July 19, 1996

|ssuesinthe Desgn and
|mplementation of Real-Time Javal

Kelvin Nilsen

Thisreport, first distributed as a Postscript document available for
anonymous ftp downloading on Nov. 15, 1995, serves as a foundation for
discussion regarding standar dization of Java extensions designed to support
development of reliablereal-time software. Thisrevision of the document
includeslimited discussion regarding issues that have been raised sincethe
original document wasfirst published.

1. Javaisatrademark of Sun Microsystems, Inc.

Executive Summary

Current difficulties in devel oping and maintaining software within limited budgets and
challenging devel opment-schedule constraints result in part from the shortcomings of
existing programming languages and development environments. In the context of dis-
tributed programming for the World Wide Web, Sun Microsystems has recently intro-
duced the Java programming language environment. Since formal announcement of
Javain May of 1995, a number of companies have already signed agreementsto license
Sun’s technology. Among these new partners is Netscape and Oracle.

Javawas originally designed by Sun to facilitate the development of embedded system
software [1], but has been initially positioned as alanguage for Web programming
because of its ahility to simplify the development of flexible, portable, distributed appli-
cations with high-level graphical user interfaces[2]. Javais derived from C and C++,
but the language has been restricted to eliminate many of the most costly common pro-
gramming errors. Java shows promise of greatly improving developer productivity in
the targeted domains.

Since many embedded computer systems must comply with real-time constraints, the
guestion might be raised: “Can Java support the devel opment of reliable hard and soft
real-time applications?’ This report suggests that Java, asit has been announced and
distributed to date, is not appropriate for development of real-time software. However,
by combining certain Java programming conventions with special implementation tech-
niques, it is possible to support varying degrees of real-time reliability, ranging from
100% guaranteed compliance with hard-real-time constraints to 100% best-effort
(unguaranteed) compliance with soft-real-time constraints. Users who require hard-real -
time performance will, of necessity, need to pay much more for their execution hard-
warein order to prove that worst-case needs will aways be satisfied. The samereal-time

Discussion Topics

Executive Summary

software that has been designed to run with 100% reliability on special Real-Time Java
virtual machines will run reasonably well on less expensive Java virtual machines that
are not capable of guaranteeing compliance with hard-real-time constraints. The bene-
fits of a Real-Time Java standard include lower development and maintenance costs,
quicker time to market, increased portability, enhanced network connectivity, improved
reliability, and increased functionality of real-time systems.

One of the most exciting potential benefits of the Real-Time Java execution model isthe
support it provides for development and reuse of portable real-time software. Not only
does Java enabl e the creation of real-time software modules to be shrink wrapped for
use on avariety of different Java execution platformsin cooperation with arbitrary
mixes of other concurrently executing real-time activities, but it also allows reliable
integration of software written in multiple different languages. For example, work is
currently under way to retarget an Ada compiler to generate Java virtual machine code.
Furthermore, the Java real -time execution model allows integration of non-real-time
COTS! software components as optionally executed components of real-time tasks.
This makes available to developers of Real-Time Java applications large libraries of
highly functional reusable Java object definitions.

The purpose of this paper isto raise important issues, suggest general solutionsto the
system-level problems, and point out low-level design issues that require further design
refinement. This report places emphasis on refinement of design objectives and narrow-
ing of implementation choices. It considers discussion of language syntax and class
interface designs to be premature at thistime.

Though this report takes the form of a proposal and argues informally for the adoption
of certain standard practices, the main purpose of distributing the report in this form at
thistime isto encourage discussion and refinements, and to recruit support for the total
effort. We would hope to be able to involve a broad interdisciplinary assortment of
expertsin these discussions. Some of the particular questions we intend to address
include:

« Multimedia Developers: Are these abstractions useful ? Do they offer important
capabilities not provided by “unadorned” Java? |s more than what has been proposed
necessary?

« Rea-Time Developers: Are the proposed abstractions useful ? Do they meet your
needs for devel oping flexible and portable real-time software? Or should standard-
ization of additional capabilities be attempted? Are the benefits to be provided by a
“Real-Time Java’ programming environment sufficient to justify the anticipated
costs?

« Javalmplementors: Do you fedl that the proposed methodologies could be imple-
mented (to the desired degree of compliance with real-time constraints) within the
context of your current implementation efforts? Does this report adequately fore-
warn Real-Time Java devel opers regarding the variety of different operating condi-
tions under which their “portable real-time” software might be expected to operate?

1. COTS stands for commercial off-the-shelf.

Issuesin the Design and Implementation of Real-Time Java

Java’s Origins

Introduction

» Java Standardization Bodies: Isthere any hope of standardizing a Real-Time Java
specification such as has been suggested in this report? How would we go about pur-
suing this possibility? Which aspects of the proposed approach do you find most
objectionable? What sort of compromises might be more tolerable?

At the sametime we are striving to better understand how best to define the problem that
must be solved, we are a so involved in the formation of a new corporati on! which
intends to tackle parts of this large problem asits first commercial products. With thisin
mind, we seek interaction with possible business partners, investors, and future custom-
ers.

To become involved in ongoing discussion and refinement of the Real-Time Java stan-

dard, subscribe to the real-time-java mailing list by sending the message body SUB-
SCRIBE in an email message to real-time-java-request@iastate.edu.

Introduction

Asreported in [1], Java “ originated as part of aresearch project to develop advanced
software for awide variety of networked devices and embedded systems.” The research
project initially chose to use C++ for development. But subsequently, the developers
encountered so many difficulties with C++ that they decided it would be best to design
an “entirely new language environment.” Java offers a number of important improve-
ments over developing software in currently popular languages such as C and C++:

» Javaborrows the familiar syntax of C and C++. Like C++, Javais object-oriented,
but it is much simpler than C++ because Java's designers intentionally discarded
redundant language features that were present primarily to support backward com-
patibility with legacy code. An additional benefit of its smplicity isthe small size of
its run-time system. Sun reports that the basic interpreter is about 40 Kbytes, and
that basic libraries and thread support add approximately 175 Kbytes[3].

e Thedevelopment cycle is much faster because Java supports both interpreted and
just-in-time compiled implementations. During devel opment and rapid prototyping,
devel opers save time by using the interpreter.

» Application software is more portable because the Java environment carefully speci-
fies a machine-independent intermediate byte-code representation which can be
transferred between heterogeneous network nodes and interpreted or compiled to
native code on demand by the local Java run-time environment.

* Application software is more robust because Java's run-time environment provides
automatic garbage collection®. The Javalanguage has been designed to eliminate the
possibility of dangling pointers and memory leaks.

1. NewMonics Inc. wasincorporated on March 20, 1996. Its addressis 2501 N. Loop Dr., Suite
900C, Ames, IA 50010. Phone: 515-296-0897, Fax: 515-296-9910.

1. Garbage collection describes the process of automatically detecting memory cellsthat are no
longer in use and adding them to the free pool so that they can serve future allocation needs.

Issues in the Design and Implementation of Real-Time Java 3

Java for Real-Time

Introduction

» Applications are adaptable to changing environments because code modules can be
downloaded dynamically from other network nodes without necessitating a system
restart.

e Security isenforced by built-in protection against viruses and other tampering. This
protection isimplemented by simple “theorem provers’ that analyze downloaded
byte codes before attempting to execute them.

» High performance is achieved by incorporating support for just-in-time translation
of portable byte codes to the native machine language of the local host. According to
Sun, performance of translated code is roughly equivalent to the speed of current C
and C++ programs.

Following public announcements of Javain early 1995, acceptance among devel opers
has grown very rapidly. Within less than two weeks following its creation, the Usenix
comp.lang.java news group was already carrying close to a hundred articles per day.
And as of Oct. 9, 1995, Java-related electronic mailing lists comprise over 10,000 inde-
pendent names. Netscape and Oracle have both recently contracted with Sun Microsys-
tems to incorporate Java run-time environments into future World Wide Web browsers.

According to David Wilner, Chief Technical Officer of Wind River Systems, most of the
recent rapid growth in the embedded real-time marketplace has been in areas for which
time-to-market pressures and high-volume per-unit costs are primary considerations of
project managers[4]. Besides simplifying the devel opment of WWW applications, most
of Java's benefits enumerated above would be of great utility to developers of embedded
real-time systems as well. A Real-Time Java implementation would be useful both for
programming of distributed real-time WWW applications (e.g. stock market trading,
interactive animation, video games, and teleconferencing) and for implementation of
more traditional embedded real-time applications (e.g. in-vehicle navigation systems,
pen- and voice-based computer interfaces, air traffic control, virtual reality environ-
ments, and missile defense systems). Clearly, real-time developers also need simple
object-oriented languages that support rapid development, portability, robust operation,
dynamic reconfiguration, security, and high performance. Some of the problems particu-
lar to the embedded real-time system domain which are addressed by the design of a
Real-Time Java programming environment include:

e« Portability: developersof embedded real-time systems often find it necessary
to deal with anumber of different host processors. For example, it is common to find
mixtures of Motorola 68000, Power PC, and Intel 960 hosts in a single development
laboratory. Even within an architecture family, code generation needs to be targeted
to the specific host in order to achieve high performance (e.g. The PPC 604 chip
needs different code than the PPC 601). Thisis particularly important in consumer
electronics products for which both software and hardware components evolve dur-
ing the product family’s lifetime. Maintaining the appropriate cross-development
toolsfor all of these different hostsis an administrative nightmare. Ensuring that all
combinations of hardware and software components work correctly in areal-time

1. Sun has not yet provided any proof of this claim. Given the nature of the language and charac-
teristics of its standardized implementation, it seems unlikely that Javawill really run asfast as
optimized C code. In the current absence of actual data, it seems more realistic to estimate that
optimized Javawill run on average approximately 20 — 30% slower than optimized C.

