
1

Operating System Kernels

Ken Birman
(borrowing some content from 

Peter Sirokman)

A short history of kernels

n Early kernel: a library of device drivers, support for 
threads (QNX)

n Monolithic kernels: Unix, VMS, OS 360…
n Unstructured but fast…
n Over time, became very large
n Eventually, DLLs helped on size

n Pure microkernels: Mach, Amoeba, Chorus…
n OS as a kind of application

n Impure microkernels: Modern Windows OS
n Microkernel optimized to support a single OS
n VMM support for Unix on Windows and vice versa

The great µ-kernel debate

n How big does it need to be?
n With a µ-kernel protection-boundary 

crossing forces us to
n Change memory -map
n Flush TLB (unless tagged)

n With a macro-kernel we lose structural 
protection benefits and fault-containment

n Debate raged during early 1980’s

Summary of First Paper

n The Performance of µ-Kernel-Based Systems 
(Hartig et al. 16th SOSP, Oct 1997)
n Evaluates the L4 microkernel as a basis for a full 

operating system
n Ports Linux to run on top of L4 and compares 

performance to native Linux and Linux running on 
the Mach microkernel

n Explores the extensibility of the L4 microkernel

Summary of Second Paper

n The Flux OSKit: A Substrate for Kernel and 
Language Research (Ford et al. 16th SOSP, 
1997)
n Describes a set of OS components designed to be 

used to build custom operating systems
n Includes existing code simply using “glue code”

n Describes projects that have successfully used the 
OSKit

In perspective?

n L4 seeks to validate idea that a µ-kernel 
can support a full OS without terrible 
cost penalty
n Opened the door to architectures like the 

Windows one
n Flux argues that we can get desired 

structural benefit in a toolkit and that 
runtime µ-kernel structure isn’t needed



2

Microkernels

n An operating system kernel that 
provides minimal services

n Usually has some concept of threads or 
processes, address spaces, and 
interprocess communication (IPC)

n Might not have a file system, device 
drivers, or network stack

Monolithic and Micro-kernels

Microkernels: Pro

n Flexibility: allows multiple choices for any 
service not implemented in the microkernel

n Modular design, easier to change 
n Stability: 

n Smaller kernel means it is easier to debug
n User level services can be restarted if they fail

n More memory protection

Context Switches

Microkernel: Con

n Performance
n Requires more context switches

n Each “system call” must switch to the kernel 
and then to another user level process

n Context switches are expensive
n State must be saved and restored

n TLB is flushed

Paper Goals

n Is it possible to build an OS on a Microkernel 
that performs well?
n Goal is to prove that it is

n Port Linux to run on top of L4 (a microkernel)
n Compare performance of L4Linux to native Linux

n Since L4Linux is a “complete” operating system, it 
is representative of microkernel operating systems



3

More Paper Goals

n Is this actually useful? Is the 
microkernel extensible?
n Implemented a second memory manager 

optimized for real-time applications to run 
alongside Linux on L4

n Implemented an alternative IPC for 
applications that used L4 directly (requires 
modifying the application)

The L4 Microkernel

n Operations:
n The kernel starts with one address space, which is 

essentially physical memory

n A process can grant, map, or unmap pages of size 
2n from its own virtual address space

n Some user level processes are pagers and do 
memory management (and possibly virtual 
memory) for other processes using these 
primitives.

The L4 Microkernel 
(continued)

n Provides communication between address 
spaces (inter-process communication or IPC)

n Page faults and interrupts are forwarded by 
the kernel to the user process responsible for 
them (i.e. pagers and device drivers)

n On an exception, the kernel transfers control 
back to the thread’s own exception handler

L4Linux

n Linux source has two cleanly separated parts
n Architecture dependent

n Architecture independent

n In L4Linux 
n Architecture dependent code is replaced by L4
n Architecture independent part is unchanged

n L4 not specifically modified to support Linux

L4Linux (continued)

n Linux kernel as L4 user service
n Runs as an L4 thread in a single L4 

address space
n Creates L4 threads for its user processes
n Maps parts of its address space to user 

process threads (using L4 primitives)
n Acts as pager thread for its user threads
n Has its own logical page table
n Multiplexes its own single thread (to avoid 

having to change Linux source code)

