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This report, first distributed as a Postscript document available for 
anonymous ftp downloading on Nov. 15, 1995, serves as a foundation for 
discussion regarding standardization of Java extensions designed to support 
development of reliable real-time software. This revision of the document 
includes limited discussion regarding issues that have been raised since the 
original document was first published.

 

1. Java is a trademark of Sun Microsystems, Inc.

 

Executive Summary

 

Current difficulties in developing and maintaining software within limited budgets and 
challenging development-schedule constraints result in part from the shortcomings of 
existing programming languages and development environments. In the context of dis-
tributed programming for the World Wide Web, Sun Microsystems has recently intro-
duced the Java programming language environment. Since formal announcement of 
Java in May of 1995, a number of companies have already signed agreements to license 
Sun’s technology. Among these new partners is Netscape and Oracle.

Java was originally designed by Sun to facilitate the development of embedded system 
software [1], but has been initially positioned as a language for Web programming 
because of its ability to simplify the development of flexible, portable, distributed appli-
cations with high-level graphical user interfaces [2]. Java is derived from C and C++, 
but the language has been restricted to eliminate many of the most costly common pro-
gramming errors. Java shows promise of greatly improving developer productivity in 
the targeted domains. 

Since many embedded computer systems must comply with real-time constraints, the 
question might be raised: “Can Java support the development of reliable hard and soft 
real-time applications?” This report suggests that Java, as it has been announced and 
distributed to date, is not appropriate for development of real-time software. However, 
by combining certain Java programming conventions with special implementation tech-
niques, it is possible to support varying degrees of real-time reliability, ranging from 
100% guaranteed compliance with hard-real-time constraints to 100% best-effort 
(unguaranteed) compliance with soft-real-time constraints. Users who require hard-real-
time performance will, of necessity, need to pay much more for their execution hard-
ware in order to prove that worst-case needs will always be satisfied. The same real-time 
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software that has been designed to run with 100% reliability on special Real-Time Java 
virtual machines will run reasonably well on less expensive Java virtual machines that 
are not capable of guaranteeing compliance with hard-real-time constraints. The bene-
fits of a Real-Time Java standard include lower development and maintenance costs, 
quicker time to market, increased portability, enhanced network connectivity, improved 
reliability, and increased functionality of real-time systems.

One of the most exciting potential benefits of the Real-Time Java execution model is the 
support it provides for development and reuse of portable real-time software. Not only 
does Java enable the creation of real-time software modules to be shrink wrapped for 
use on a variety of different Java execution platforms in cooperation with arbitrary 
mixes of other concurrently executing real-time activities, but it also allows reliable 
integration of software written in multiple different languages. For example, work is 
currently under way to retarget an Ada compiler to generate Java virtual machine code. 
Furthermore, the Java real-time execution model allows integration of non-real-time 
COTS

 

1

 

 software components as optionally executed components of real-time tasks. 
This makes available to developers of Real-Time Java applications large libraries of 
highly functional reusable Java object definitions.

The purpose of this paper is to raise important issues, suggest general solutions to the 
system-level problems, and point out low-level design issues that require further design 
refinement. This report places emphasis on refinement of design objectives and narrow-
ing of implementation choices. It considers discussion of language syntax and class 
interface designs to be premature at this time.

 

1. COTS stands for commercial off-the-shelf.

 

Discussion Topics

 

Though this report takes the form of a proposal and argues informally for the adoption 
of certain standard practices, the main purpose of distributing the report in this form at 
this time is to encourage discussion and refinements, and to recruit support for the total 
effort. We would hope to be able to involve a broad interdisciplinary assortment of 
experts in these discussions. Some of the particular questions we intend to address 
include:

 

•

 

Multimedia Developers: Are these abstractions useful? Do they offer important 
capabilities not provided by “unadorned” Java? Is more than what has been proposed 
necessary?

 

•

 

Real-Time Developers: Are the proposed abstractions useful? Do they meet your 
needs for developing flexible and portable real-time software? Or should standard-
ization of additional capabilities be attempted? Are the benefits to be provided by a 
“Real-Time Java” programming environment sufficient to justify the anticipated 
costs?

 

•

 

Java Implementors: Do you feel that the proposed methodologies could be imple-
mented (to the desired degree of compliance with real-time constraints) within the 
context of your current implementation efforts? Does this report adequately fore-
warn Real-Time Java developers regarding the variety of different operating condi-
tions under which their “portable real-time” software might be expected to operate?
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•

 

Java Standardization Bodies: Is there any hope of standardizing a Real-Time Java 
specification such as has been suggested in this report? How would we go about pur-
suing this possibility? Which aspects of the proposed approach do you find most 
objectionable? What sort of compromises might be more tolerable?

At the same time we are striving to better understand how best to define the problem that 
must be solved, we are also involved in the formation of a new corporation

 

1

 

 which 
intends to tackle parts of this large problem as its first commercial products. With this in 
mind, we seek interaction with possible business partners, investors, and future custom-
ers.

To become involved in ongoing discussion and refinement of the Real-Time Java stan-
dard, subscribe to the 

 

real-time-java

 

 mailing list by sending the message body 

 

SUB-
SCRIBE

 

 in an email message to 

 

real-time-java-request@iastate.edu

 

. 