Issuesin the Design and Implementation of Real-Time Java

Traditional Techniques for
Real-Time Development

The Needs of Real-Time Developers

sense is adifficult challenge. And maintaining object code revisions and custom
makefile configurations is a major headache for devel opers. Devel opment would be
much easier if programmers could write in Java (which by design isafully portable
language), maintain a single version of the translated byte codes, and depend on the
localized Java run-time environments to configure new code as it is loaded onto par-
ticular hosts.

e Dynami c Adaptability: A frequent difficulty with maintenance of embedded
real-time systems isthat incremental software refinements must be installed without
bringing the system down for a clean restart. This includes applications that must
provide non-stop service to their user community (e.g. flight traffic control, tele-
phone switching, and military reconnaissance), and applications for which the costs
of downtime are prohibitive (e.g. nuclear reactor control, and manufacturing auto-
mation systems).

« Fault Tol erance: Inthe presence of network or node outages, it is often nec-
essary to redistribute information and processing workloads. The Java programming
environment greatly simplifies this burden since any node in the network, regardless
of its processor architecture, is capable of performing any of the Java tasks that need
to be performed. Simply download the byte-code representation of the task.

In response to arecent comp.lang.java post enquiring whether current Java “enthusi-
asts’ felt there would be a market demand for Real-Time Java implementations, several
individual s expressed strong support for the idea and requested additional information
so that they could promote this possibility among their management. Eugene
Devereauix, a Senior Principal Scientist at Boeing Company, stated that his company is
beginning an “R&D project at Boeing's Airplane Systems Laboratory (ASL) to look at
using Java with real time projects.” Bruce Wong of Distributed Systems International,
Inc. pointed out that “the security features and automatic storage management eliminate
awhole class of programming errors that would manifest themselves as crashes or core
dumps.” He projects: “1 believe the benefits will be so great that it will be a crime if mar-
ket forces do not make [embedded Real-Time Java] happen.”

The Needs of Real-Time Developers

Traditionally, real-time development has required that programmers analyze software
prior to execution to make sure that all execution time needs of the software will be
available when required. Resources that must be proven available include memory and
CPU time.

Traditional techniques for real-time development are very costly for a number of rea-
sons[5]:

1. Greater careisrequired during development to perform the analysis required to
guarantee compliance with real -time constraints.

Issues in the Design and Implementation of Real-Time Java 5

Current State of the Practice

The Needs of Real-Time Developers

Because most general purpose programming environments do not support rea -time
performance, developers of real-time applications are forced to use specialized oper-
ating systems and devel opment environments. These environments lack the robust
and powerful development tools that are available to developers of more traditional
systems.

Since the techniques for analysis of real-time performance areintrinsically machine
dependent, extraanalysis effort is required to maintain real-time software in the
presence of continual processor upgrades and integration of new /O devices.

Becauseit is not practical to accurately predict worst-case task execution times, the
real-time devel oper must reserve resources based on conservative upper bounds
rather than actual worst-case requirements.

Evenif it were possible to accurately determine worst-case execution times, execu-
tion time must be reserved for every task’s worst-case performance. Note that for
most tasks, typical execution times are much smaller than worst-case execution
times.

Because of the difficulty of proving availability of dynamic memory, many develop-
ers of hard-real-time systems avoid all use of dynamic memory management. This
requiresthat all of the memory required to satisfy each task’s worst-case heeds must
be permanently allocated prior to execution. Memory not currently in use sitsidle
rather than contributing to the system’s functionality and capacity.

The scheduling techniques that are typically used in real-time systems are unable to
promise 100% CPU utilization. Furthermore, context switching is much more fre-
guent in many real-time systems than istypical of traditional systems. Asaresult,
context switching and scheduling overhead represent a significant fraction of areal-
time system’s total workload.

For all the costs and difficulties associated with the development of real-time applica
tions using these “traditional” methodologies, you would think that the resulting bene-
fitsare well worth the effort. But in fact, most real-time systemsfall far short of theideal
in terms of functionality and flexibility. Real-time software is notoriously brittle and
feature poor. “ There has to be a better way.”

The real-time methodol ogies described above are so cumbersome and costly that most
developers of consumer real-time systems seem to ignore them entirely. Witness the cur-
rent state of the practice:

1.

Home computer users are expected to tweak and tune numerous mysterious parame-
ters to enable multimedia applications to run “correctly” on their single-tasking per-
sonal computers. When not configured properly, both full-motion video and audio
stutter.

Personal computers ignore typed characters and mouse clicksif entered when the
computer is busy with other activities.

Personal digital assistants are unable to record voice dictations during receipt or
transmission of faxes. Occasional 30-second response delays are common.

In current multi-tasking environments, such as high-performance desktop Unix sys-
tems, multimedia applications run well if they are the only applications running, but
the real-time behavior of the multimedia applications degrades rapidly and uncon-
trollably when other CPU-intensive activities are added to the system’s workload.

Issuesin the Design and Implementation of Real-Time Java

Summary

Periodic Tasks

Sporadic Tasks

Spontaneous Tasks?!

A Portable Model for Real-Time Computation

5. Developers of real-time multimedia applications for personal computers must pro-
vide large technical support staffs to help end users debug, configure and maintain
their applications running in the users' ever changing computing environments. Not
only does the environment’s software change, but it is aso continually undergoing
hardware upgradesin the form of add-on cache, memory, 1/0 expansion boards, and
networking capabilities.

Real-time programmers approach software differently than developers of traditional
systems. But traditional methodologies for development of hard-real-time systems are
not appropriate for the majority of mass-market real -time software that needs to be
developed in the coming years.

A Portable Model for Real-Time Computation

Though each real-time application domain imposes a different set of operating con-
straints on the real-time execution environment, most mass-market real-time applica
tions fit within the model described below. Even many of the real -time applications that
have traditionally been solved using more traditional real-time methodologies can be
accommodated by this model.

Many activitiesin existing real-time systems consist of tasks with fairly consistent typi-
cal execution times. These tasks are invoked at a regular time within afixed period of
execution. Examples of periodic real-time tasks include sampling of pen positionin a
pen computer, processing of radar or sonar signal inputs, playback of full-motion video
at a predetermined frame rate, and recording of digitally sampled speech for teleconfer-
encing applications. Typical execution frequencies for these tasks range from 10 to
1,000 times per second. Note that the mix of periodic tasks that comprise areal-time
system may change. For example, al of the tasks related to a teleconferencing session
are removed from the system workload when the teleconferencing session closes. It is
important that implementors recognize that changes to the task mix occur much lessfre-
quently than execution of individual periodic tasks.

Another significant percentage of the total workload consists of sporadic activities
which aretypically triggered in response to particular external events. When responses
to these external events must be delivered within a specified time, the activity is
described as a sporadic real-time task. Examples of sporadic events that might require
real-time response include mouse clicks on particular buttons, alarms raised by high
temperature or pressure readings, and radar detection of a previously unidentified flying
missile.

Spontaneous tasks represent an even smaller percentage of the total system workload.
These are similar to sporadic tasks in that they are triggered at unpredictable times, in

1. Inapreviousdraft of this document, the word “dynamic” was used in place of “spontaneous” for characterization of real-time tasks
with unknown execution frequency.

Issues in the Design and Implementation of Real-Time Java 7

Real-Time Threads

A Portable Model for Real-Time Computation

response to events or conditions detected in the external environment. Unlike sporadic
tasks, there is no upper bound on the frequency at which spontaneous tasks are exe-
cuted. Another difference between spontaneous and sporadic tasks is that no resources
are preallocated or guaranteed a priori for execution of spontaneous tasks. Each time an
occasion arises to instantiate a spontaneous task, the real-time executive determines on
the fly whether sufficient resources are available to service the request.

Thereis no periodic behavior in spontaneous tasks. A spontaneous task is characterized
by adesired start and finish time. If sufficient resources are available to add the
reguested spontaneous task to the current workload, without renegotiating the current
workload, the real-time executive accepts responsibility for executing the spontaneous
task. Otherwise, the real-time executive declines the request. If devel opers are unable to
tolerate the possihility that a task might be declined, they should describe the task asa
sporadic rather than spontaneous workload.

Robot walking provides several examples of spontaneous tasks. Prior to each step, a
number of independent real-time tasks must be scheduled, one to control the behavior of
each joint of each leg that is to be moved during this step. Suppose the desireis to opti-
mize the speed of robot walking. Since the computation and time required to take each
step on an uneven terrain varies greatly, it would be wasteful to describe walking as a
periodic task in which sufficient timeis reserved in each period for whatever isthe
worst-case time required to take a step on the worst possible terrain. Better efficiency
would be realized by treating each step as a spontaneous activity and scheduling the
next step as soon as the previous step has successfully completed. In this manner, the
robot would be able to walk very rapidly over flat surfaces, but would be able to slow
down as necessary when climbing or descending hills. Note that in both cases, a step
should not be taken if any of the relevant real-time tasks cannot be scheduled. This sug-
gests the need for a two-phase protocol for execution of spontaneous tasks. In the first
phase, the real -time executive determines whether it can accept the additional workload.
In the second, it executes the workload.

