fresh* name *e*, so *F* can not catch exceptions named *e*.
- Iterate M(0, f), M(1, f), M(2, f), ... M(k, f) until we get an number rather than Ax at which point we have the modulus of continuity k.

CONT :

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

- ▲ 문 ▶ - ▲ 문 ▶ - -

____ ▶

æ

CONT :

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

What can we prove with this?

э

CONT :

 $\forall F : \mathbb{S} \to \mathbb{N}. \ \forall f : \mathbb{S}. \ \exists k : \mathbb{N}. \ \forall g : \mathbb{S}. \ (g = f \in \mathbb{S}_k) \Rightarrow F(g) = F(f)$

What can we prove with this? Come back for Lecture 2

Product (Σ) type, Set type, Squash type

Mark Bickford Constructive Analysis in Nuprl

< E > < E >

• Dependent product type $a: A \times B[a]$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Dependent product type $a: A \times B[a]$.
- $p = q \in a: A \times B[a]$ iff $p \mapsto \langle a_1, b_1 \rangle$ and $q \mapsto \langle a_2, b_2 \rangle$ and $a_1 = a_2 \in A$ and $b_1 = b_2 \in B[a_1]$.

- Dependent product type $a: A \times B[a]$.
- $p = q \in a: A \times B[a]$ iff $p \mapsto \langle a_1, b_1 \rangle$ and $q \mapsto \langle a_2, b_2 \rangle$ and $a_1 = a_2 \in A$ and $b_1 = b_2 \in B[a_1]$.
- Set type (aka refinement type) {a:A | B[a]}

- Dependent product type $a: A \times B[a]$.
- $p = q \in a: A \times B[a]$ iff $p \mapsto \langle a_1, b_1 \rangle$ and $q \mapsto \langle a_2, b_2 \rangle$ and $a_1 = a_2 \in A$ and $b_1 = b_2 \in B[a_1]$.
- Set type (aka refinement type) {a: A | B[a]}
- $a \in \{a: A \mid B[a]\}$ iff a = fst(p) for some $p \in a: A \times B[a]$

- Dependent product type $a: A \times B[a]$.
- $p = q \in a: A \times B[a]$ iff $p \mapsto \langle a_1, b_1 \rangle$ and $q \mapsto \langle a_2, b_2 \rangle$ and $a_1 = a_2 \in A$ and $b_1 = b_2 \in B[a_1]$.
- Set type (aka refinement type) $\{a: A \mid B[a]\}$
- $a \in \{a : A \mid B[a]\}$ iff a = fst(p) for some $p \in a : A \times B[a]$
- Squash type $\downarrow T = \{x : \text{Unit} | T\}$

- Dependent product type $a: A \times B[a]$.
- $p = q \in a: A \times B[a]$ iff $p \mapsto \langle a_1, b_1 \rangle$ and $q \mapsto \langle a_2, b_2 \rangle$ and $a_1 = a_2 \in A$ and $b_1 = b_2 \in B[a_1]$.
- Set type (aka refinement type) $\{a: A \mid B[a]\}$
- $a \in \{a: A \mid B[a]\}$ iff a = fst(p) for some $p \in a: A \times B[a]$
- Squash type $\downarrow T = \{x : \text{Unit} \mid T\}$
- $T \Rightarrow (\downarrow T) \Rightarrow (\downarrow T) \Rightarrow \neg \neg T$

Mark Bickford Constructive Analysis in Nuprl

-

• *P* is *stable* if $\neg \neg P \Rightarrow P$

Mark Bickford Constructive Analysis in Nuprl

< E > < E >

- *P* is *stable* if $\neg \neg P \Rightarrow P$
- Markov's Principle (MP) says that for decidable P(n), ∃n: N. P(n) is stable.

< ∃ > <

- *P* is *stable* if $\neg \neg P \Rightarrow P$
- Markov's Principle (MP) says that for decidable P(n), $\exists n : \mathbb{N}$. P(n) is stable.
- Nuprl does not prove MP, but is consistent with MP.

- *P* is *stable* if $\neg \neg P \Rightarrow P$
- Markov's Principle (MP) says that for decidable P(n), $\exists n : \mathbb{N}$. P(n) is stable.
- Nuprl does not prove MP, but is consistent with MP.
- *P* is squash stable if $\downarrow P \Rightarrow P$

- *P* is *stable* if $\neg \neg P \Rightarrow P$
- Markov's Principle (MP) says that for decidable P(n), $\exists n : \mathbb{N}$. P(n) is stable.
- Nuprl does not prove MP, but is consistent with MP.
- *P* is squash stable if $\downarrow P \Rightarrow P$
- For decidable P(n), ∃n: N. P(n) is squash stable, because μn. P(n) ∈ ∃n: N. P(n) if ↓∃n: N. P(n)