

On Gossip and Shape

- Why is gossip interesting?
 - Powerful convergence properties?
 - Especially in support of epidemics
 - Mathematical elegance?
 - But only if the system model cooperates
 - New forms of consistency?
 - But here, connection to randomness stands out as a particularly important challenge

eiden; Dec 06

Gossip-Based Networking Workshop

On Gossip and Shape

- Convergence around a materialized "graph" or "network topology" illustrates several of these points
 - Contrasts convergence with logical determinism of traditional protocols
 - Opens the door to interesting analysis
 - But poses deeper questions about biased gossip and randomness

Leiden; Dec Or

Gossip-Based Networking Workshop

Value of convergence

- Many gossip/epidemic protocols converge exponentially quickly
 - Giving rise to "probability 1.0" outcomes
 - Even model simplifications (such as idealized network) are washed away!
 - A rarity: a theory that manages to predict what we see in practice!

Leiden; Dec 0

ossip-Based Networking Workshop

Convergence

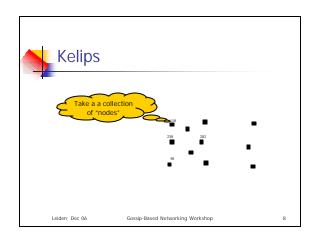
- I'll use the term to refer to protocols that approach a desired outcome exponentially quickly
- Implies that new information mixes (travels) with at most log(N) delay

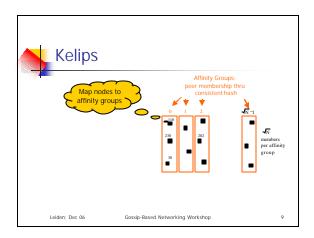
Leiden; Dec 06

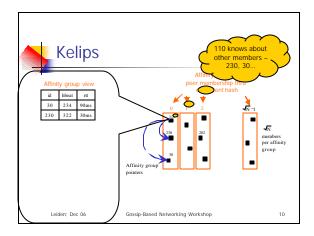
Gossip-Based Networking Workshop

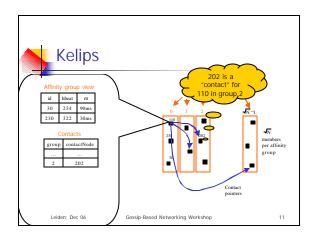
Consistency

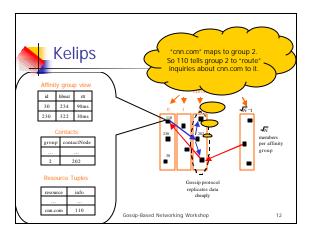
- A term to capture the idea that if A and B could compare their states, no contradiction is evident
 - In systems with "logical" consistency, we say things like "A's history is a closed prefix of B's history under causality"
 - With probabilistic systems we seek exponentially decreasing probability (as time elapses) that A knows "x" but B doesn't
- Gossip systems are usually probabilistic


Leiden; Dec 0




Convergent consistency


- To illustrate our point, contrast Cornell's Kelips system with MIT's Chord
 - Chord: The McDonald's of DHTs
 - Kelips: DHT by Birman, Gupta, Linga.
 - Prakash Linga is extending Kelips to support multi-dimensional indexing, range queries, self-rebalancing
- Kelips is convergent. Chord isn't


Leiden; Dec 06

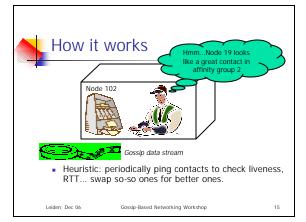
How it works

- Kelips is entirely gossip based!
 - Gossip about membership
 - Gossip to replicate and repair data
 - Gossip about "last heard from" time used to discard failed nodes
- Gossip "channel" uses fixed bandwidth
 - ... fixed rate, packets of limited size

Leiden; Dec 0

Gossip-Based Networking Workshop

13



How it works

- Basically...
 - A stream of gossip data passes by each node, containing information on various kinds of replicated data
 - Node "sips" from the stream, for example exchanging a questionable contact in some group for a better one
 - Based on RTT, "last heard from" time, etc

Leiden; Dec 06

Gossip-Based Networking Workshop

Convergent consistency

- Exponential wave of infection overwhelms disruptions
 - Within logarithmic time, reconverges
 - Data structure <u>emerges</u> from gossip exchange of data.
 - Any connectivity at all suffices....