Another type of real-time activity might best be characterized as afair-share thread.
These are tasks that run “forever”, but which must make forward progress in proportion
to the passage of time. Consider, for example, an application that is responsible for ana-
lyzing stock market trendsin order to alert traders to opportunities to trade at favorable
profits. Suppose this task is responsible for generating an updated report once every ten
minutes. Much of the work required to prepare report N is redundant with the work
required to prepare report N — 1. Assume it is most natural to implement thistask asa
large loop that makes incremental refinements to previous recommendations based on
the receipt and assimilation of whatever new data has arrived since the previous report
was generated. Given this, it would not be appropriate to implement this activity asa
traditional Java thread because Java threads have no control over how much time they
might be allowed to execute. Programmers need a scheduling abstraction in which this
application can be treated as a thread with guaranteed execution time. In particular, the
programmer desires to specify that the task will be granted a certain amount of execu-
tion time during each ten minute period, with additional control over how thetimeis
distributed within the ten minute period. Note that it would not be very useful for this
task to have al of its execution time granted at the beginning of the ten-minute period
because that would require it to make all of its recommendations without considering

Issuesin the Design and Implementation of Real-Time Java

Architecture of a Real-Time
Java Program

What is Real-Time Java?

the additional ticker-tape information that is likely to arrive prior to generation of the
recommendation report.

What is Real-Time Java?

Unlike most languages designed for real-time programming, Java was designed more to
simplify programming than to enable programmers to write software that compliesreli-
ably with real-time constraints. Many real-time engineers would argue that the sponta-
neous nature of Javaistotally inappropriate for real-time application development.
Nevertheless, Java has much to offer the real-time programmer. By combining special
real-time implementations of the Java virtual machine with Java code written to comply
with special conventions for description of real-time activities, it is possible to develop
Java applications that rigorously conform to real-time execution constraints. The same
code, executed on non-real-time implementations of the Java virtual machine, also sup-
ports soft real-time performance. Both real-time and non-real-time virtual machines can
run combinations of real-time Java code and non-real-time Java code.

Preparatory to devel oping detailed designs and implementations of Java classes, it is
necessary to reach consensus regarding the general role to be served by each class. The
emphasis of this section is on specifying the general functionality of the major classes
that comprise the Real-Time JavaAPI ™.

It isimportant to keep in mind that simplicity is one of Java's greatest strengths. If itis
not possible to preserve simplicity while adding real -time capabilities to Java, then
Real-Time Javareally has nothing more to offer the embedded real-time community
than is already offered by C, C++, and Ada. One of our greatest challengesisto design
an architecture that supports development of both simple and complex programs with-
out adding unwanted complexity to simple programs.

Much of Java's simplicity comes from the abstractions that have been built into the lan-
guage. Abstraction helps programmers, including real-time programmers, deal with
complexity. But real-time devel opers must use abstraction with discretion. They must be
able to break through layers of abstraction whenever this is necessary in order to under-
stand or exercise control over real-time behavior.

A Real-Time Java program consists of an arbitrary number of real-time activities
accompanied by an arbitrary number of runnable threads. The runnable threads have no
time-constrained behavior. The discussion of real-time activities provided below makes
frequent reference to the real-time executive. See “ The Real-Time Executive” on

page 14.

1. NewMonicsInc. is currently in the process of refining the “Real-Time Java’ APl and is pro-

moting a standard APl under the product name PERC™ an acronym that stands for Portable
Executive for Reliable Control. In a number of cases, the draft API differs slightly from the
design suggested in this document.

Issues in the Design and Implementation of Real-Time Java 9

A Real-Time Activity

What is Real-Time Java?

A real-time activity consists of a configuration manager, an administrator, an arbitrary
number of real-time tasks, and an arbitrary number of runnable threads. The point in
specifying runnable threads as part of areal-time activity isto allow them to be pack-
aged with the other components that comprise the real-time activity in such away that
they share access to particular variables. There are several different kinds of rea-time
tasks, independently known as cyclic, sporadic, spontaneous, and ongoing. For all but
spontaneous tasks, the execution model assumes that tasks are ready to execute at the
start of their period, and are allowed to execute any time within the period aslong as
they terminate prior to the end. Much research in real-time scheduling has focused on
obtaining real-time schedules for more precisely specified constraints. This report takes
the position that such refined control adds unnecessary complexity to the real-time
developer’sjob. Instead, real-time programmers can find ways to structure their real-
time activities within the proposed scheduling model. The main benefit of imposing this
restriction isthat it enables efficient modularization and integration of independently
devel oped portable real-time activities on a single shared real-time execution platform.

It might appear that our proposal is based on an implicit assumption that rate monotonic
and static cyclic scheduling techniques are sufficient to satisfy the needs of all applica-
tions. Note, however, that additional scheduling control can be self-implemented within
particular real-time activities. For example, if a particular real-time activity desiresto
use earliest-deadline-first scheduling, its administrator can describeits scheduling needs
to the real-time executive as an ongoing real-time task that requires 30 milliseconds of
execution time in each period of 100 milliseconds. This ongoing real-time activity
would decide for itself which of itsinternal “tasks’ to schedule. In this implementation
style, internal tasks might best be represented by object methods. Thisis an areathat
reguires further study in order to refine the selection of standard services with which
application programmers can develop their own self-schedul ed real-time activities.

It isimportant to emphasize that the notion of task priority in arate monotonic real-time
environment is very different from the notion of priority in traditional systems. In the
real-time environment, priorities are sel ected according to decreasing order of execution
frequency, and have nothing to do with the relative “importance” of individual tasks. In
order for real-time activities to reliably coexist with uncooperative traditional non-real-
time components, we recommend that the range of priorities available for prioritization
of traditional Javathreads all be lower than the range of priorities dedicated to real-time
activities.

Configuration Manager. When anew real-time activity isintroduced into the system,
the real-time executive invokes the activity’s configuration manager to alow it to adjust
for the local computing environment. Configuration consists of determining which
methods will be interpreted and which will be translated by the just-in-time compiler,
calculating method and task execution times, and determining the activity’s memory
reguirements. Configuration management is the appropriate place to implement inter-
task blocking analysis, if such analysisis necessary. According to the Real-Time Java
software architecture, tasks are only blocked by other tasks that are part of the same
real-time activity. In order to support configuration management, the run-time environ-
ment needs to make certain services available. For example:

1. A task execution time analyzer that determines worst-case execution times for sim-
ple control structures through analysis of the control-flow graph.

10

Issuesin the Design and Implementation of Real-Time Java

What is Real-Time Java?

2. A task execution time analyzer that determines typical execution timesfor arbitrary
tasks by measuring representative executions.

3. A memory requirements analyzer that allows the configuration manager to deter-
mine the local sizes of particular data structures.

Note that the configuration manager is devel oped by the same team of programmers that
writes all of the real-time tasks that comprise a particular real-time activity. The ratio-
nale for this software architecture is that these programmers are in the best position to
determine what sort of configuration information is necessary for their real-time activity
to run reliably in the current environment.

Administrator. Theresponsibility of the administrator isto negotiate for resources with
the real-time executive. Following invocation of areal-time activity’s configuration
manager, the real-time executive invokes the activity’s administrator. The administrator
communicates the real-time activity’s resource needs, based on analysis of the configu-
ration manager, to the real-time executive. Execution time requirements are described to
the real-time executive in terms of execution frequency, minimum execution time, and
desired execution time for each of the cyclic, sporadic, and ongoing tasks that comprise
the real-time activity. Prior to communicating its execution time needs to the real-time
executive, the administrator may choose to adjust the activity’s task periods so that they
align more evenly with the real-time executive's existing least common multiple of real-
time task periods. In response to the administrator’s resource requests, the executive
provides pessimistic, expected, and optimistic resource budgets. The two resources that
are managed during this negotiation are execution time and dynamic memory. The pes-
simistic budgets represent alower bound on the amount of the resource that will be pro-
vided to the activity. Non-real-time virtual machine implementations may not be able to
guarantee any resources at al, in which case they report a pessimistic budget of zero.
The expected budget isthe amount of the resource that the real-time executive intends to
provide to the activity, assuming average operating conditions. The optimistic budget
reports the maximum possible amount of the resource that will be made available to the
activity. It isthe activity's responsibility to make effective use of whatever resources are
made availableto it. The activity’s administrator initializes relevant instance variablesto
represent the activity’s budgets so that the individual tasks that comprise the real-time
activity can pace themselves appropriately.

In an execution environment that is as dynamic as Java, resource budgets must be con-
tinually reevaluated. Whenever the real-time executive must reevaluate budgets, it estab-
lishes a dialogue with the corresponding activities' administrators to renegotiate the
resources that are available to the respective activities. Examples of events that might
trigger the real-time executive to renegotiate budgets include:

1. When new real-time activities are introduced into the environment, resources may
need to be withdrawn from current activities.