 

Introduction

 

1. NewMonics Inc. was incorporated on March 20, 1996.  Its address is 2501 N. Loop Dr., Suite 
900C, Ames, IA  50010. Phone: 515-296-0897, Fax: 515-296-9910.

 

Java’s Origins

 

As reported in [1], Java “originated as part of a research project to develop advanced 
software for a wide variety of networked devices and embedded systems.” The research 
project initially chose to use C++ for development. But subsequently, the developers 
encountered so many difficulties with C++ that they decided it would be best to design 
an “entirely new language environment.” Java offers a number of important improve-
ments over developing software in currently popular languages such as C and C++:

 

•

 

Java borrows the familiar syntax of C and C++. Like C++, Java is object-oriented, 
but it is much simpler than C++ because Java’s designers intentionally discarded 
redundant language features that were present primarily to support backward com-
patibility with legacy code. An additional benefit of its simplicity is the small size of 
its run-time system. Sun reports that the basic interpreter is about 40 Kbytes, and 
that basic libraries and thread support add approximately 175 Kbytes [3]. 

 

•

 

The development cycle is much faster because Java supports both interpreted and 
just-in-time compiled implementations. During development and rapid prototyping, 
developers save time by using the interpreter.

 

•

 

Application software is more portable because the Java environment carefully speci-
fies a machine-independent intermediate byte-code representation which can be 
transferred between heterogeneous network nodes and interpreted or compiled to 
native code on demand by the local Java run-time environment.

 

•

 

Application software is more robust because Java’s run-time environment provides 
automatic garbage collection

 

1

 

. The Java language has been designed to eliminate the 
possibility of dangling pointers and memory leaks.

 

1. Garbage collection describes the process of automatically detecting memory cells that are no 
longer in use and adding them to the free pool so that they can serve future allocation needs.
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•

 

Applications are adaptable to changing environments because code modules can be 
downloaded dynamically from other network nodes without necessitating a system 
restart.

 

•

 

Security is enforced by built-in protection against viruses and other tampering. This 
protection is implemented by simple “theorem provers” that analyze downloaded 
byte codes before attempting to execute them.

 

•

 

High performance is achieved by incorporating support for just-in-time translation 
of portable byte codes to the native machine language of the local host. According to 
Sun, performance of translated code is roughly equivalent to the speed of current C 
and C++ programs

 

1

 

.

Following public announcements of Java in early 1995, acceptance among developers 
has grown very rapidly. Within less than two weeks following its creation, the Usenix 

 

comp.lang.java

 

 news group was already carrying close to a hundred articles per day. 
And as of Oct. 9, 1995, Java-related electronic mailing lists comprise over 10,000 inde-
pendent names. Netscape and Oracle have both recently contracted with Sun Microsys-
tems to incorporate Java run-time environments into future World Wide Web browsers.

 

1. Sun has not yet provided any proof of this claim. Given the nature of the language and charac-
teristics of its standardized implementation, it seems unlikely that Java will really run as fast as 
optimized C code. In the current absence of actual data, it seems more realistic to estimate that 
optimized Java will run on average approximately 20 – 30% slower than optimized C.

 

Java for Real-Time

 

According to David Wilner, Chief Technical Officer of Wind River Systems, most of the 
recent rapid growth in the embedded real-time marketplace has been in areas for which 
time-to-market pressures and high-volume per-unit costs are primary considerations of 
project managers [4]. Besides simplifying the development of WWW applications, most 
of Java’s benefits enumerated above would be of great utility to developers of embedded 
real-time systems as well. A Real-Time Java implementation would be useful both for 
programming of distributed real-time WWW applications (e.g. stock market trading, 
interactive animation, video games, and teleconferencing) and for implementation of 
more traditional embedded real-time applications (e.g. in-vehicle navigation systems, 
pen- and voice-based computer interfaces, air traffic control, virtual reality environ-
ments, and missile defense systems). Clearly, real-time developers also need simple 
object-oriented languages that support rapid development, portability, robust operation, 
dynamic reconfiguration, security, and high performance. Some of the problems particu-
lar to the embedded real-time system domain which are addressed by the design of a 
Real-Time Java programming environment include:

 

• Portability:

 

 developers of embedded real-time systems often find it necessary 
to deal with a number of different host processors. For example, it is common to find 
mixtures of Motorola 68000, Power PC, and Intel 960 hosts in a single development 
laboratory. Even within an architecture family, code generation needs to be targeted 
to the specific host in order to achieve high performance (e.g. The PPC 604 chip 
needs different code than the PPC 601). This is particularly important in consumer 
electronics products for which both software and hardware components evolve dur-
ing the product family’s lifetime. Maintaining the appropriate cross-development 
tools for all of these different hosts is an administrative nightmare. Ensuring that all 
combinations of hardware and software components work correctly in a real-time 
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sense is a difficult challenge. And maintaining object code revisions and custom 

 

makefile

 

 configurations is a major headache for developers. Development would be 
much easier if programmers could write in Java (which by design is a fully portable 
language), maintain a single version of the translated byte codes, and depend on the 
localized Java run-time environments to configure new code as it is loaded onto par-
ticular hosts.