Leiden; Dec 0

ossip-Based Networking Workshop

.. subject to a small caveat

- To bound the load, Kelips
 - Gossips at a constant rate
 - Limits the size of packets
 - ...Kelips has limited incoming "info rate"
- Behavior when the limit is continuously exceeded is not well understood.

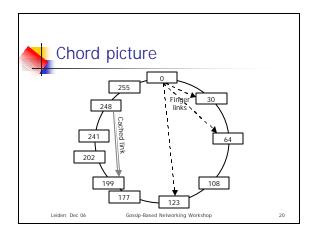
Leiden; Dec 06

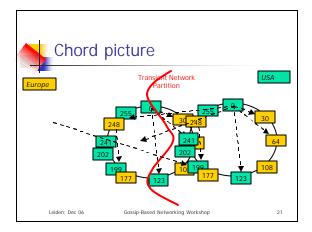
Gossip-Based Networking Workshop

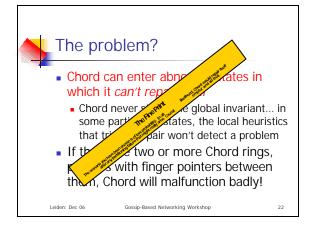
What about Chord?

- Chord is a "true" data structure mapped into the network
 - Ring of nodes (hashed id's)
 - Superimposed binary lookup trees
 - Other cached "hints" for fast lookups
- Chord is not convergently consistent

Leiden; Dec 06


... so, who cares?


- Chord lookups can fail... and it suffers from high overheads when nodes churn
 - Loads surge just when things are already disrupted... quite often, because of loads
 - And can't predict how long Chord might remain disrupted once it gets that way
- Worst case scenario: Chord can become inconsistent and stay that way


Leiden: Dec 06

Gossip-Based Networking Workshop

4.0

So... can Chord be fixed?

- Epichord doesn't have this problem
 - Uses gossip to share membership data
 - If the rings have any contact with each other, they will heal
- Similarly, Kelips would heal itself rapidly after partition
- Gossip is a remedy for what ails Chord!

Leiden; Dec 06

Gossip-Based Networking Workshop

Insight?

- Perhaps large systems shouldn't try to "implement" conceptually centralized data structures!
- Instead seek emergent shape using decentralized algorithms

Leiden; Dec 06

Emergent shape

- We know a lot about a related question
 - Given a connected graph, cost function
 - Nodes have bounded degree
 - Use a gossip protocol to swap links until some Example: The "Anthill" framework of Alberto Montresor,
- Ozalp Babaoglu, Hein Meling and Francesco Russo
 - Given a gossip overlay, improve it by selecting "better" links (usually, lower RTT)

Leiden: Dec 06

Gossip-Based Networking Workshop

Networking Workshop

Problem description

- Given a description of a data structure (for example, a <u>balanced</u> tree)
 - ... design a gossip protocol such that the system will rapidly converge towards that structure even if disrupted
 - Do it with bounced per-node message rates, sizes (network load less important)
- Use aggregation to test tree quality?

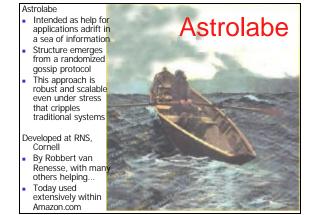
den; Dec 06 Gos

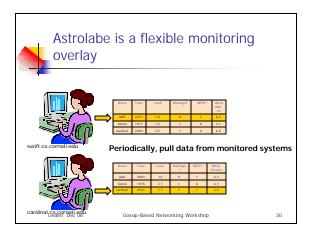
Gossip-Based Networking Workshop

Connection to self-stabilization

- Self-stabilization theory
 - Describe a system and a desired property
 - Assume a failure in which code remains correct but node states are corrupted
 - Proof obligation: property reestablished within bounded time
- Kelips is self-stabilizing. Chord isn't.