2. When old real-time activities become inactive, additional resources may become
available to the remaining real-time activities.

3. Certain real-time activities may discover that their resource needs have changed.
These activities can communicate this information to the real-time executive, which
may respond by revisiting the resource all ocation decisions made previously.

Issuesin the Design and Implementation of Real-Time Java 11

What is Real-Time Java?

Atomic Code Segments. Specia syntax is provided to identify certain segments of
code as atomict. Therationalefor reguiring atomic segments to have bounded execution
timesis asfollows:

1. Analysis of blocking interactions between tasks requires knowledge of how much
time particular tasks may be excluded from making forward progress.

2. One possible lock-less implementation of atomic segments invoked from within
real-time tasks is to check the time remaining on this task’s time slice on entry into
the atomic segment and to allow entry only if the time remaining is greater than the
known time required to execute the atomic segment.

3. Another possible lock-less implementation would be to simply disable all interrupts
during execution of the atomic segment. This implementation would not strictly
comply with real-time requirements in cases for which execution of the atomic code
segment might result in the task being allowed to execute longer than its budgeted
time (because the timeout tick could not be delivered while interrupts were dis-
abled). Nevertheless, by bounding the duration of the atomic segment, developers
can analyze the amount of jitter that might be introduced into system performance
by this possibility. In fact, Javaimplementors might choose to select between ater-
native feasible implementations of atomic segments, depending on the calculated
worst-case times required to execute them.

All Javaimplementations, regardless of the degree to which they might fail to rigorously
comply with all real-time execution constraints, must execute atomic code segments
according to the following requirements:

1. Either the atomic segment is executed in its entirety or not at all, insofar asvisible
side effects are concerned. Partial execution of an atomic segment is permitted only
if there are no visible side effects.

2. Execution of the atomic segment may be preempted (and later resumed) only by
threads that are unabl e to see or manipulate the intermediate state resulting from sus-
pending the origina thread in the middle of executing the atomic segment. In prac-
tice, the most straightforward implementation may be to simply prohibit all
preemption of atomic segments, thereby eliminating the analysis that would be
required to demonstrate that certain tasks cannot possibly see or modify the variables
managed within the atomic segment.

As discussed below, startup and finalization components of real-time tasks are also
treated as atomic segments. Even in execution environments that lack the ability to
determine through analysis the worst-case execution times of startup, finalization, and
atomic segments, atomicity is never compromised. In such environments, worst-case
execution times can be approximated through measurement. Whenever execution of an
atomic segment causes the corresponding task’s time slice to be exceeded, the real-time
executive corrects the problem as quickly as possible by shortening the amounts of time

1. Atomic segments resemble, but are not identical, to Java's synchronized methods. The syn-
chronized qualifier enforcestheideathat only one thread at atimeis allowed to execute partic-
ular code segments at atime. An “atomic” qualifier also allows only one thread at atime to
access the corresponding code segment. Additionally, the atomic qualifier guarantees that
either the entire segment or none of the segment will be executed each time entry into the seg-
ment is attempted.

12

Issuesin the Design and Implementation of Real-Time Java

What is Real-Time Java?

available to subsequent tasks, until all tasks are once again executing on schedule. In a
strictly complying real-time implementation, however, execution of atomic segments
should never result in particular tasks being allowed to run longer than their budgeted
times.

Cyclicreal-timetasks. A cyclic real-time task is characterized by a single runnable
thread; a startup segment with bounded worst-case execution time; a finalization excep-
tion handler with bounded execution time; one or more atomic segments of code, each
of which has bounded execution time; and a desired execution frequency. Each compo-
nent is optional, but it would not be meaningful to omit all components.

The startup segment combined with the finalization segment represent the minimal
functionality offered by thistask. Each of these segmentsis always executed atomically
and in its entirety. The runnable thread represents a variable-quality component of this
task’s effort. Typically, the startup segment computes a very rough estimate of the task’s
intended result and the runnable thread makes incremental improvements to thisinitial
rough estimate. The activity’s configuration manager and administrator work together to
arrange for areasonable amount of execution time to be allocated to the runnabl e thread,
on average. When the runnabl e thread’s time expires, the real-time executive aborts the
thread if it hasn’t already terminated and passes control to the finalization method asso-
ciated with the task. In cases for which the work to be performed by atask is small and
constant, all of the work can be performed by the startup and finalization code, and the
runnable thread can be omitted.

Therationale for this software architecture isthat it is not economically feasible to
determine accurate worst-case execution times for tasks of even moderate complexity
[6]. A measurement-based analysis of task performance is much more accurate for typi-
cal execution behavior. But measurement-based analysis does not represent worst-case
behavior. Whenever the task requires more time than was anticipated by the measure-
ment-based analysis, it is better to deliver an approximate answer on schedule than to
run therisk of pushing all other tasksin the system off schedule.

Becauseit is not practical to derive tight worst-case bounds for execution of each real-
time task, we make no attempt to do so. Rather, we guarantee sufficient resources to
execute only the task’s startup segment and its finalization segment (each of whichis
characterized by a* conservative” worst-case execution time bound).

The general execution model for acyclic real-time task is for the real-time executive to
invoke the initialization method and then to startup the runnabl e thread with awatchdog
timer set to prevent this thread from taking longer than its alotted time. If the thread ter-
minates on schedule, the real-time executive then callsthe finalization exception handler
explicitly. Otherwise, the real-time executive aborts the thread by sending it the finaliza-
tion exception. Note that this protocol guarantees that the finalizer will be invoked
exactly once for each execution of the cyclic task.

Descriptions of other kinds of real-time tasks follow. There are many similarities
between the various flavors of real-time tasks, and it is our intention that the object-ori-
ented class hierarchy that implements real-time activities will represent these similari-
ties. In the descriptions that follow, details already provided in the description of cyclic
real-time tasks are intentionally omitted.

Issues in the Design and Implementation of Real-Time Java 13

The Real-Time Executive

What is Real-Time Java?

Sporadic real-timetasks. A sporadic real-time task consists of asingle runnable
thread; a startup segment with bounded worst-case execution time; a finalization excep-
tion handler with bounded execution time; one or more atomic segments of code, each
of which has bounded execution time; and a worst-case execution frequency. As with
cyclic real-time tasks, all components are optional. Such tasks are typically triggered

by:

1. Aninterrupt which istrandated by the run-time system into an activation of this
task, or

2. Upon recognizing a particular condition, a cyclic task activates the corresponding
sporadic task.

Note that it may be possible for hardware interrupts to occur at a higher frequency than
was specified by the Java programmer. If this occurs, the ability to comply with real-
time constraints may be compromised. In fact, a vulnerability of many current real-
world systems is that they can be crashed by overloading the system with externally
generated interrupts, such as might result from LAN network broadcast storms. In order
to achieve reliable compliance with hard real -time execution constraints, the software
developer must coordinate with the hardware implementors to ensure that the hardware
does not generate more frequent interrupts than have been specified.

Spontaneousreal-timetasks. A spontaneous real-time task consists of a single runna-
ble thread; a startup segment with bounded worst-case execution time; one or more
atomic segments of code, each of which has bounded execution time; and a finalization
exception handler with bounded execution time. The minimum amount of time sched-
uled for execution of a spontaneous real-time task is the sum of the startup and finaliza-
tion segments. The run-time executive takes responsibility for interrupting the runnable
thread when the time remaining in the task’s time slot equal s the time required to exe-
cute the finalization segment.

Ongoing real-time tasks. An ongoing real-time task consists of asingle runnable
thread; a startup segment with bounded worst-case execution time; one or more atomic
segments of code, each of which has bounded execution time; a finalization exception
handler with bounded execution time; and a desired resumption frequency. Unlike
cyclic tasks, thisthread is resumed rather than being restarted on each period of execu-
tion. The real-time activity’s configuration manager coordinates with the activity’s
administrator to arrange with the real-time executive that each resumption of thistask is
of sufficiently long duration.

Because atypical task’s execution needs are not entirely deterministic, the ongoing real-
time task may find it necessary to adjust the quality of its efforts on the fly. It does this
by pacing itself against the real-time clock.

Conceptually, an ongoing task runs forever. But in practice, the activity in which the
ongoing task is a participant may not last forever. When the corresponding rea -time
activity terminates, the real-time executive invokes the ongoing task’s finalization
exception handler.

The primary responsibilities of the real-time executive are to make and enforce resource
allocation decisions. Whenever real-time activities are added to or deleted from the real -

14

Issuesin the Design and Implementation of Real-Time Java

What is Real-Time Java?

time workload, or whenever the resource needs of existing real-time activities change,
the real-time executive must decide how much CPU time and how much dynamic mem-
ory can be budgeted to each activity.

This report suggests that the negotiation process and resource allocation decisions need
not be time constrained. While negotiations are taking place, the system continuesto
execute the workload that was previously negotiated. Once negotiations are compl ete,
the system transitions “instantaneously” to the newly negotiated workload. If the new
workload replaces a cyclic schedule, the transition may be delayed until the end of the
current cycle.

