CS6180: Lecture 5

Robert Constable

September 5, 2017

1 Lecture Summary

We will look at how to define number theoretic functions and reason about them using mathematical
induction. Kleene does this without introducing the notion of types. On the other hand types are
just below the surface, and it is easy to make them explicit. Doing this will introduce the notion
of types and type theory in a natural and gradual way. We can see from his notation that he
intends to reason about the natural numbers. He adopts a very simple notation for the number
“constants,” namely 0, 0, 0”7, Another common notation for the successor is S(x). In this case
the natural numbers are 0,5(5(0)), S(S(S(0))),... We give this type the name N. It has a simple
inductive definition which we can write as

Number Theory Axioms

13. A(0)&Vz.(A(z) = A(2))) = A(x).
4. =V = a=0.

15. ~ (a' = 0).
16.a=b=(a=c)=b=c.
17.a=b=d =V.

18. a+0=a.
19. a+b = (a+0b).
20. a x 0=0.

21. ax b =(axb)+a.

We single out axiom 13, the principle of mathematical induction. We can also write it as
A(0)&Vz.(A(z) = A(x)) = Va.A(z).

It implicitly conveys typing information which we can make explicit by using the type of natural

numbers N and using this typed version of the axiom. This will lead us to talking explicitly about
types.

A(0)&Vx : N.(A(z) = A(z')) = Vz : N.A(x).

The type of natural numbers also has the rule that 0 € N and that ﬂ
S(n) e N

We will examine an example from Kleene showing how to structure proofs as trees using Frege’s
turnstile symbol, -, separating hypotheses from the goal to be proved, H - G where the hypotheses
H is a list of labeled formulas and variable declarations, and the goal is a single formula. Such
expressions are called sequents. In the Nuprl book they are written as H >> G. In these notes
we use x1 : A1,...,xn : An F G. Some formalisms, such as tableaux, allow multiple goals, say
G, ..., Gy, but Nuprl does not.

2 Intuitionistic First-Order Logic, iFOL

In his 1908 PhD thesis [1], Brouwer proposed a new interpretation of first-order logic. His idea
is that we come to know mathematical truths based on our intuitive experience of the continuum
of time and how the mind breaks this continuum into the experience of now, before, and after.
There is no ideal Platonic world in which mathematical statements are either true or false, and
that we come to know these truths based on a conception of logic in which every meaningful
mathematical statement is either true in the Platonic world or false there. This Platonic view
was the prevailing understanding of truth before Brouwer proposed a compelling alternative. He
justified his alternative understanding based on how we come to experience mathematical ideas
and recognize those constructions which the human mind can grasp and explore. We are not able
to experience this Platonic world, yet we can recognize simple logical truths as intuitively true and
computationally meaningful in the sense of our mental constructions.

Brouwer gave the interpretation of mathematical truth that Per Martin-Lof writes about in several
papers [6, 5]. These ideas are discussed well in our on-line textbook [7]. We will also study the
presentation in On the Meaning of the Logical Constants and the Justification of the Logical Laws
[6]. This semantics is also given in the Nuprl book [4] and in numerous other articles and books
(3, 2].

Here is a brief summary of how we covered this topic in Lecture 4 stressing the notion of evidence
and presenting the evidence semantics from the readings associated with this lecture. We go over
the evidence semantics for the first-order logical operators from Kleene and give simple examples.

e the semantics of conjunction: to have evidence for A& B is an ordered pair pair(a;b) where a
is evidence for A and b is evidence for B.

e the semantics of implication: to have evidence for A = B is to have a computable function
fun(z.b(xz)) such that if x is evidence for A, then b(x) is evidence for B.

e the semantics of disjunction AV B is either inl(a) where a is evidence for A or inr(b) where
b is evidence for B. The operator inl is mnemonic for inject left and inr is mnemonic for
inject right. So we are thinking of injecting the evidence into the type of evidence for either
the left disjunct or the right disjunct.

e the semantics false is the empty type, say void. This says simply that there is no evidence for
false, so we can never “know it” independent of some assumptions. This leads to a natural
computational semantics for negation.

e the semantics of = A: to have evidence for the negation of A is to have a function that can
convert any evidence a for A into evidence for the empty type, void. Since there is no evidence
for void, this function tells us that there can be no evidence for A either, thus we can never
know A to be true.

e the semantics of 3z : D.A(x): to have evidence that there is an object of the domain of
discourse D, say d such that we have evidence a for A(d).

e the semantics of universal statements Vz : D.A(z): to have evidence that for all elements d
of the domain of discourse D there is evidence for A(d), we need a function fun(z.a(x)) such
that for any element d of D, a(d) is evidence for the assertion A(d).

We will know in detail what the evidence is for these statements once we investigate Kleene’s
axioms for arithmetic in more detail. We will have evidence for all of these claims.

0<1&1 <2, (z>0)= ((zxz)>0), 0=0)V(0=1), ~(0=1), Yz : D.(z = 0) V (=(z = 0))

We now look at the evidence for the induction axiom. Here is the axiom with explicit type
information and using S(z) for the successor operation instead of Kleene’s notation x’.

A(0)&Vz : N.(A(x) = A(S(z))) = Vx : N.A(z).

The intuitive computation behind the induction axiom is that we start with evidence for
A(0) which is explicitly given to us in the very first clause, the base case. Call this a0. The
function for extending this evidence is the computational content of the inductive clause Vz :
N.(A(z) = A(S(z))). Let us abbreviate the body of this function as ind(z). So the induction
function is fun(xz.ind(x)). We know from the axiom that ind(a0) is evidence for A(1), that is
ind(0) is evidence for A(S(0)). Then we see that ind(ind(0)) is evidence for A(S(0)), that is for
A(1), so we write al = ind(a0). The evidence for A(S(S(0)), i.e. for A(2) is ind?(a0). We now
“see” that the nth iteration of ind(x) starting at a0 is evidence for A(n), that is an = ind™ (a0).

We will see the induction axiom at work in the derivation of the integer square root function.
Here is a specification of the task.

Theorem/Task: Vn : N3r:N.(r2 <n & x < (r +1)?).

The inductive proof is given in the notes posted with this lecture, and the realizer or pro-
gram that is extracted from the proof is also given directly from a Nuprl proof. Here is another
presentation of the what we call the extract or the program generated from the proof.

An.letrec sqrt(n) = if n = 0then 0 else let 12 = sqrt(z—1)in letr3 = r2+1inifz < (r3)*thenr2 else r3.

References

[1] L.E.J. Brouwer. Over de grondslagen der wiskunde (On the foundations of mathematics). PhD
thesis, Amsterdam and Leipzig, 1907.

[2] Robert L. Constable. Naive computational type theory. In H. Schwichtenberg and
R. Steinbriiggen, editors, Proof and System-Reliability, Proceedings of International Summer
School Marktoberdorf, July 24 to August 5, 2001, volume 62 of NATO Science Series 111, pages
213-260, Amsterdam, 2002. Kluwer Academic Publishers.

[3] Robert L. Constable. Computational type theory. Scholarpedia, 4(2):7618, 2009.

[4] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki,

and Scott F. Smith. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, NJ, 1986.

[5] Per Martin-Lof. Notes on Constructive Mathematics. Almqvist & Wiksell, Uppsala, 1970.

[6] Per Martin-L6f. On the meaning of the logical constants and the justification of the logical
laws. Lectures in Siena, 1983.

[7] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