Leiden; Dec 0

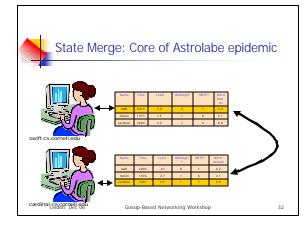

Gossip-Based Networking Workshop

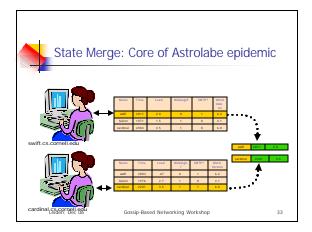


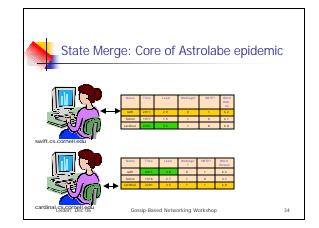
Let's look at a second example

- Astrolabe system uses a different emergent data structure – a tree
- Nodes are given an initial location each knows its "leaf domain"
- Inner nodes are elected using gossip and aggregation

Leiden; Dec 0




Astrolabe in a single domain


- Each node owns a single tuple, like the management information base (MIB)
- Nodes discover one-another through a simple broadcast scheme ("anyone out there?") and gossip about membership
 - Nodes also keep replicas of one-another's rows
 - Periodically (uniformly at random) merge your state with some else...

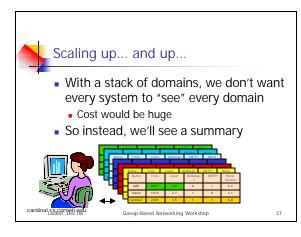
Leiden; Dec 06

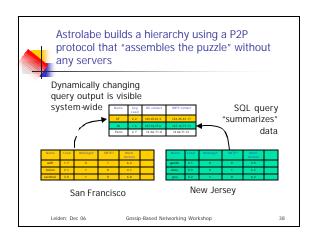
Gossip-Based Networking Workshop

Observations

- Merge protocol has constant cost
 - One message sent, received (on avg) per unit time.
 - The data changes slowly, so no need to run it quickly – we usually run it every five seconds or so
 - Information spreads in O(log N) time
- But this assumes bounded region size
 - In Astrolabe, we limit them to 50-100 rows

Leiden; Dec 06

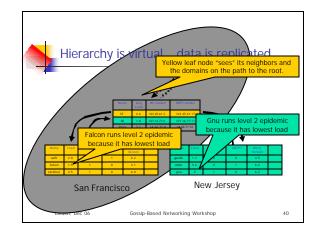

Gossip-Based Networking Workshop

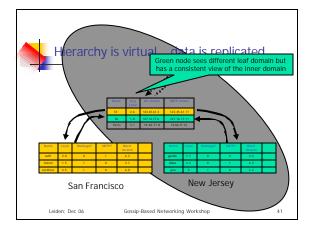


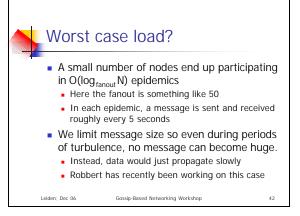
Big systems...

- A big system could have many regions
 - Looks like a pile of spreadsheets
 - A node only replicates data from its neighbors within its own region

Leiden; Dec 0

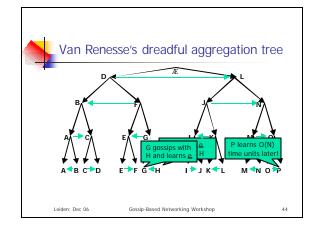





Large scale: "fake" regions

- These are
 - Computed by queries that summarize a whole region as a single row
 - Gossiped in a read-only manner within a leaf region
- But who runs the gossip?
 - Each region elects "k" members to run gossip at the next level up.
 - Can play with selection criteria and "k"

Leiden; Dec 06



Emergent shapes

- Kelips: Nodes start with a-priori assignment to affinity groups, end up with a superimposed pointer structure
- Astrolabe: Nodes start with a-priori leaf domain assignments, build the tree
- What other kinds of data structures can be achieved with emergent protocols?

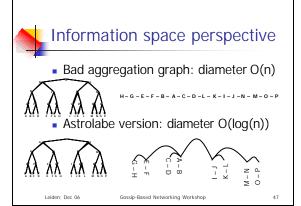
Leiden; Dec 06

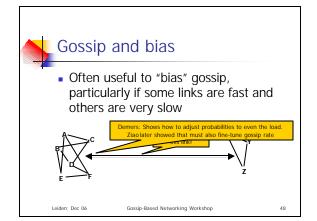
Gossip-Based Networking Workshop

What went wrong?