Since spontaneous tasks are not periodic, they are handled specially. The real-time exec-
utive provides a service which takes as input parameters descriptions of an arbitrary
number of spontaneous tasks and schedul es the tasks for execution if sufficient
resources are available to satisfy all of the tasks' needs, or reports failure and schedules
none of the tasks if any of the task’s execution requirements can not be satisfied. Each
task description consists of a start time, a completion time, a minimum execution time,
and a desired execution time. By design, incorporation of additional spontaneous tasks
into the workload does not trigger reconfiguration of the existing cyclic schedules.
Spontaneous tasks are accepted for execution only if they can be serviced without inter-
fering with the cyclic tasks scheduled previously.

To some degree, the efficiency of resource utilization is correlated with the effort spent
in making careful resource allocation decisions. However, optimal resource allocation is
NP-hard, and even though we impose no real-time constraints on the resource allocation
problem, it is the implementor’s responsibility to provide “responsive” performance.
Perhapsthisis one aspect of the Real-Time Java design that requires further refinement?
Should we quantify the timeliness of resource negotiation? Should we allow particular
resource allocations to be saved and restored on the fly, so asto avoid the effort required
to renegotiate each time the system mode changes?

To conclude discussion of the real-time executive, we point out that both time and mem-
ory can be allocated with very efficient straightforward algorithms. If implementors
desire to use more sophisticated all ocation techniques, more power to them. First, con-
sider allocation of memory. Sum all of the memory allocation requests. Upon comple-
tion of each garbage collection pass, compare the amount of memory used by each
activity with the specified upper bound on memory needs for that activity. Call the dif-
ference for activity i d;. Sum the differences to obtain the total amount of additional
memory that might legitimately be requested by these activities. Call thisD. Let P rep-
resent the total amount of free memory at the time that garbage collection compl etes.
Compute the memory allocation increment budget for activity i by multiplying d; by P/
D.

Now, consider calculation of static cyclic schedules and analysis of sporadic workloads
to determine whether they are run-time schedulable. First, compute the total workload
represented by sporadic and periodic tasks as a percentage of the CPU’s total capacity.

Note that following resumption of atask that was preempted, memory that had been
cached prior to the preemption may no longer be present. Theimpact of the preempting

Issues in the Design and Implementation of Real-Time Java 15

Real-Time Management of
Dynamic Memory

What is Real-Time Java?

task on the cache contents of the preempted task is limited by the cache “footprint” of
the preempting task. As described in reference [7], the overhead of cache interference
between tasks can be modeled by adding to the cost of the preempting task the time
reguired to restore discarded cache entries into the cache following execution of the pre-
empting task. A conservative upper bound is represented by the time required to execute
however many cache read misses are required to fill the complete cache. When comput-
ing the total workload, add thistime to the cost of each cyclic and sporadic real-time
task in the system. If the total workload is lessthan or equal to 69%, it is schedulable
[8]. Otherwise, it may not be. For simplicity, assumethat if the workload exceeds 69% it
is not schedulable. In this case, we must shrink the workload before proceeding to con-
struct the cyclic scheduling table. We shrink the workload by reducing the service qual-
ity of particular real-time tasks and/or by refusing to add new real-time activity’s to the
workload.

Once the workload has been sufficiently reduced, we construct a cyclic dispatch table by
simulating a rate monotonic scheduler on al of the tasks that comprise the workload,
simulating each sporadic activity at its worst-case execution frequency. Time slots cor-
responding to sporadic tasks are left idle in the cyclic schedule. During execution, appli-
cation-level interrupts are enabled only during idle slots of the cyclic schedule. Assign
priorities to sporadic tasks according to rate-monotonic order.

Various optimizations to this scheduling process are possible. Several simple optimiza-
tionsthat offer potential for relatively high payoff include:

1. When constructing the cyclic dispatch table, do not precisely simulate the rate-
monotonic scheduling technique. If it is possible to eliminate preemption of alow-
priority task by delaying execution of the high-priority task until after the low-prior-
ity task has completed (without violating the time constraints on the high-priority
task), do so.

2. In casesfor which it was necessary to degrade service quality in order to bound the
total workload by 69% of CPU capacity prior to constructing the schedule, it may be
possible to expand the amount of execution time granted to particular tasks once the
cyclic dispatch table has been constructed.

3. Whenever the cyclic dispatch table includes chains of tasks that are executed one
after another, additional analysisis performed to determine whether the tasks can be
started ahead of schedule if the previous task(s) in the chain completes ahead of
schedule. If so, configure the dispatch table to so indicate. Thiswill result in longer,
more useful “idle” times during which spontaneous and sporadic tasks and non-real -
time threads can execute.

4. If the static cyclic scheduleis considered to be too long because the least common
multiple of task periodsistoo large, ssimply use rate monotonic scheduling for all
tasks. The real-time executive would need to maintain a dynamic queue of awvake
timesin order to trigger execution of periodic tasks at appropriate times.

Ideally, the real-time programmer would be assured that all of the memory required for
execution of areal-time activity would be available in the requested sizes at the desired
times. While this may be possible in certain execution environments, it isnot practical in
others. And relatively high memory and/or run-time overhead costs are associated with
providing these sorts of guarantees. Aswith management of CPU time, we propose that

16

Issuesin the Design and Implementation of Real-Time Java

The Java Virtual Machine

Implementation

for most execution environments, memory be treated as a real-time resource that can be
shown to be available most of the time, but cannot always be guaranteed. For those users
who require absolute guarantees of memory availability, higher cost hardware imple-
mentations are available, assuming that they are willing to limit themselves to execution
environments that have been specially designed to provide hard-real -time responsive-
ness. We view this compromise as unavoidable.

The dynamic memory needs of a particular real-time activity can be characterized in
terms of the maximum amount of memory that the application needs to retain as live at
any instant of time and the maximum rate at which the application needsto allocate new
objects. The second of these parametersis directly related to the rate at which the gar-
bage collector must reclaim objects.

As mentioned above, the real-time activity’s configuration manager has the responsibil-
ity of determining the values of these parametersin terms of the local execution environ-
ment. The activity’s administrator negotiates with the real-time executive to determine
how much memory will be made available to the application. The real-time executive
grants a memory budget to the activity’s administrator which is expressed in terms of
pessimistic, expected, and optimistic values for each parameter. The pessimistic budget
represents the minimum amount of memory that the real-time executive will provideto
this activity. In some execution environments, it will not be possible for the real-time
executive to promise any amount of dynamic memory; thus application developers who
desire to write code that runs in such environments should be prepared to deal with the
possibility that dynamic memory cannot be guaranteed. The expected budget represents
the amount of memory that the real-time executive expects to be able to provide based
on average-case behavior of the garbage collector and the application. The optimistic
budget represents an upper bound on the total amount of memory that the real-time
executive intends to make available to the activity. For example, the sum over all real-
time activities of their optimistic memory budgets probably should not exceed the total
amount of available memory?.

| mplementation

There are many possible ways to implement the run-time support required for execution
of Real-Time Java. The simplest and most portable implementation of the real-time
executive would be written in Javaitself and could be downloaded into anyone’s exist-
ing Java virtual machine. Of course, such an implementation would not be able to pro-
vide ahigh degree of compliance with hard real-time execution constraints, but would at
least serve as acommon foundation upon which programsthat care about the passage of
real time could execute.

In general, we recognize that virtual machine support for real-time activitiesis a matter
of degree:

1. Thesum may actually exceed the total amount of available memory in environments that do
not enforce any sort of logical partitioning of the dynamic heap.

Issuesin the Design and Implementation of Real-Time Java 17

Code Generation Model

The Byte-Code Analyzer

Implementation

1. Thenature of most current desktop computing environmentsis such that interference
from, for example, other Unix processes is beyond the control of the Java virtual
machine. In these environments, real-time response is provided “as much as possi-
ble” Within the Java run-time system, resources are allocated according to the real -
time execution plan, asit is adjusted dynamically to accommodate for interference
from other non-Java processes. Note that because of non-determinism in the execu-
tion environment, it is even more important in these systems to be able to refine the
plan for execution of real-time tasks on the fly.

2. In embedded Java systems (e.g. Java running on a single-tasking CPU, or, for exam-
ple, on adedicated network terminal), interference from other activities outside the
control of Javais eliminated. However, such systems may choose not to use time-
deterministic implementations of all language featuresin order to provide higher
throughput and/or more efficient utilization of available system resources (e.g. mem-
ory).

3. In embedded Real-Time Java environments, great care would be taken to ensure that
all components of the Java implementation work together to provide time-con-
strained execution of real-time activities. Average-case performance may suffer
because of trade-offs selected in order to achieve tight real-time control.

4. Inorder to achieve the tightest possible latency bounds combined with highest possi-
ble system throughput, it will be desirable to integrate a custom software implemen-
tation with custom hardware designed to support real-time garbage collection and
fine-grained control of time. With proper hardware support, tight real -time guaran-
tees can be provided without degrading average-case system throughput.

Note that this approach represents an important advance over the current practice, even
for run-time environments that do not guarantee rigorous compliance with real-time
constraints. In current general purpose computing systems, the run-time environment
has no awareness of what real-time behavior is desired and what parameters are avail-
able within which to adjust the execution of individual real-time activitiesin order to
achieve the desired real-time behavior. Though many run-time implementations may not
provide strictly “ correct” real-time behavior, we expect that most environmentswill find
it possible to quickly adjust for any real-time noncompliance by dynamically adjusting
the quality of service of individual components.