 

• Dynamic Adaptability:

 

 A frequent difficulty with maintenance of embedded 
real-time systems is that incremental software refinements must be installed without 
bringing the system down for a clean restart. This includes applications that must 
provide non-stop service to their user community (e.g. flight traffic control, tele-
phone switching, and military reconnaissance), and applications for which the costs 
of downtime are prohibitive (e.g. nuclear reactor control, and manufacturing auto-
mation systems). 

 

• Fault Tolerance:

 

 In the presence of network or node outages, it is often nec-
essary to redistribute information and processing workloads. The Java programming 
environment greatly simplifies this burden since any node in the network, regardless 
of its processor architecture, is capable of performing any of the Java tasks that need 
to be performed. Simply download the byte-code representation of the task.

In response to a recent 

 

comp.lang.java

 

 post enquiring whether current Java “enthusi-
asts” felt there would be a market demand for Real-Time Java implementations, several 
individuals expressed strong support for the idea and requested additional information 
so that they could promote this possibility among their management. Eugene 
Devereaux, a Senior Principal Scientist at Boeing Company, stated that his company is 
beginning an “R&D project at Boeing’s Airplane Systems Laboratory (ASL) to look at 
using Java with real time projects.” Bruce Wong of Distributed Systems International, 
Inc. pointed out that “the security features and automatic storage management eliminate 
a whole class of programming errors that would manifest themselves as crashes or core 
dumps.” He projects: “I believe the benefits will be so great that it will be a crime if mar-
ket forces do not make [embedded Real-Time Java] happen.” 

 

The Needs of Real-Time Developers

 

Traditionally, real-time development has required that programmers analyze software 
prior to execution to make sure that all execution time needs of the software will be 
available when required. Resources that must be proven available include memory and 
CPU time. 

 

Traditional Techniques for 
Real-Time Development

 

Traditional techniques for real-time development are very costly for a number of rea-
sons [5]: 

 

1.

 

Greater care is required during development to perform the analysis required to 
guarantee compliance with real-time constraints. 
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2.

 

Because most general purpose programming environments do not support real-time 
performance, developers of real-time applications are forced to use specialized oper-
ating systems and development environments. These environments lack the robust 
and powerful development tools that are available to developers of more traditional 
systems.

 

3.

 

Since the techniques for analysis of real-time performance are intrinsically machine 
dependent, extra analysis effort is required to maintain real-time software in the 
presence of continual processor upgrades and integration of new I/O devices.

 

4.

 

Because it is not practical to accurately predict worst-case task execution times, the 
real-time developer must reserve resources based on conservative upper bounds 
rather than actual worst-case requirements. 

 

5.

 

Even if it were possible to accurately determine worst-case execution times, execu-
tion time must be reserved for every task’s worst-case performance. Note that for 
most tasks, typical execution times are much smaller than worst-case execution 
times. 

 

6.

 

Because of the difficulty of proving availability of dynamic memory, many develop-
ers of hard-real-time systems avoid all use of dynamic memory management. This 
requires that all of the memory required to satisfy each task’s worst-case needs must 
be permanently allocated prior to execution. Memory not currently in use sits idle 
rather than contributing to the system’s functionality and capacity.

 

7.

 

The scheduling techniques that are typically used in real-time systems are unable to 
promise 100% CPU utilization. Furthermore, context switching is much more fre-
quent in many real-time systems than is typical of traditional systems. As a result, 
context switching and scheduling overhead represent a significant fraction of a real-
time system’s total workload.

For all the costs and difficulties associated with the development of real-time applica-
tions using these “traditional” methodologies, you would think that the resulting bene-
fits are well worth the effort. But in fact, most real-time systems fall far short of the ideal 
in terms of functionality and flexibility. Real-time software is notoriously brittle and 
feature poor. “There 

 

has

 

 to be a better way.”

 

Current State of the Practice 

 

The real-time methodologies described above are so cumbersome and costly that most 
developers of consumer real-time systems seem to ignore them entirely. Witness the cur-
rent state of the practice:

 

1.

 

Home computer users are expected to tweak and tune numerous mysterious parame-
ters to enable multimedia applications to run “correctly” on their single-tasking per-
sonal computers. When not configured properly, both full-motion video and audio 
stutter.

 

2.

 

Personal computers ignore typed characters and mouse clicks if entered when the 
computer is busy with other activities.

 

3.

 

Personal digital assistants are unable to record voice dictations during receipt or 
transmission of faxes. Occasional 30-second response delays are common.

 

4.

 

In current multi-tasking environments, such as high-performance desktop Unix sys-
tems, multimedia applications run well if they are the only applications running, but 
the real-time behavior of the multimedia applications degrades rapidly and uncon-
trollably when other CPU-intensive activities are added to the system’s workload.
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5.

 

Developers of real-time multimedia applications for personal computers must pro-
vide large technical support staffs to help end users debug, configure and maintain 
their applications running in the users’ ever changing computing environments. Not 
only does the environment’s software change, but it is also continually undergoing 
hardware upgrades in the form of add-on cache, memory, I/O expansion boards, and 
networking capabilities.

