
Time, Clocks, and the Ordering
of Events in a Distributed System

Leslie Lamport

ANDRÉ ALLAVENA

Cornell University

Time, Clocks, and the Ordering of Events in a Distributed System – p.1/32

email://andre@cs.cornell.edu

Motivations

Time is part of our world

But time is difficult for computers

It cannot be send via messages

Time is closely linked to “before” and “after”,
but there are a lot of issues with those words

Time, Clocks, and the Ordering of Events in a Distributed System – p.2/32

Distributed System

A system is distributed if the message
transmission delay is not negligible (eg: spatially
separated, multiprocessor, etc.)

Sometime, we cannot say which event
happened first, if any. This rises a lot of
difficulties, for synchronisation among others.

Also, one must be careful that algorithms to
create total ordering of events might not always
give the same ordering as the one perceived by
the user.

Time, Clocks, and the Ordering of Events in a Distributed System – p.3/32

The Partial Ordering

Event � happened before

�

if � happened at an
earlier time than

�

. But

Must have physical clocks!

What if clocks not perfectly accurate?

Let’s define happened before without clocks.

Time, Clocks, and the Ordering of Events in a Distributed System – p.4/32

Definitions

The system is constituted of a collection of
processes

process: a sequence of event

event: Subprogram, single machine instruction,
etc.

Events form a sequence in a process (total
ordering)

receiving a message: is an event in a process

sending a message: is another event

Time, Clocks, and the Ordering of Events in a Distributed System – p.5/32

happened before

�

�

(� happened before

�

) iff

� and

�

are events in the same process
and � comes before

�

� is the sending of message � and

�

is the
receiving of that message �

�

�

and

� � then � �

concurrent: if �

�

and
�

� then � and

�

are
concurrent

We assume � �

This is a irreflexive partial ordering on the set of
events

Time, Clocks, and the Ordering of Events in a Distributed System – p.6/32

Space Time Diagram

Time, Clocks, and the Ordering of Events in a Distributed System – p.7/32

Other Meaning

�

�

means that it is possible for event � to
causally affect event

�

Events are concurrent if neither can causally
affect the other. Only the messages which have
been sent are considered.

The theory of relativity (and space-time invariant)
actually consider the messages that could have
been sent as well. This is more powerful, but
requires know delivery time on the messages.
We shall regain this power (good total ordering)
later.

Time, Clocks, and the Ordering of Events in a Distributed System – p.8/32

Logical Clocks

This is just a way of assigning a number
to an event

A clock � for process � is a function from
events to (non-negative) integers.

�

�
�

is defined to be �

�

�
�

when � occurs in

�

No relation between clocks and physical time

Think of as for Counter

Time, Clocks, and the Ordering of Events in a Distributed System – p.9/32

Clock Condition

For any event �,

�

, if �

�

then
�

�
� � � � �

The reverse doesn’t hold.

The Clock Condition is satisfied if
If � and

�

events in � then �

�

�
� �

�

� � �

If � is the sending of a message by � and

�

is the receiving of that message by � ,
then �

�

�
� � �
� � �

A clock ticks through every number,

The clicks happen between the events

Time, Clocks, and the Ordering of Events in a Distributed System – p.10/32

Space Time Diagram

Time, Clocks, and the Ordering of Events in a Distributed System – p.11/32

Space Time Diagram, revisited

Time, Clocks, and the Ordering of Events in a Distributed System – p.12/32

Implementation

Consider the events to be steps in algorithms

Each process � increments � between any
two consecutive events

Each message � contains a time-stamp �

containing the current time of the sender

If event � is the sending of message � by � ,
then � � �

�

�
�

When � receives �, it increases its clock to
be strictly greater than the time-stamp in �

�
� � ��� � � �� �
�

�
	 �

� � �

Time, Clocks, and the Ordering of Events in a Distributed System – p.13/32

Total ordering of the events

All the events have a time, so let’s order the
events by the time they occur. Break ties by
choosing an arbitrary order on the processes.

� is before

�

(�

�

) iff

1. �

�

�
� �

�

� � �

2. �

�

�
� � �

� � �

and �

� �

This is an arbitrary ordering, and is far from being

unique (depends on the choice of the �).

Time, Clocks, and the Ordering of Events in a Distributed System – p.14/32

Ex: Distributed Mutual Exclusion

Some processes are sharing a single resource.

Only one process at a time can use the resource

exclusion: A process which has been granted the
resource must release it before another one
can grab it

no lock: If every process which is granted the
resource eventually release it, then every
request is eventually granted

ordering: Different requests must be serviced in
the order they are made

Time, Clocks, and the Ordering of Events in a Distributed System – p.15/32

A central scheduling system?

Request 1

Hi!

My turn now

Request 2

P0

P1

P2

(responsible for granting the ressource)

A central scheduling system doesn’t work!

Time, Clocks, and the Ordering of Events in a Distributed System – p.16/32

Solution: Idea

FIFO, but

Distributed

Broadcast the request

Force a synchronisation of the clocks

Broadcast the release

Time, Clocks, and the Ordering of Events in a Distributed System – p.17/32

Distributed Algorithm

Assumptions

messages sent from

�

to

�

are received in the
order they were sent

all messages are eventually received
This can be enforced by acks

each process has its own request queue,
initialised to �� �

� has the resource at the beginning

� is smaller than the initial value of the clocks

Time, Clocks, and the Ordering of Events in a Distributed System – p.18/32

Solution: Algorithm

To request, � broadcasts �� � (aka, my
current time is �, I am �), and put it in its
own queue

When � receives the request, it
acknowledges it and puts it in its queue

To release, � broadcasts a release
(time-stamped?) message, and erases the
request from its queue

When � receives the release message, it
erases the request from its queue

Time, Clocks, and the Ordering of Events in a Distributed System – p.19/32

Algorithm, continued

� is granted the resource when

There is a �� � at the top of the request
queue (ordering is on request messages)

� has received a message from every other
process, time-stamped later than �

This guarantees exclusion, no locking and
ordering.