In order to enable analysis of worst-case execution times of all atomic segments, includ-
ing the startup and finalization code associated with real-time tasks, these code seg-
ments must be distinguished from other code by the Java translator. Whether the
distinguishing characteristic consists of specia byte-code instructions or simply of
reserved method names remains to be determined.

In traditional Java run-time implementations, Java byte-code programs are analyzed
prior to execution in order to verify that the code conforms to expected conventions. In
an implementation of a Real-Time Java run-time system, the byte code analyzer has the
additional responsibility of determining through analysis the worst-case times required
to execute atomic segments of code, including the startup code and finalization code
associated with real-time tasks. We do not expect to be able to analyze arbitrarily com-
plex code segments. Part of the design of Real-Time Javathat remainsto berefined isa
standard that describes the control structures that the byte-code analyzer is capable of

18

Issuesin the Design and Implementation of Real-Time Java

Byte Code Translation

The Real-Time Executive

Implementation

analyzing to determine worst-case execution times. Furthermore, we do not necessarily
expect to obtain tight bounds on task execution times. The purpose of execution time
analysisisto enable reliable operation of the real-time system. Scheduling decisions are
based more on average-case measured task execution times rather than on worst-case
times derived through static analysis.

Whenever possible, it is desirable that the byte-code analyzer a so determine the worst-
case stack size of each thread and real-time task. If thisinformation is available, the cre-
ation of threads and tasksislikely to be more efficient in that the amount of memory set
aside to represent the stack istypically smaller. Further, run-time efficiency isimproved
because the object methods invoked during execution of the corresponding thread or
real-time task need not check for stack overflow.

When tranglating code segments that are intended to be executed atomically, the byte
code translator must generate code to enforce atomicity. For best performance, the ato-
micity enforcing code should bein-lined at the point from which the atomic segment is
invoked. Atomic code invoked from within a sporadic task may need to be surrounded
by invocations of kernel functions that provide dynamic mutual exclusion protection.
When the same code is invoked from within a periodic task, the most efficient imple-
mentation may be to simply check the time remaining in the task’s time slice before
entering into the atomic segment of code. If the run-time system is able to efficiently
make thisinformation available, the byte code transator should generate the code
required to obtain and compare with thistime.

The real-time executive has three major responsibilities:

1. To make resource allocation decisions. In order to minimize its impact on system
throughput, such decisions are made relatively rarely. Once made, individual activi-
ties do much of the work required to manage the resources that have been granted
them without necessitating further interaction with the real-time executive.

2. Todispatch tasks and rai se watchdog timeout exceptions at appropriate times. These
events may be very frequent (e.g. thousands of events per second) so it isimportant
to minimize the effort required to service them.

3. Tomaintain an accurate representation of real time and make this available to inde-
pendent real-time activities.

Resour ce allocation decisions. In the best of worlds, resource alocation is straightfor-
ward because there are sufficient resources to satisfy every application’s desires. But in
the real world, resources are limited and every application desires as much asit can get.
The simplest method for resource allocation isto divide resources equally in proportion
to the sizes of each application’s requests. Alternately, it may be desirable for the
resource allocator to treat certain activities as more important than others, thus favoring
their requests for resources. We view these matters aslocal administrative issues and do
not consider them to be part of the Real-Time Java programming interface. It appears
that it would be straightforward for particular run-time environments to provide users
with menus that enable them to specify their preferencesin thisregard. It also seems
possible that, at the user’s discretion, automatic determination of importance could be
provided by tools that, for example, monitor which windows are visible and/or active
and automatically treat the corresponding activities as more important.

Issues in the Design and Implementation of Real-Time Java 19

Implementation

Dispatch of tasks and watchdog timers. Two of the most popular scheduling tech-
niques for implementation of current real-time systems are static cyclic and rate mono-
tonic scheduling. A static cyclic schedule, which is computed prior to execution time, is
simply an agenda denoting time slots when particular tasks are to be executed. Once the
agenda has completed, it is repeated. There are a number of reasons that static cyclic
scheduling is often preferred in, for example, commercial avionics and military systems:

1. Because the schedule is computed prior to execution time, it is perfectly known
exactly when each task will execute. There is no uncertainty, for example, in timing
analysisintroduced by the possibility that certain tasks will be blocked from execut-
ing important code by semaphore-like locks owned by lower priority activities.

2. Thereisvery low run-time overhead associated with a static cyclic agenda because
all scheduling decisions are made prior to execution time. The dispatcher treats the
agenda as a circular queue and always looks at the head of the queue to determine
the next event with which it must concern itself.

3. Thereisno need to incur any run-time overhead or kernel callsin the implementa-
tion of mutual exclusion locks. Such locks can be enforced prior to run-time by
scheduling tasks in such away that they are known not to interfere with one another.

4. Because scheduling decisions are made prior to run time, an arbitrarily large amount
of effort can be spent in computing an efficient schedule. With sufficiently large
expenditure of scheduling effort, it is possible to achieve 100% system utilization.
With much less effort, utilization of 69% is easily achieved.

The main disadvantage of static cyclic schedules is that they are static, unchanging.
Sporadic events are not easily handled in these environments, but changes in the system
workload can be accommodated by replacing one cyclic schedule with another.

Rate monotonic scheduling characterizes a technique in which the worst-case execution
times and the worst-case execution frequencies of all tasks are known prior to run time,
but the exact times at which particular tasks will be invoked is not known. The general

techniqueisto assign task prioritiesin order of decreasing execution frequency. So the
task that executes most frequently has highest priority and the task with least frequent

execution has lowest priority. The run-time scheduler has the responsibility of ensuring
that at all times, the highest priority task that is ready to run is scheduled for execution.

Note that there is more run-time overhead with a rate-monotonic scheduler because the
scheduler must maintain a priority queue of all tasks that are ready to run. Additionally,
there is execution-time overhead and uncertainty introduced because of the need to
enforce mutual exclusion using dynamic locks.

Our recommendation isto implement cyclic and ongoing real-time tasks using a dynam-
ically constructed static cyclic schedule and to implement sporadic tasks using rate
monotonic scheduling techniques. The scheduling of spontaneous tasksisimplemented
through the use of a second dispatch queue that interleaves time dotswith the cyclic dis-
patch queue.

Idedlly, tasks that are executing as part of a static cyclic schedule would be allowed to
enquire of the run-time kernel to determine how much timeisremaining in their current
execution time allotment. This time can be used as a guidepost to determine whether it

20

Issuesin the Design and Implementation of Real-Time Java

Run-Time Services

Implementation

is possible to complete the next atomic segment of code based on knowledge of the
worst-case time required to execute the atomic code. In systems for which thisis possi-
ble, this offers an efficient implementation of mutual exclusion enforcement for cyclic
and ongoing real-time tasks.

In Real-Time Java, most scheduling decisions are based on typical execution times
rather than worst-case times. Since Java software is developed on different hardware
than the systems on which it normally runs, and since devel oped Java byte codes run on
avariety of different hardware configurations, it is necessary to analyze the code in the
environment in which it isgoing to run.

The application developer is responsible for providing a configuration manager that is
capable of exercizing each task in the local execution environment to determine its exe-
cution time requirements. In order to measure task execution times, the run-time system
must provide the ability to accurately measure time. Furthermore, it may be desirable
that the run-time environment provide an ability to invalidate and/or disable memory
caches so asto allow measurement of code when it is not benefiting from cache speed-
ups.

Facilities must be provided in the run-time environment to explicitly invoke sporadic
and spontaneous tasks from within other real-time tasks, and for embedded Javaimple-
mentations, to automatically invoke sporadic tasks in response to particular interrupts.
The question of whether to expect the run-time system to enforce sporadic task execu-
tion frequencies remains to be addressed.

The real-time activity’s administrator is responsible for negotiating with the real-time
executive to obtain time and memory budgets for execution of the real-time tasks that
comprise the activity. In order for the administrator to determine the time required to
execute the atomic segments of code that comprise part of this activity, the run-time sys-
tem needs to provide a mechanism whereby the worst-case execution times of atomic
segments, as determined by the real-time version of the byte-code analyzer, can be
determined. Perhaps this information can be obtained by invoking a special worst-case-
execution-time method that is associated with each atomic segment object.

In order to allow an activity’s administrator to adjust task periods so asto align them
with the existing cyclic dispatch table, there must be a standard mechanism by which
Java programs can determine the current length of the dispatch table.

At the Java source and byte-code levels of abstraction, all atomic segments of real-time
code use the same representation. However, trandation of atomic segment byte codesto
native machine instructions will depend on the mutual exclusion enforcement mecha-
nismsthat are used in the host Java virtual machine implementation. In some cases,
implementation may consist simply of disabling interrupts. In others, it may consist of
setting a particular variable to point to the instruction that follows the critical segment of
code so that any attempt to context switch could be preceded by execution of all of the
instructions that precede the instruction so identified. Yet another possible implementa-
tion isto check how much timeis remaining in the current task’s time slot and only
allowing entry into the atomic code segment if the remaining timeis at least as great as
the known worst-case time required to execute the atomic code segment. Whatever the

Issues in the Design and Implementation of Real-Time Java 21

Real-Time Garbage
Collection

Implementation

implementation technique, it isimportant that the run-time support system provide the
mechanisms necessary to implement it.