 

Summary

 

Real-time programmers approach software differently than developers of traditional 
systems. But traditional methodologies for development of hard-real-time systems are 
not appropriate for the majority of mass-market real-time software that needs to be 
developed in the coming years.

 

A Portable Model for Real-Time Computation

 

Though each real-time application domain imposes a different set of operating con-
straints on the real-time execution environment, most mass-market real-time applica-
tions fit within the model described below. Even many of the real-time applications that 
have traditionally been solved using more traditional real-time methodologies can be 
accommodated by this model.

 

Periodic Tasks

 

Many activities in existing real-time systems consist of tasks with fairly consistent typi-
cal execution times. These tasks are invoked at a regular time within a fixed period of 
execution. Examples of periodic real-time tasks include sampling of pen position in a 
pen computer, processing of radar or sonar signal inputs, playback of full-motion video 
at a predetermined frame rate, and recording of digitally sampled speech for teleconfer-
encing applications. Typical execution frequencies for these tasks range from 10 to 
1,000 times per second. Note that the mix of periodic tasks that comprise a real-time 
system may change. For example, all of the tasks related to a teleconferencing session 
are removed from the system workload when the teleconferencing session closes. It is 
important that implementors recognize that changes to the task mix occur much less fre-
quently than execution of individual periodic tasks.

 

Sporadic Tasks

 

Another significant percentage of the total workload consists of sporadic activities 
which are typically triggered in response to particular external events. When responses 
to these external events must be delivered within a specified time, the activity is 
described as a sporadic real-time task. Examples of sporadic events that might require 
real-time response include mouse clicks on particular buttons, alarms raised by high 
temperature or pressure readings, and radar detection of a previously unidentified flying 
missile.

 

Spontaneous Tasks

 

1

 

1. In a previous draft of this document, the word “dynamic” was used in place of “spontaneous” for characterization of real-time tasks 
with unknown execution frequency.

 

Spontaneous tasks represent an even smaller percentage of the total system workload. 
These are similar to sporadic tasks in that they are triggered at unpredictable times, in 
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response to events or conditions detected in the external environment. Unlike sporadic 
tasks, there is no upper bound on the frequency at which spontaneous tasks are exe-
cuted. Another difference between spontaneous and sporadic tasks is that no resources 
are preallocated or guaranteed a priori for execution of spontaneous tasks. Each time an 
occasion arises to instantiate a spontaneous task, the real-time executive determines on 
the fly whether sufficient resources are available to service the request.

There is no periodic behavior in spontaneous tasks. A spontaneous task is characterized 
by a desired start and finish time. If sufficient resources are available to add the 
requested spontaneous task to the current workload, without renegotiating the current 
workload, the real-time executive accepts responsibility for executing the spontaneous 
task. Otherwise, the real-time executive declines the request. If developers are unable to 
tolerate the possibility that a task might be declined, they should describe the task as a 
sporadic rather than spontaneous workload.

Robot walking provides several examples of spontaneous tasks. Prior to each step, a 
number of independent real-time tasks must be scheduled, one to control the behavior of 
each joint of each leg that is to be moved during this step. Suppose the desire is to opti-
mize the speed of robot walking. Since the computation and time required to take each 
step on an uneven terrain varies greatly, it would be wasteful to describe walking as a 
periodic task in which sufficient time is reserved in each period for whatever is the 
worst-case time required to take a step on the worst possible terrain. Better efficiency 
would be realized by treating each step as a spontaneous activity and scheduling the 
next step as soon as the previous step has successfully completed. In this manner, the 
robot would be able to walk very rapidly over flat surfaces, but would be able to slow 
down as necessary when climbing or descending hills. Note that in both cases, a step 
should not be taken if any of the relevant real-time tasks cannot be scheduled. This sug-
gests the need for a two-phase protocol for execution of spontaneous tasks. In the first 
phase, the real-time executive determines whether it can accept the additional workload. 
In the second, it executes the workload.

 

Real-Time Threads

 

Another type of real-time activity might best be characterized as a fair-share thread. 
These are tasks that run “forever”, but which must make forward progress in proportion 
to the passage of time. Consider, for example, an application that is responsible for ana-
lyzing stock market trends in order to alert traders to opportunities to trade at favorable 
profits. Suppose this task is responsible for generating an updated report once every ten 
minutes. Much of the work required to prepare report 

 

N

 

 is redundant with the work 
required to prepare report 

 

N – 1

 

. Assume it is most natural to implement this task as a 
large loop that makes incremental refinements to previous recommendations based on 
the receipt and assimilation of whatever new data has arrived since the previous report 
was generated. Given this, it would not be appropriate to implement this activity as a 
traditional Java thread because Java threads have no control over how much time they 
might be allowed to execute. Programmers need a scheduling abstraction in which this 
application can be treated as a thread with guaranteed execution time. In particular, the 
programmer desires to specify that the task will be granted a certain amount of execu-
tion time during each ten minute period, with additional control over how the time is 
distributed within the ten minute period. Note that it would not be very useful for this 
task to have all of its execution time granted at the beginning of the ten-minute period 
because that would require it to make all of its recommendations without considering 
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the additional ticker-tape information that is likely to arrive prior to generation of the 
recommendation report.