- In Robbert's horrendous tree, each node has equal "work to do" but the information-space diameter is larger!
- Astrolabe benefits from "instant" knowledge because the epidemic at each level is run <u>by someone elected</u> from the level below

Leiden; Dec 0


Gossip-Based Networking Workshop



Insight: Two kinds of shape

- We've focused on the aggregation tree
- But in fact should also think about the information flow tree

Leiden; Dec 0

How does bias impact information-flow graph

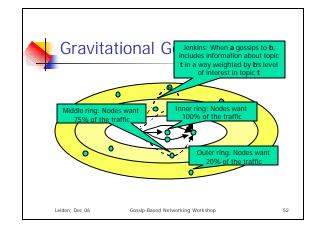
- Earlier, all links were the same
- Now, some links carry
 - Less information
 - And may have longer delays
- Open question: Model bias in information flow graphs and explore implications

Leiden: Dec 06

Gossip-Based Networking Workshop

49

Gossip and bias


- Biased systems adjust gossip probabilities to accomplish some goal
 - Kate Jenkins: "Gravitational gossip" (ICDCS '01) illustrates how far this can be carried
 - A world of multicast groups in which processes subscribe to x % of the traffic in each group
 - Kate showed how to set probabilities from a set of such subscriptions... resulting protocol was intuitively similar to a simulation of a gravitational well...

Leiden; Dec 06

Gossip-Based Networking Workshop

Gravitational Gossip

Leiden: Dec 06 Gossip-Based Networking Workshop 51

Questions about bias

- When does the biasing of gossip target selection break analytic results?
 - Example: Alves and Hopcroft show that with fanout too small, gossip epidemics can die out, logically partitioning a system
- Question: Can we relate the question to flooding on an an expander graph?

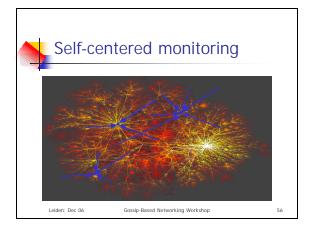
Leiden; Dec 06

Gossip-Based Networking Workshop

... more questions

- Notice that Astrolabe forces participants to agree on what the aggregation hierarchy should contain
 - In effect, we need to "share interest" in the aggregation hierarchy
- This allows us to bound the size of messages (expected constant) and the rate (expected constant per epidemic)

Leiden; Dec 0


The question

- Could we design a gossip-based system for "self-centered" state monitoring?
- Each node poses a query, Astrolabe style, on the state of the system
 - We dynamically construct an overlay for each of these queries
 - The "system" is the union of these overlays

Leiden; Dec 06

Gossip-Based Networking Workshop

55

Self-centered queries...

- Offhand, looks like a bad idea
- If everyone has an independent query
- And everyone is iid in all the obvious ways
- Than everyone must invest work proportional to the number of nodes monitored by each query
- In particular if queries touch O(n) nodes, global workload is O(n²)

Leiden; Dec 0

Gossip-Based Networking Workshop

57

Aggregation

- ... but in practice, it seems unlikely that queries would look this way
- More plausible is something Zipf-like
 - A few queries look at broad state of system
 - Most look at relatively few nodes
 - And a small set of aggregates might be shared by the majority of queries
- Assuming this is so, can one build a scalable gossip overlay / monitoring infrastructure?

Leiden; Dec 06

Gossip-Based Networking Workshop

Questions about shape

- Can a system learn its own shape?
 - Obviously we can do this by gossiping the full connectivity graph
 - But are there ways to gossip constant amounts of information at a constant rate and still learn a reasonable approximation to the topology of the system?
- Related topic: "sketches" in databases

Leiden; Dec 06

Gossip-Based Networking Workshop

... yet another idea

- Today, "structural" gossip protocols usually
 - Put nodes into some random initial graph
 - Nodes know where they would "like" to be
- Biological systems:
 - Huge collections of nodes (cells) know roles
 - Then they optimize (against something: what?) to better play those roles
 - Create gossip systems for very large numbers of nodes that behave like biological systems?

Leiden; Dec 0

Emergent Shape: Topics

- Consistency models
- Necessary conditions for convergent consistency
- Role of randomness
- Implications of bias
- Emergent structures
- Self-centered aggregation
- Bandwidth-limited systems; "sketches"
- Using aggregation to fine-tune a shape with constant costs

Leiden; Dec 0

Gossip-Based Networking Workshop

61