In embedded Real-Time Java systems, it will be necessary to develop custom device
drivers for nonstandard hardware components. Such device drivers can be implemented
as native methods. Regardless of implementation technique, it would be desirable to
standardize the interface to custom device drivers. This would benefit both the imple-
mentor of the device driver and the device driver’s users. Note that it will also be neces-
sary to allow such native driversto include interrupt handlers that trigger execution of
sporadic Javatasks.

In order to support reliable real-time garbage collection, it is desirable to eliminate al
aspects of conservative pointer scanning from the system. Otherwise, it is not possible
to defragment memory and memory leaks may be introduced by conservative scanning.
Consequently, we recommend that new conventions be devel oped for the implementa-
tion of native methods in environments that intend to provide fully accurate garbage col-
lection. In these environments, all access to Java data structures must be stylized
through, for example, use of C macrosin order to make it possible for the garbage col-
lector to accurately distinguish pointers from non-pointers within the native method’s
stack frame and static variables.

There are avariety of garbage collection techniques that can, to varying degrees, sup-
port real-time garbage performance asit has been characterized in this report. Below,
severa of the feasible techniques are summarized briefly. Thislist is not intended to be
exhaustive. First, we identify several of the ways in which the garbage collection sub-
system may introduce unpredictability into the run-time environment.

Garbage collection faults. Since all of the threads and real-time activities running in a
particular Java execution environment share use of a single dynamic heap, it is possible
for one uncooperative thread to crash al other threads by simply allocating and hoard-

ing all available memory. To prevent this from happening, the real-time executive must
enforce dynamic memory allocation budgets. One possible implementation consists of:

1. Tagging every allocated object with afield that identifies the activity that allocated it.

2. Tallying the total amount of each activity’s dynamic memory that islive at the termi-
nation of each garbage collection pass.

3. Dividing the free memory that is available upon completion of garbage collection
between currently executing activities, reserving some of this memory for new activ-
ities that might be instantiated prior to completion of the next garbage collection
pass. This partitioning of memory is represented as an activity-specific allocation
budget.

According to this convention, task A cannot reallocate the memory corresponding to a
newly dead object until after the garbage collector has reclaimed this memory. Note that
the time required by the garbage collector to reclaim this memory is system dependent.
However, this system dependency is properly abstracted by the real-time activity’s
administrator when it negotiates for access to dynamic memory both in terms of the
maximum amount of live memory and in terms of the maximum rate of memory alloca-
tion. See “Administrator” on page 11.

22

Issuesin the Design and Implementation of Real-Time Java

Implementation

Theideal garbage collector would instantaneously reclaim and defragment the memory
associated with each object that becomes dead. However, practical implementations of
garbage collectors need time first to recognize objects as dead, and then to defragment
free memory segments. Therefore, the memory allocator may fail to satisfy legal alloca
tion requests either because dead memory has not yet been reclaimed, or because
reclaimed memory is fragmented to the degree that there is not a sufficiently large free
segment currently available, even though the total amount of free memory islarger than
the size of the request. In both of these cases, waiting for additional garbage collection
to complete before reissuing the allocation request may solve the problem.

In this model of dynamic memory management, there are two possible reasons why an
allocation request cannot be immediately satisfied: (1) the task’s total allocation budget
has been exceeded, or (2) the available free pool does not have a sufficiently large allo-
catable segment because of fragmentation. We recommend that individual tasks be able
to distinguish between these two situations at the time their allocation requests are
rejected. This suggeststhe need for a per-thread state variabl e that identifies the problem
associated with the thread’s most recently denied allocation request.

In adifferent execution model, the run-time system might allow tasksto allocate beyond
their dynamic memory budget, under the assumption that the garbage collector will sub-
sequently discover that the task has released sufficient memory to justify the allocation
reguest. This allows more aggressive utilization of available memory amongst well-
behaved trusted tasks. However, if the garbage collector subsequently discovers that a
particular task’s memory budget has been exceeded, the only way to recover from this
error isto kill the task, reclaiming all of its memory. Meanwhile, availability of memory
for other tasks in the system has been compromised. Additional timeisrequired to
reclaim the memory that had been erroneously allocated to the rogue task in order to
make it available to the other tasks for which the memory had originally been reserved.
Currently unresolved is the exact handling that is given to atask that is discovered after
the fact to have violated its memory allocation budget. Presumably, we would define an
exception to be raised in this case, and would disable any dynamic memory allocation
from being performed within the corresponding exception handler. Upon termination of
the exception handlers, the activity is considered to be dead.

Conservative mark and sweep gar bage collection. Conservative garbage collectors
are unableto reliably distinguish between pointers and non-pointers [9]. Because the
compiler is not required to generate the code that would be necessary to tag pointers,
conservative garbage collection isfairly easy to implement and has alow run-time over-
head. In conservative garbage collectors, the garbage collector treats any word that con-
tainsavalue that represents avalid address as a pointer. Thismeansthat it is possible for
an integer whose value is in the range that represents legal addresses to cause dead
memory to be conservatively retained. Furthermore, since it is uncertain whether the
suspected pointer really represents raw data or amemory address, it is not possible for
the garbage collector to rel ocate the referenced object in order to defragment memory.

Nevertheless, conservative techniques are very popular in implementations of garbage
collection for C and C++, and it appears that they will also be popular in implementa-
tions of Java. They perform well on average, both in terms of memory allocation
throughput, and in terms of memory utilization.

Issuesin the Design and Implementation of Real-Time Java 23

Implementation

In order to make a conservative garbage collector compatible with real-time constraints,
it is necessary to partition the free pool into segments of different sizes and to divide the
total garbage collection effort over time. Suppose, for example, that freelist O represents
objectsranging in size from 16 to 31 bytes, that list 1 represents objects ranging from 32
to 63 bytes, and so on. Given this organization, the time required to allocate memory is
bounded by the time required to examine each free list. On a 32-bit computer, there
would be no more than 32 freelists.

For purposes of discussing time division of the total garbage collection effort, assume
that the conservative collector uses a mark and sweep garbage collection technique. The
total effort required to perform garbage collection consists of the effort required to mark
and scan al live objects added with the effort required to sweep through the complete
heap. An upper bound on the number of live objectsis the sum of the number of objects
that were live upon completion of the previous garbage collection pass and the number
of objects that were allocated since completion of the previous garbage collection pass.
At the moment garbage collection begins, the free lists contain a certain known amount
of memory. Pace the allocation of this memory against the progress of the garbage col-
lector, making sure, for example, that 30% of the garbage collection effort has com-
pleted prior to allocation of 30% of the remaining free pool.

Note that there is no worst-case bound on memory leaks that might be introduced by
conservative scanning. Further, defragmentation of the heap is not possible. Thus, it
would not be possible for a Java virtual machine that is using conservative garbage col-
lection techniques to guarantee any lower bound on the amount of memory that will be
available to particular real-time activities. Nevertheless, since conservative garbage col-
lection has been demonstrated to perform well on average, expected and optimistic
memory availability will be useful quantities.

Copying gar bage collection. Copying garbage collection consists of periodically copy-
ing all live objects from one region of memory, called from-space to another equal-sized
region of memory, called to-space[10]. If some of the objectsresiding in from-space are
no longer live, the copied objects will not fill to-space. Thus, it istypicaly possible to
allocate new objects in to-space while old live objects are being relocated, under the
assumption that much of the current contents of from-space is dead. If all tasks that
share access to the dynamic heap are trusted to be well behaved, thisis a reasonable
assumption. But if some of the tasks are unknown or untrusted, asistypical in Java exe-
cution environments, then it is somewhat risky to allocate new objects from to-space
until after garbage collection has terminated.

One of the greatest benefits of copying garbage collectionisthat it fully defragmentsthe
free pool each time it completes a garbage collection pass. Thus, tasks that stay within
their allocation budgets are guaranteed that memory will never be denied to them
because of fragmentation problems. In fact, thisis the only garbage collection technique
that we are aware of which offers this guarantee to the client applications.

A disadvantage of copying garbage collection isthat it imposes a high run-time over-
head on execution of software. First, copying garbage collection is incompatible with
conservative garbage collection techniques. Thus, extra code must be executed to main-
tain tags that distinguish pointers from non-pointers. Second, to coordinate the sharing
of data structures between background garbage collection activities and ongoing execu-

24

Issuesin the Design and Implementation of Real-Time Java

Implementation

tion of application software, it is necessary to execute several extrainstructions each
time the application software refersto adynamically allocated object. In particular, each
time aword is fetched from memory, its value must be examined to determine if itisa
pointer to from-space. If so, the word is replaced with the corresponding to-space
pointer before making its value available to the application software. Note that this
reguires the referenced object to be copied to to-spaceif it had not already been copied.
This overhead has been measured to more than doubl e the execution time of certain
benchmark applications [11]. A third disadvantage of copying garbage collection is that
it requires aminimum of twice as much memory asis actually accessible to the applica-
tion at any instant of time.