 

What is Real-Time Java?

 

Unlike most languages designed for real-time programming, Java was designed more to 
simplify programming than to enable programmers to write software that complies reli-
ably with real-time constraints. Many real-time engineers would argue that the sponta-
neous nature of Java is totally inappropriate for real-time application development. 
Nevertheless, Java has much to offer the real-time programmer. By combining special 
real-time implementations of the Java virtual machine with Java code written to comply 
with special conventions for description of real-time activities, it is possible to develop 
Java applications that rigorously conform to real-time execution constraints. The same 
code, executed on non-real-time implementations of the Java virtual machine, also sup-
ports soft real-time performance. Both real-time and non-real-time virtual machines can 
run combinations of real-time Java code and non-real-time Java code.

 

Architecture of a Real-Time 
Java Program

 

Preparatory to developing detailed designs and implementations of Java classes, it is 
necessary to reach consensus regarding the general role to be served by each class. The 
emphasis of this section is on specifying the general functionality of the major classes 
that comprise the Real-Time Java API

 

1

 

.

It is important to keep in mind that simplicity is one of Java’s greatest strengths. If it is 
not possible to preserve simplicity while adding real-time capabilities to Java, then 
Real-Time Java really has nothing more to offer the embedded real-time community 
than is already offered by C, C++, and Ada. One of our greatest challenges is to design 
an architecture that supports development of both simple and complex programs with-
out adding unwanted complexity to simple programs.

Much of Java’s simplicity comes from the abstractions that have been built into the lan-
guage. Abstraction helps programmers, including real-time programmers, deal with 
complexity. But real-time developers must use abstraction with discretion. They must be 
able to break through layers of abstraction whenever this is necessary in order to under-
stand or exercise control over real-time behavior.

A Real-Time Java program consists of an arbitrary number of real-time activities 
accompanied by an arbitrary number of runnable threads. The runnable threads have no 
time-constrained behavior. The discussion of real-time activities provided below makes 
frequent reference to the real-time executive. See “The Real-Time Executive” on 
page 14.

 

1. NewMonics Inc. is currently in the process of refining the “Real-Time Java” API and is pro-

moting a standard API under the product name PERC

 

TM

 

, an acronym that stands for Portable 
Executive for Reliable Control. In a number of cases, the draft API differs slightly from the 
design suggested in this document.
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A Real-Time Activity

 

A real-time activity consists of a 

 

configuration manager

 

, an 

 

administrator

 

, an arbitrary 
number of 

 

real-time tasks

 

, and an arbitrary number of 

 

runnable threads

 

. The point in 
specifying runnable threads as part of a real-time activity is to allow them to be pack-
aged with the other components that comprise the real-time activity in such a way that 
they share access to particular variables. There are several different kinds of real-time 
tasks, independently known as 

 

cyclic

 

, 

 

sporadic

 

, 

 

spontaneous

 

, and 

 

ongoing

 

. For all but 
spontaneous tasks, the execution model assumes that tasks are ready to execute at the 
start of their period, and are allowed to execute any time within the period as long as 
they terminate prior to the end. Much research in real-time scheduling has focused on 
obtaining real-time schedules for more precisely specified constraints. This report takes 
the position that such refined control adds unnecessary complexity to the real-time 
developer’s job. Instead, real-time programmers can find ways to structure their real-
time activities within the proposed scheduling model. The main benefit of imposing this 
restriction is that it enables efficient modularization and integration of independently 
developed portable real-time activities on a single shared real-time execution platform.

It might appear that our proposal is based on an implicit assumption that rate monotonic 
and static cyclic scheduling techniques are sufficient to satisfy the needs of all applica-
tions. Note, however, that additional scheduling control can be self-implemented within 
particular real-time activities. For example, if a particular real-time activity desires to 
use earliest-deadline-first scheduling, its administrator can describe its scheduling needs 
to the real-time executive as an ongoing real-time task that requires 30 milliseconds of 
execution time in each period of 100 milliseconds. This ongoing real-time activity 
would decide for itself which of its internal “tasks” to schedule. In this implementation 
style, internal tasks might best be represented by object methods. This is an area that 
requires further study in order to refine the selection of standard services with which 
application programmers can develop their own self-scheduled real-time activities.

It is important to emphasize that the notion of task priority in a rate monotonic real-time 
environment is very different from the notion of priority in traditional systems. In the 
real-time environment, priorities are selected according to decreasing order of execution 
frequency, and have nothing to do with the relative “importance” of individual tasks. In 
order for real-time activities to reliably coexist with uncooperative traditional non-real-
time components, we recommend that the range of priorities available for prioritization 
of traditional Java threads all be lower than the range of priorities dedicated to real-time 
activities.

 

Configuration Manager. 