L4Linux – System Calls

n The statically linked and the shared C libraries 
are modified
n System calls in the library call the kernel using L4 

IPC

n For unmodified native Linux applications 
there is a “trampoline”
n The application traps to the kernel as normal
n The kernel bounces control to a user-level 

exception handler
n The handler calls the modified shared library



4

A note on TLBs

n Translation Lookaside Buffer (TLB) 
caches page table lookups

n On context switch, TLB needs to be 
flushed 

n A tagged TLB tags each entry with an 
address space label, avoiding flushes

n A Pentium CPU can emulate a tagged 
TLB for small address spaces

Microkernel Cons Revisited

n A significant portion of the performance 
penalty of using a microkernel comes from 
the added work to reload the page table into 
the TLB on every context switch

n Since L4 runs in a small address space, it 
runs with a simulated tagged TLB

n Thus, the TLB is not flushed on every context 
switch

n Note that some pages will still be evicted –
but not as many

Performance – Compatibility

n L4Linux is binary compatible with native 
Linux from the applications point of 
view.

Performance – The 
Competitors

n Mach 3.0 
n A “first generation” microkernel
n Developed at CMU
n Originally had the BSD kernel inside it

n L4
n A “second generation” microkernel
n Designed from scratch

Performance – Benchmarks

n Compared the following systems
n Native Linux
n L4Linux
n MkLinux (in-kernel)

n Linux ported to run inside the Mach microkernel

n MkLinux (user)
n Linux ported to run as a user process on top of 

the Mach microkernel

Performance -
Microbenchmarks



5

Performance -
Macrobenchmarks

n AIM Benchmark Suite VII simulates “different 
application loads” using “Load Mix Modeling”.

n This benchmark has fallen out of favor but 
included various compilation tasks

n Tasks are more representative of development in 
a systems lab than production OS in a web farm 
or data center

Performance -
Macrobenchmarks

Performance – Analysis

n L4Linux is 5% - 10% slower than native 
for macrobenchmarks

n User mode MkLinux is 49% slower 
(averaged over all loads)

n In-kernel MkLinux is 29% slower 
(averaged over all loads)

n Co-location of kernel is not enough for 
good performance

So What?

n If performance suffers, there must be other 
benefits – Extensibility
n While Linux pipes in L4Linux are slower than in 

native Linux, pipes implemented using the bare L4 
interface are faster

n Certain primitive virtual-memory options are faster 
using the L4 interface than in native Linux

n Cache partitioning allows L4Linux to run 
concurrently with a real-time system with better 
timing predictability than native Linux

Microkernel Con: Revisited 
Again

n The Linux kernel was essentially 
unmodified

n Results from “extensibility” show that 
improvements can be made (e.g. pipes)

n If the entire OS were optimized to take 
advantage of L4, performance would 
probably improve

n Goal Demonstrated

Flux OS

n Research group wanted to experiment with 
microkernel designs

n Decided that existing microkernels (Mach) 
were too inflexible to be modified

n Decided to write their own from scratch
n In order to avoid having it become inflexible, 

built it in modules
n Invented an operating system building kit!



6

The Flux OSKit

n Writing Operating Systems is hard:
n Relevant OSs have lots of functionality:

n File system
n Network Stack

n Debugging

n Large parts of OS not relevant to specific 
research

n Not cost effective for small groups

Adapting Existing Code

n Many OS projects attempt to leverage 
existing code

n Difficult
n Many parts of operating systems are 

interdependent
n E.g. File system depends on a specific 

memory management technique
n E.g. Virtual memory depends on the file 

system
n Hard to separate components

Separating OS Components OSKit

n OSKit is not an operating system
n OSKit is a set of operating system 

components
n OSKit components are designed to be as self-

sufficient as possible
n OSKit components can be used to build a 

custom operating system – pick and choose 
the parts you want – customize the parts you 
want

Diagram of OSKit Example OS using OSKit



7

Another Example OS OSKit Components

n Bootstrapping
n Provides a standard for boot loaders and 

operating systems

n Kernel support library
n Make accessing hardware easier
n Architecture specific
n E.g. on x86, helps initialize page translation 

tables, set up interrupt vector table, and 
interrupt handlers

More OSKit Components

n Memory Management Library
n Supports low level features

n Allows tracking of memory by various traits, such 
as alignment or size

n Minimal C Library
n Designed to minimize dependencies

n Results in lower functionality and performance
n E.g. standard I/O functions don’t use buffering

