
Transactions in Distributed
Systems

CS 614 Spring 2002

ANDRÉ ALLAVENA

andre@cs.cornell.edu

Cornell University

Transactions in Distributed Systems – p.1/32

email://andre@cs.cornell.edu


Distributed Systems

Why Distributed Systems
Generalisation of a local system

Not everything can be done in a local system

Common Problems
State of system is difficult to define

Especially with partial crashes

Hint: a database is a “local distributed” system

Transactions in Distributed Systems – p.2/32



What is a transaction

A transaction is a collection of operation that
represents a unit of consistency and recovery

A transaction starts by initialising things, then
reads and/or modifies objects. At the end, either

Commit Changes are saved, resources are
released; state is consistent

Abort For an outsider, nothing happened

Transactions in Distributed Systems – p.3/32



Concept of distributed transaction

The only difference is in the word Distributed.

Some problems are the same as in databases
atomicity
concurrency (serialisation)
recovery

The solutions to those are conceptually the
same

Add network communication failures

And external process failures

Transactions in Distributed Systems – p.4/32



Variety of Problems and Solutions

Recoverable Virtual Memory (RVM)
Memory that survives crashes

Programming Language (Argus)
To ease the development of distributed
applications (think of an object oriented
language, the objects being access by
transactions only)

Distributed Operating System (QuickSilver)
Transactions are used for all resources
management

Transactions in Distributed Systems – p.5/32



Concurrency Solution

Use of read and write locks to synchronise
the access / modification of system resources

A two-phase lock mechanism to allow full
seriability. Locks are kept with the object.

But different policies for different kind of
objects. Two-phase are not necessary
needed everywhere.

Programmer should guard against deadlocks

Transactions in Distributed Systems – p.6/32



Inconsistent state

Having atomicity on operations solve the
problem of inconsistent distributed state

An operation can either commit or abort
(failures are not tolerated everywhere)

Nested transactions are trickier, not
implemented everywhere, need two-phase
commit

Transactions in Distributed Systems – p.7/32



Recovery Solution

Don’t save (on a stable storage) before being
requested to commit, and then do save on a
stable storage

Keep a log on a stable storage of the changes
you did to your data

Find a way to recover (consistent) state after
a failure / crash and / or abort (cleanly)
leaving to the outer transaction to handle the
rest of story.

Transactions in Distributed Systems – p.8/32



Commit / Abort

Rule of everything or nothing
Everything means local as well as remote

When there are nested transactions, commit
and abort must propagate all the way down.
There are two sorts of commits, the commit to
the top level transaction (which has to go to
stable storage in some way), and the commit
to an outer transaction which could be
aborted one day.

System has to stay consistent!

Transactions in Distributed Systems – p.9/32



Two-Phase Commit Protocol

A.2@G.2
committed

A@G
active

A.1@G.1
aborted

A.1.1@G3
committed

A.1.2@G4
committed

A.2.1@G3
commited

A.2.2@G5
commited

A.2.3@G6
aborted

Difference between parent and top-level commit

Transactions in Distributed Systems – p.10/32



Two-Phase Commit Protocol

Sub actions commit to the parent, in a way that can be
undone (such as not saved on stable storage)

Top level commits by sending a request to its
sub-committed tree
They write in their log prepare and the object, and
release the read locks
Upon reception of all prepare OK Top level logs
“Committed” and notify the subtree or send an abort

Children now log the commit, and store on stable
storage their object
or else log abort and discard the object (undo), and
release their locks

Transactions in Distributed Systems – p.11/32



Argus

A programming language and System for
Distributed Computing

Intended for programs that keep online data
for long periods of time

Guardians provide encapsulation of objects
and resources

Actions allow atomicity of processes

Transactions in Distributed Systems – p.12/32



Assumptions

A failed node doesn’t send messages

Messages are always delivered, in order
(retransmissions at higher level)

Corruption of packets can be detected

Transactions in Distributed Systems – p.13/32



Guardians

Guardians are objects that encapsulated resources

No other way of accessing the resource than using the
dedicated handler
They resides in a single node, but could be moved
from one node to another
Nodes can have 0, 1 or more guardians

Resources are only accessed through handlers

Guardians can create other guardians

Guardians have stable and volatile resources

Transactions in Distributed Systems – p.14/32



Actions

Actions are total, atomic. They either abort or commit,
but don’t leave an inconsistent state
They can be nested

Actions work on copies of their object, and keep
version number
When an action commits, it propagates its locks and
local version of the guardian to the parent action

As well as a list of participating guardians which
committed
Strict two-phase locking (and locks held until a father
aborts or top-level commits) (ensures seriabilility)

Transactions in Distributed Systems – p.15/32



Action Tree

A.2@G.2
committed

A@G
active

A.1@G.1
aborted

A.1.1@G3
committed

A.1.2@G4
committed

A.2.1@G3
commited

A.2.2@G5
commited

A.2.3@G6
aborted

Transactions in Distributed Systems – p.16/32



Locks and nested transactions

Synchronisation access to resources is done
via locks

An action can acquire a read lock if and only
if all holders of write locks are ancestors

An action can acquire a write lock if and only
if all holders of read or write locks are
ancestors

Transactions in Distributed Systems – p.17/32



Implementation

There is a list of committed children which lies
along, as well as an abort list.