Brook’s optimization to copying gar bage collection. This optimization is designed to
reduce the execution-time penalty of copying garbage collection at the expense of one
extraword per object [12]. The extraword serves as an indirection pointer. For the old
copies of to-space objects residing in from-space, the indirection pointer refersto the
corresponding to-space object. For afrom-space object that has not yet been copied, the
indirection pointer refersto itself. Similarly, for every to-space object, the indirection
pointer refers back to itself. Every access to an object follows the indirection pointer to
find the currently active version of the object. Meanwhile, garbage collection consists of
sweeping through the objects copied into to-space and replacing all from-space pointers
with the corresponding to-space addresses. Brook’s optimization replaces the condi-
tional range-checking test required by each memory read operation with alevel of indi-
rection associated with every read and write operation. In comparison with traditional
non-real -time implementations of Lisp on Motorola 68000 processors, Brooks reports
that the cost of fetching a pointer out of adynamically allocated object takes 125%
longer in the original copying algorithm and only 37.5% longer in hisimproved algo-
rithm [12].

Accurateincremental mark and sweep gar bage collection. Notethat theincremental
mark and sweep garbage collection technique described above is compatible with accu-
rate garbage collection techniques as well aswith conservative techniques. In compari-
son with conservative mark and sweep garbage collection, the benefit of accurate
garbage collection is that memory leaks cannot be introduced by the conservative scan-
ning process. However, there is a high cost associated with tagging of all pointersto
enable accurate garbage collection. In comparison with copying garbage collection, the
benefits include much higher utilization of memory and smaller run-time overhead;
since live objects are not relocated, less effort is required to coordinate garbage collec-
tion with activation processing.

Mostly stationary real-time gar bage collection. Mostly stationary garbage collection
isahybrid between copying and accurate mark and sweep garbage collection. The free
pool isdivided into N equal-sized demi-spaces. Two of the demi-spaces serve asto- and
from-space respectively. The rest are collected using mark and sweep techniques. The
benefit of this technique isthat it offers memory utilization efficiencies close to that of
mark and sweep techniques on average while still allowing memory to be defragmented
in real time. Mark and sweep garbage collection istypicaly at least 50% more efficient
than copying garbage collection [13]. In the worst case, the memory utilization of
mostly stationary garbage collection is approximately the same as for the fully copying
technique [13].

Issues in the Design and Implementation of Real-Time Java 25

Implementation

Real-time generational garbage collection. One straightforward technique for imple-
mentation of generational garbage collection is to adapt the mostly stationary garbage
collection technique. Treat the fully copying region as a nursery, and treat the mark and
sweep region as a second generation. Generational garbage collection performswell on
average, but it is unable to find garbage residing in the second generation. Occasional
full garbage collection passes are necessary, using the mostly stationary technique.

Note that generational garbage collection techniques do not improve worst-case laten-
cies. Rather, they are intended to improve average case behavior at the cost of less pre-
dictable worst-case behavior. And there are many applications for which the
assumptions on which the potentia performance benefits of generational garbage col-
lection depend are not valid. For example, Wade Hennessey, the principal scientist who
oversaw garbage collection of ScriptX at Kaleida Laboratories, reported that in many of
the multimedia titles he has studied, being able to quickly reclaim large amounts of
recently discarded memory is much more important than improving average-case
throughput [14]. According to Hennessey, it is quite common for multimedia applica
tionsto build over timerelatively large data structures, and then to release the entire data
structurein asingle action. If parts of the data structure live long enough to be promoted
into the older generations, which is quite likely, it would be difficult for a generational
garbage collector to quickly reclaim the corresponding memory.

Hardwar e-assisted real-time gar bage collection. Though there are numerous soft-
ware-implemented real-time garbage collection techniques available, the benefits of
adding a hardware accel erator to support garbage collection are very significant [15-17].
Hardware support consists of a special integrated circuit that sits between the system'’s
level-two caches and memory. Some of the particular benefits of the hardware accelera-
tor include;

1. Hardware support significantly reduces the run-time overhead required to coordinate
garbage collection with ongoing application processing, including the cost of tag-
ging memory to identify pointers. Depending on the garbage collection technique
that is being implemented and the nature of the workload that is being measured,
hardware support improves overall throughput by 30 — 50% or even more.

2. Hardware support shrinks the amount of memory required to reliably support partic-
ular workloads by 50% or more. Thisis avery important benefit, considering that
memory is the single most expensive component of many embedded real -time com-
puter systems. This benefit is made possible by efficient use of defragmenting gar-
bage collection techniques and by the hardware accelerator’s ability to parallelize
much of the effort of garbage collection, making it possible to reclaim and recycle
memory much more quickly than if al of the garbage collection hasto be performed
by the main CPU during “idl€” times.

3. The hardware accelerator enables garbage collection primitive operations to be per-
formed much more quickly. Whereas software garbage collection techniques typi-
cally offer worst-case execution latencies measured in tens of milliseconds,
hardware-accel erated garbage collection offers worst-case latencies measured in
microseconds.

26

Issuesin the Design and Implementation of Real-Time Java

Commercialization Opportunities

Commercialization Opportunities

We are committed to commercialization of the Real-Time Java language standard
described in this report. Once open standards have been established, we intend to
develop embedded implementations of the standards for commercial sale to developers
of embedded real-time systems. Our hope isto deliver a software implementation of
Real-Time Java by 3rd quarter, 1996 and a hardware-accel erated implementation by 1st
guarter 1997. The hardware accelerator will be available for purchase separately, either
asasingle chip, asaroyalty license for use of the chip’s Verilog description, or asa
VLS core'.

We welcome opportunities to partner with other companies who might share our goal of
supporting Real-Time Java as a development environment for creation of reliable, high
performance, portable real-time software components. We are also seeking additional
venture capital to help finance our development efforts as we strive to meet the
announced product delivery dates.

We fedl that the application domains for Real-Time Java represent a very important
emerging market that is much larger than any single company can hope to dominate. We
encourage others to become involved in filling some of the voids that might currently
exist within this marketplace. Examples of potential opportunities for participation
include devel opment of:

Software devel opment tools, such as graphical user interface generators.
Reusable component software libraries.

Real-time debugging and monitoring tools.

Application software for both clients and servers.

Infrastructure support to facilitate the devel opment of real-time distributed applica-
tionsincluding, for example, wireless telecommunication for in-vehicle navigation
computers.

a rc w N E

References

1. SunMicrosystems|Inc., The Java Language Environment: A White Paper. 1995, Sun
Microsystems, Inc.: Mountain View, CA.

2. Ritchey, T., Javal 1995, Indianapolis, Indiana: New Riders Publishing. 365.

3. Sun Microsystems Inc., The Java Language Overview. 1995, Sun Microsystems,
Inc.: Mountain View, CA.

4. Wilner, D., Chief Technical Officer of Wind River Systems, Personal Conversation.
1995.

1. Thehardware accelerator for real-time garbage collection is protected by four pending patents.

Issues in the Design and Implementation of Real-Time Java 27

References

5. Nilsen, K. Real-Time is No Longer a Small Specialized Niche. in Fifth Workshop on
Hot Topics in Operating Systems (HotOS-V). 1995. Orcas Island, Washington: |EEE
Computer Society Press.

6. Nilsen, K.D. and B. Rygg. Worst-Case Execution Time Analysis on Modern Proces-
sors. in ACM SIGPLAN 1995 Workshop on Languages, Compilers, and Tools for
Real-Time Systems. 1995. San Diego, Californiat ACM SIGPLAN.

7. Basumallick, S. and K. Nilsen. Cache Issues in Real-Time Systems. in ACM SG-
PLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems.
1994. Orlando, Florida: ACM.

8. Liu, C.L. and J.W. Layland, Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the ACM, 1973. 20(1): p. 44 - 61.

9. Boehm, H.J. and M. Weiser, Garbage Collection in an Uncooperative Environment.
Software - Practice and Experience, 1988. 18(9): p. 807 - 820.

10.Baker, H.G., Jr., List Processing in Real Time on a Serial Computer. Communica-
tions of the ACM, 1978. 21(4): p. 280 - 293.

11.Nilsen, K., Garbage Collection of Srings and Linked Data Sructuresin Real Time.
Software - Practice and Experience, 1988. 18(7): p. 613 - 640.

12.Brooks, R.A. Trading Data Space for Reduced Time and Code Space in Real-Time
Garbage Collection on Stock Hardware. in ACM Symposium on LISP and Func-
tional Programming. 1984: ACM.

13.Nilsen, K. Progress in Hardware-Assisted Real-Time Garbage Collection. in Lec-
tures on Computer Science. 1995. Kinross, Scotland: Springer-Verlag.

14. Hennessey, W., Discussion at Kaleida Laboratories. 1995.

15.Nilsen, K. and W. Schmidt, A High-Performance Hardware-Assisted Real-Time
Garbage Collection System. Journal of Programming Languages, 1994. 2(1): p. 1 -
40.

16.Nilsen, K., Reliable Real-Time Garbage Collection of C++. Computing Systems,
1994. 7(4): p. 467-504.

17. Schmidt, W.J. and K. Nilsen. Performance of a Hardware-Assisted Real-Time Gar-
bage Collector. in Sxth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 1994. San Jose, CA.

Issuesin the Design and Implementation of Real-Time Java