Even More OSKit Components

n Debugging Support
n Can be debugged using GDB over the serial port

n Debugging memory allocation library

n Device Drivers
n Taken from existing systems (Linux, FreeBSD)
n Mostly unmodified, but encapsulated by “glue”

code – this makes it easy to port updates

Two more OSKit Components

n Network Stack
n Taken from FreeBSD and “encapsulated”

using glue code

n File System
n Taken from NetBSD and “encapsulated”

using glue code

OSKit Component Interfaces



8

OSKit Implementation

n Libraries
n To the developer, the OSKit appears as a 

set of libraries that can be linked to 
programs

n Therefore, easy to use

Providing Separability

n Most operating systems are modular, 
but this does not make them separable 
into components

n Modules will assume and depend on the 
implementation specifics of other 
modules

n In OSKit components are wrapped in 
“glue code” to make them independent 
of other components

Glue Code What is this “glue code”?

n Overridable functions
n E.g. all device drivers use a function 

fdev_mem_alloc to allocate memory
n The client OS (the OSKit user) must 

provide an implementation of this 
depending on the memory manager used 
by the OS being built

n The default implementation uses the OSKit
memory manager

More “glue code”

n The file system must use block device drivers
n Yet the file system can’t know what the block 

device driver code will be
n Device drivers can return pointers to 

interfaces, which can be passed to the file 
system

n The file system is bound to a block device 
driver at run time

Interfaces

n Interfaces use the COM standard
n Like a Java object, a COM interface has 

known methods that can be invoked
n The internal state is hidden
n Each block device driver can implement 

a common COM interface, allowing all 
drivers to look the same to the file 
system



9

Execution Environment

n It is impossible to turn all components 
into black boxes that will automatically 
work in all environments

n The absolute basic needs of a 
component, a file system for example, 
is abstracted as specified execution 
environment that the developer must 
follow

Execution Environment

n The execution environment specifies 
limitations on the use of the component
n Is the component reentrant?
n Must certain functions in the interface be 

synchronized?
n Can the execution of the component be 

interrupted?

n Example: While the file system is not 
designed to be used on a multiprocessor 
system, the execution environment can be 
satisfied using locks to synchronize its use

Exposing the Implementation

n The OSKit provides abstract interfaces to its 
components

n The OSKit also provides implementation specific 
interfaces to allow the user to have more control over 
the component

n Key: these specialized interfaces are optional
n E.g. the memory manager can be used as a simple 

malloc, or it can manipulate physical memory and the 
free list directly

n Components can offer multiple COM interfaces to do 
this

Encapsulating Legacy Code

n Interfaces presented by the OSKit are implemented 
as “glue code”

n This glue code makes calls to the imported legacy 
code, and makes modifications as needed to emulate 
the legacy code’s original environment

n The glue code also accepts calls from the legacy code 
and translates them back to the interface offered

n Thus once two components are encapsulated, their 
interfaces can be joined together seamlessly

The Obligatory Benchmark

n Measured TCP bandwidth and latency 
for a basic OSKit based operating 
system

Bandwidth Analysis

n FreeBSD can use discontinuous buffers, 
Linux does not – this can cause extra 
copies



10

Latency Case Study 2: Standard ML
n SML is a functional programming language
n Goal: to model concurrency as continuations in high 

level programming languages
n This requires ML and its compiler to be able to 

manipulate context switching – difficult if not 
impossible on a standard OS

n ML/OS constructed by 2 people over a semester 
using OSKit

n Other projects with similar goals have not succeeded 
(at the time) 
n Fox project at CMU
n Programming Principles group at Bell Labs

Other language based OSs

n SR – a language for writing concurrent 
programs
n Other attempts abandoned

n Java/PC
n Given a Java Virtual Machine and OSKit, 

took three weeks
n Sun’s version took much longer to build 

since it was written mostly from scratch in 
Java

OSKit vs. Microkernel

n A Microkernel is an architecture for operating 
systems designed to be flexible

n OSKit is a tool for making operating systems
n OS-s built with OSKit may or may not be 

microkernel
n OSKit gives greater flexibility than a 

microkernel, since even microkernels force 
some concepts (threads, IPC) onto the overall 
system