Only commits and prepare are actually resent
until getting answer. Release of locks for
example are not guaranteed to be received.

Crashes and orphans processes are taken
care by a mysterious orphan destruction
algorithm

Each node has a special privileged guardian:
the guardian manager, all other guardians are
his children

Transactions in Distributed Systems – p.18/32



Argus Conclusion

Nested queries do not induce a high
overhead

Communications are expensive

Atomic types of object are difficult

Transactions in Distributed Systems – p.19/32



QuickSilver

QuickSilver is a general purpose distributed
operating system supporting transactions.

Transactions are used for all the resource
management in the system

The same mechanism for accessing any
resource, local or remote

Every program runs in the context of
transactions (ex shell script)

Constraint: Unix applications should be easy
to port to QS

Transactions in Distributed Systems – p.20/32



QuickSilver

QS supports atomicity, recoverability and
concurrency of transactions.

Each server has its own concurrency policy

Commits are one-phase or two-phase commit
depending on the server (ex, file system)

Transactions in Distributed Systems – p.21/32



Overview

Remote IPC in QuickSilver

Transactions in Distributed Systems – p.22/32



Transaction Management

There are 3 parts in the transaction management

1. Transaction Manager

2. Transactional IPC (Inter Process
Communication)

3. Log Manager

Transactions in Distributed Systems – p.23/32



Transaction Manager

The TM starts a transaction when it receives
an IPC from a process, as so it handles the
start and finish of the transaction

The TM assigns globally unique TID and
registers it with the kernel

The TM coordinate the decision to commit or
abort along the participants of the
transactions

The servers are responsible for implementing the
recovery, cleaning after an abort, and saving
modification upon a commit

Transactions in Distributed Systems – p.24/32



Transactional IPC

IPC are done on behalf of a transaction

Remote requests are handled by the local
Communication Manager

There are participation classes (specifies
protocol)

no-state (no notification of termination)
stateless (1-phase commit, to clean up
state)
recoverable state (2-phase commit)

Transactions in Distributed Systems – p.25/32



Log Manager

Records are appended to the end of the log
file

The log is used to recover, but also as
checkpoint in long running applications

Transactions in Distributed Systems – p.26/32



Weak Seriability: DFS

Distributed File System (weak seriability)

writes locks only for renaming/creating a
directory

read locks are not required when reading a
directory

read locks on files are released when closing
that file

write locks are kept until transaction commits
or aborts

Transactions in Distributed Systems – p.27/32



Possible Usages of Transactions

safe updates / installation of software

no need of a working copy of a file.

undo mechanism for applications

safe “kill” of programs, such as make (no
temp files lying around)

But a few difficulties to expect with long running
transactions (ex window manager) which end up
having a huge state to commit when it will.

Transactions in Distributed Systems – p.28/32



Lessons of QuickSilver

Writing transactional applications is simple, robust
distributed ones are much easier than for vanilla Unix
Writing simple transactional servers is easy, complex
ones are difficult but worthwhile
A flexible concurrency control policy is desirable

Can live without nested transactions most of the time,
and can survive anyway

Long lasting transactions shouldn’t be a problem, but...

A strong log system is difficult to implement

Overhead is not significant (but IPCs said to be slow)

Transactions in Distributed Systems – p.29/32



Lightweight Recoverable Virtual Memory

Operating System

Application Code

RVM
Atomicity

Permanance: process failure

Distribution Serialisability Nesting

Transactions in Distributed Systems – p.30/32



RVM: a simplified database

RVM is just a simplified database, which

has only one type of lock

saves to disk to ensure recoverability

is used as a library linked to applications

can be bypassed (no_abort)

is an extra layer between the application and
the operating system (portability and
simplicity)

needs to have the programmer (or the
compiler) declares the areas he is modifying

Transactions in Distributed Systems – p.31/32



Conclusion

The use of transactions can be generalised
from databases to any part of a system.

Note that there is still the Impossibility of
distributed consensus with faulty process
lying around.

Are some of these systems / ideas used
today?

Transactions in Distributed Systems – p.32/32


	Distributed Systems
	What is a transaction
	Concept of distributed transaction
	Variety of Problems and Solutions
	Concurrency Solution
	Inconsistent state
	Recovery Solution
	Commit / Abort
	Two-Phase Commit Protocol
	Two-Phase Commit Protocol
	Argus
	Assumptions
	Guardians
	Actions
	Action Tree
	Locks and nested transactions
	Implementation
	Argus Conclusion
	QuickSilver
	QuickSilver
	Overview
	Transaction Management
	Transaction Manager
	Transactional IPC
	Log Manager
	Weak Seriability: DFS
	Possible Usages of Transactions
	Lessons of QuickSilver
	Lightweight Recoverable Virtual Memory
	RVM: a simplified database
	Conclusion