 

When a new real-time activity is introduced into the system, 
the real-time executive invokes the activity’s configuration manager to allow it to adjust 
for the local computing environment. Configuration consists of determining which 
methods will be interpreted and which will be translated by the just-in-time compiler, 
calculating method and task execution times, and determining the activity’s memory 
requirements. Configuration management is the appropriate place to implement inter-
task blocking analysis, if such analysis is necessary. According to the Real-Time Java 
software architecture, tasks are only blocked by other tasks that are part of the same 
real-time activity. In order to support configuration management, the run-time environ-
ment needs to make certain services available. For example:

 

1.

 

A task execution time analyzer that determines worst-case execution times for sim-
ple control structures through analysis of the control-flow graph.
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2.

 

A task execution time analyzer that determines typical execution times for arbitrary 
tasks by measuring representative executions.

 

3.

 

A memory requirements analyzer that allows the configuration manager to deter-
mine the local sizes of particular data structures.

Note that the configuration manager is developed by the same team of programmers that 
writes all of the real-time tasks that comprise a particular real-time activity. The ratio-
nale for this software architecture is that these programmers are in the best position to 
determine what sort of configuration information is necessary for their real-time activity 
to run reliably in the current environment.

 

Administrator. 

 

The responsibility of the administrator is to negotiate for resources with 
the real-time executive. Following invocation of a real-time activity’s configuration 
manager, the real-time executive invokes the activity’s administrator. The administrator 
communicates the real-time activity’s resource needs, based on analysis of the configu-
ration manager, to the real-time executive. Execution time requirements are described to 
the real-time executive in terms of execution frequency, minimum execution time, and 
desired execution time for each of the cyclic, sporadic, and ongoing tasks that comprise 
the real-time activity. Prior to communicating its execution time needs to the real-time 
executive, the administrator may choose to adjust the activity’s task periods so that they 
align more evenly with the real-time executive’s existing least common multiple of real-
time task periods. In response to the administrator’s resource requests, the executive 
provides pessimistic, expected, and optimistic resource budgets. The two resources that 
are managed during this negotiation are execution time and dynamic memory. The pes-
simistic budgets represent a lower bound on the amount of the resource that will be pro-
vided to the activity. Non-real-time virtual machine implementations may not be able to 
guarantee any resources at all, in which case they report a pessimistic budget of zero. 
The expected budget is the amount of the resource that the real-time executive intends to 
provide to the activity, assuming average operating conditions. The optimistic budget 
reports the maximum possible amount of the resource that will be made available to the 
activity. It is the activity’s responsibility to make effective use of whatever resources are 
made available to it. The activity’s administrator initializes relevant instance variables to 
represent the activity’s budgets so that the individual tasks that comprise the real-time 
activity can pace themselves appropriately. 

In an execution environment that is as dynamic as Java, resource budgets must be con-
tinually reevaluated. Whenever the real-time executive must reevaluate budgets, it estab-
lishes a dialogue with the corresponding activities’ administrators to renegotiate the 
resources that are available to the respective activities. Examples of events that might 
trigger the real-time executive to renegotiate budgets include:

 

1.

 

When new real-time activities are introduced into the environment, resources may 
need to be withdrawn from current activities.

 

2.

 

When old real-time activities become inactive, additional resources may become 
available to the remaining real-time activities.

 

3.

 

Certain real-time activities may discover that their resource needs have changed. 
These activities can communicate this information to the real-time executive, which 
may respond by revisiting the resource allocation decisions made previously.
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Issues in the Design and Implementation of Real-Time Java

 

Atomic Code Segments. 

 

 Special syntax is provided to identify certain segments of 
code as atomic

 

1

 

. The rationale for requiring atomic segments to have bounded execution 
times is as follows:

 

1.

 

Analysis of blocking interactions between tasks requires knowledge of how much 
time particular tasks may be excluded from making forward progress.

 

2.

 

One possible lock-less implementation of atomic segments invoked from within 
real-time tasks is to check the time remaining on this task’s time slice on entry into 
the atomic segment and to allow entry only if the time remaining is greater than the 
known time required to execute the atomic segment.

 

3.

 

Another possible lock-less implementation would be to simply disable all interrupts 
during execution of the atomic segment. This implementation would not strictly 
comply with real-time requirements in cases for which execution of the atomic code 
segment might result in the task being allowed to execute longer than its budgeted 
time (because the timeout tick could not be delivered while interrupts were dis-
abled). Nevertheless, by bounding the duration of the atomic segment, developers 
can analyze the amount of jitter that might be introduced into system performance 
by this possibility. In fact, Java implementors might choose to select between alter-
native feasible implementations of atomic segments, depending on the calculated 
worst-case times required to execute them.

All Java implementations, regardless of the degree to which they might fail to rigorously 
comply with all real-time execution constraints, must execute atomic code segments 
according to the following requirements:

 

1.

 

Either the atomic segment is executed in its entirety or not at all, insofar as visible 
side effects are concerned. Partial execution of an atomic segment is permitted only 
if there are no visible side effects.

2. Execution of the atomic segment may be preempted (and later resumed) only by 
threads that are unable to see or manipulate the intermediate state resulting from sus-
pending the original thread in the middle of executing the atomic segment. In prac-
tice, the most straightforward implementation may be to simply prohibit all 
preemption of atomic segments, thereby eliminating the analysis that would be 
required to demonstrate that certain tasks cannot possibly see or modify the variables 
managed within the atomic segment.