This is a distributed algorithm, each process
follows the rules on it own.

Time, Clocks, and the Ordering of Events in a Distributed System – p.20/32

Generalisation

The previous method can be used to implement
any kind of synchronisation for a distributed
system.
Synchronisation is specified in terms of a State
Machine (wait for lecture 2/21)

Set of possible commands (request and
release in the previous example),

Set of possible sates

Transition function

Time, Clocks, and the Ordering of Events in a Distributed System – p.21/32

Generalisation continued

Each process independently simulates the State
Machine, using the broadcasted commands.

There is synchronisation because of the
time-stamps on all the messages and the wait to
be sure everybody has a later time than the
request.

Note that this requires all processes to be alive
and part of the algorithm...

Time, Clocks, and the Ordering of Events in a Distributed System – p.22/32

Anomalous Behaviour

Request 1
with T1

Hi, how
are you?

OK, I’ll send your request

Request 2
T2 < T1

P0

P1

P2

Has T1 Has T2

T1>T2

Time, Clocks, and the Ordering of Events in a Distributed System – p.23/32

Anomalous Behaviour Continued

Let be the set of system events

Let be the set of all events

Let be the happened before in

To avoid anomalous behaviour, one can either

ask the user to input a correct time-stamp

have stronger clock guarantees

Time, Clocks, and the Ordering of Events in a Distributed System – p.24/32

Strong Clock Condition

For any events �,

�

in :
if �

�

then

�

�
� � � � �

This is stronger than before when we only had

�

�

ie � happened before
�

in (now)

Let be the set of events in the real world

One can construct physical clocks, running quite
independently, and having the Strong Clock
Condition, therefore eliminating anomalous
behaviour.

Time, Clocks, and the Ordering of Events in a Distributed System – p.25/32

Physical Clocks

Assumptions:

They run continuously

approximatively at speed 1:

� � ��� such that

� � ��� 	�
 �
�

 � � � �

and are approximatively synchronised� �
	

�� �
�

���

 �
���
 � � �

and verify the ordinary Clock Condition

Since they tend to drift away, we need to
re-synchronise them.

Time, Clocks, and the Ordering of Events in a Distributed System – p.26/32

Physical Clocks

We have to insure that the system of
relevant physical events satisfies our Strong
Clock Condition

For that we only need consider events � and

�

from where �

�

. So � and

�

occur in 2
different processes

Let � be a number such that if �

�

and �

occurs at

�

in � and

�

in � ��� � then

�

occurs
later than

� �.

Time, Clocks, and the Ordering of Events in a Distributed System – p.27/32

Physical Clocks

Epsilon

P0 P2P1

µ
Fastest message

Time, Clocks, and the Ordering of Events in a Distributed System – p.28/32

Physical Clocks

In other words � is less than the shortest
transmission time.

Or else the time granularity of the physical
world is larger than �.

To avoid anomalous behaviour we need

�

�� �

 �
���
 � �

, guaranteed if

�
��� � �

Time, Clocks, and the Ordering of Events in a Distributed System – p.29/32

Algorithm

� � is the minimum delay of a message, and is
known by the processes (it is really needed?)

Only move clocks forward, and that only upon
reception of a message

When a process receives a message with
time-stamp �, it updates its clock via

�

���
 � � ��

�

���

	 � � �

This is the same as before, you move the
clock forward, and know the current time is at
least the time-stamp + the minimum delay of
receiving a message.

Time, Clocks, and the Ordering of Events in a Distributed System – p.30/32

Main Result

If there are enough messages with a sufficiently
small delivery delay, then there are good bounds
on the de-synchronisation of the clocks.

� � � � � � an upper bound on the minimum
delay

��� 	
�

so that every � second, a message with
an unpredictable delay less than

�

is sent
over every arc

then � � � ��� � � �

assuming � � �

Time, Clocks, and the Ordering of Events in a Distributed System – p.31/32

Conclusion

“Happening before” only defines a partial
ordering

This partial ordering can be made total, but in
several arbitrary manner, and can lead to
anomalous behaviour because it is not
conform to the users perception

But the use of synchronised clocks can
overcome this problem

Time, Clocks, and the Ordering of Events in a Distributed System – p.32/32

	Motivations
	Distributed System
	The Partial Ordering
	Definitions
	a happened before b
	Space Time Diagram
	Other Meaning
	Logical Clocks
	Clock Condition
	Space Time Diagram
	Space Time Diagram, revisited
	Implementation
	Total ordering of the events
	Ex: Distributed Mutual Exclusion
	A central scheduling system?
	Solution: Idea
	Distributed Algorithm
	Solution: Algorithm
	Algorithm, continued
	Generalisation
	Generalisation continued
	Anomalous Behaviour
	Anomalous Behaviour Continued
	Strong Clock Condition
	Physical Clocks
	Physical Clocks
	Physical Clocks
	Physical Clocks
	Algorithm
	Main Result
	Conclusion