As discussed below, startup and finalization components of real-time tasks are also 
treated as atomic segments. Even in execution environments that lack the ability to 
determine through analysis the worst-case execution times of startup, finalization, and 
atomic segments, atomicity is never compromised. In such environments, worst-case 
execution times can be approximated through measurement. Whenever execution of an 
atomic segment causes the corresponding task’s time slice to be exceeded, the real-time 
executive corrects the problem as quickly as possible by shortening the amounts of time 

1. Atomic segments resemble, but are not identical, to Java’s synchronized methods. The syn-
chronized qualifier enforces the idea that only one thread at a time is allowed to execute partic-
ular code segments at a time. An “atomic” qualifier also allows only one thread at a time to 
access the corresponding code segment. Additionally, the atomic qualifier guarantees that 
either the entire segment or none of the segment will be executed each time entry into the seg-
ment is attempted.
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available to subsequent tasks, until all tasks are once again executing on schedule. In a 
strictly complying real-time implementation, however, execution of atomic segments 
should never result in particular tasks being allowed to run longer than their budgeted 
times.

Cyclic real-time tasks. A cyclic real-time task is characterized by a single runnable 
thread; a startup segment with bounded worst-case execution time; a finalization excep-
tion handler with bounded execution time; one or more atomic segments of code, each 
of which has bounded execution time; and a desired execution frequency. Each compo-
nent is optional, but it would not be meaningful to omit all components.

The startup segment combined with the finalization segment represent the minimal 
functionality offered by this task. Each of these segments is always executed atomically 
and in its entirety. The runnable thread represents a variable-quality component of this 
task’s effort. Typically, the startup segment computes a very rough estimate of the task’s 
intended result and the runnable thread makes incremental improvements to this initial 
rough estimate. The activity’s configuration manager and administrator work together to 
arrange for a reasonable amount of execution time to be allocated to the runnable thread, 
on average. When the runnable thread’s time expires, the real-time executive aborts the 
thread if it hasn’t already terminated and passes control to the finalization method asso-
ciated with the task. In cases for which the work to be performed by a task is small and 
constant, all of the work can be performed by the startup and finalization code, and the 
runnable thread can be omitted.

The rationale for this software architecture is that it is not economically feasible to 
determine accurate worst-case execution times for tasks of even moderate complexity 
[6]. A measurement-based analysis of task performance is much more accurate for typi-
cal execution behavior. But measurement-based analysis does not represent worst-case 
behavior. Whenever the task requires more time than was anticipated by the measure-
ment-based analysis, it is better to deliver an approximate answer on schedule than to 
run the risk of pushing all other tasks in the system off schedule.

Because it is not practical to derive tight worst-case bounds for execution of each real-
time task, we make no attempt to do so. Rather, we guarantee sufficient resources to 
execute only the task’s startup segment and its finalization segment (each of which is 
characterized by a “conservative” worst-case execution time bound). 

The general execution model for a cyclic real-time task is for the real-time executive to 
invoke the initialization method and then to startup the runnable thread with a watchdog 
timer set to prevent this thread from taking longer than its allotted time. If the thread ter-
minates on schedule, the real-time executive then calls the finalization exception handler 
explicitly. Otherwise, the real-time executive aborts the thread by sending it the finaliza-
tion exception. Note that this protocol guarantees that the finalizer will be invoked 
exactly once for each execution of the cyclic task.

Descriptions of other kinds of real-time tasks follow. There are many similarities 
between the various flavors of real-time tasks, and it is our intention that the object-ori-
ented class hierarchy that implements real-time activities will represent these similari-
ties. In the descriptions that follow, details already provided in the description of cyclic 
real-time tasks are intentionally omitted.
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Sporadic real-time tasks. A sporadic real-time task consists of a single runnable 
thread; a startup segment with bounded worst-case execution time; a finalization excep-
tion handler with bounded execution time; one or more atomic segments of code, each 
of which has bounded execution time; and a worst-case execution frequency. As with 
cyclic real-time tasks, all components are optional. Such tasks are typically triggered 
by:

1. An interrupt which is translated by the run-time system into an activation of this 
task, or

2. Upon recognizing a particular condition, a cyclic task activates the corresponding 
sporadic task.

Note that it may be possible for hardware interrupts to occur at a higher frequency than 
was specified by the Java programmer. If this occurs, the ability to comply with real-
time constraints may be compromised. In fact, a vulnerability of many current real-
world systems is that they can be crashed by overloading the system with externally 
generated interrupts, such as might result from LAN network broadcast storms. In order 
to achieve reliable compliance with hard real-time execution constraints, the software 
developer must coordinate with the hardware implementors to ensure that the hardware 
does not generate more frequent interrupts than have been specified.

Spontaneous real-time tasks. A spontaneous real-time task consists of a single runna-
ble thread; a startup segment with bounded worst-case execution time; one or more 
atomic segments of code, each of which has bounded execution time; and a finalization 
exception handler with bounded execution time. The minimum amount of time sched-
uled for execution of a spontaneous real-time task is the sum of the startup and finaliza-
tion segments. The run-time executive takes responsibility for interrupting the runnable 
thread when the time remaining in the task’s time slot equals the time required to exe-
cute the finalization segment.

Ongoing real-time tasks. An ongoing real-time task consists of a single runnable 
thread; a startup segment with bounded worst-case execution time; one or more atomic 
segments of code, each of which has bounded execution time; a finalization exception 
handler with bounded execution time; and a desired resumption frequency. Unlike 
cyclic tasks, this thread is resumed rather than being restarted on each period of execu-
tion. The real-time activity’s configuration manager coordinates with the activity’s 
administrator to arrange with the real-time executive that each resumption of this task is 
of sufficiently long duration.

Because a typical task’s execution needs are not entirely deterministic, the ongoing real-
time task may find it necessary to adjust the quality of its efforts on the fly. It does this 
by pacing itself against the real-time clock.

Conceptually, an ongoing task runs forever. But in practice, the activity in which the 
ongoing task is a participant may not last forever. When the corresponding real-time 
activity terminates, the real-time executive invokes the ongoing task’s finalization 
exception handler.

The Real-Time Executive The primary responsibilities of the real-time executive are to make and enforce resource 
allocation decisions. Whenever real-time activities are added to or deleted from the real-
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time workload, or whenever the resource needs of existing real-time activities change, 
the real-time executive must decide how much CPU time and how much dynamic mem-
ory can be budgeted to each activity.

This report suggests that the negotiation process and resource allocation decisions need 
not be time constrained. While negotiations are taking place, the system continues to 
execute the workload that was previously negotiated. Once negotiations are complete, 
the system transitions “instantaneously” to the newly negotiated workload. If the new 
workload replaces a cyclic schedule, the transition may be delayed until the end of the 
current cycle.

Since spontaneous tasks are not periodic, they are handled specially. The real-time exec-
utive provides a service which takes as input parameters descriptions of an arbitrary 
number of spontaneous tasks and schedules the tasks for execution if sufficient 
resources are available to satisfy all of the tasks’ needs, or reports failure and schedules 
none of the tasks if any of the task’s execution requirements can not be satisfied. Each 
task description consists of a start time, a completion time, a minimum execution time, 
and a desired execution time. By design, incorporation of additional spontaneous tasks 
into the workload does not trigger reconfiguration of the existing cyclic schedules. 
Spontaneous tasks are accepted for execution only if they can be serviced without inter-
fering with the cyclic tasks scheduled previously.

To some degree, the efficiency of resource utilization is correlated with the effort spent 
in making careful resource allocation decisions. However, optimal resource allocation is 
NP-hard, and even though we impose no real-time constraints on the resource allocation 
problem, it is the implementor’s responsibility to provide “responsive” performance. 
Perhaps this is one aspect of the Real-Time Java design that requires further refinement? 
Should we quantify the timeliness of resource negotiation? Should we allow particular 
resource allocations to be saved and restored on the fly, so as to avoid the effort required 
to renegotiate each time the system mode changes?

To conclude discussion of the real-time executive, we point out that both time and mem-
ory can be allocated with very efficient straightforward algorithms. If implementors 
desire to use more sophisticated allocation techniques, more power to them. First, con-
sider allocation of memory. Sum all of the memory allocation requests. Upon comple-
tion of each garbage collection pass, compare the amount of memory used by each 
activity with the specified upper bound on memory needs for that activity. Call the dif-
ference for activity i di. Sum the differences to obtain the total amount of additional 
memory that might legitimately be requested by these activities. Call this D. Let P rep-
resent the total amount of free memory at the time that garbage collection completes. 
Compute the memory allocation increment budget for activity i by multiplying di by P/

D.

Now, consider calculation of static cyclic schedules and analysis of sporadic workloads 
to determine whether they are run-time schedulable. First, compute the total workload 
represented by sporadic and periodic tasks as a percentage of the CPU’s total capacity. 

Note that following resumption of a task that was preempted, memory that had been 
cached prior to the preemption may no longer be present. The impact of the preempting 
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task on the cache contents of the preempted task is limited by the cache “footprint” of 
the preempting task. As described in reference [7], the overhead of cache interference 
between tasks can be modeled by adding to the cost of the preempting task the time 
required to restore discarded cache entries into the cache following execution of the pre-
empting task. A conservative upper bound is represented by the time required to execute 
however many cache read misses are required to fill the complete cache. When comput-
ing the total workload, add this time to the cost of each cyclic and sporadic real-time 
task in the system. If the total workload is less than or equal to 69%, it is schedulable 
[8]. Otherwise, it may not be. For simplicity, assume that if the workload exceeds 69% it 
is not schedulable. In this case, we must shrink the workload before proceeding to con-
struct the cyclic scheduling table. We shrink the workload by reducing the service qual-
ity of particular real-time tasks and/or by refusing to add new real-time activity’s to the 
workload. 

Once the workload has been sufficiently reduced, we construct a cyclic dispatch table by 
simulating a rate monotonic scheduler on all of the tasks that comprise the workload, 
simulating each sporadic activity at its worst-case execution frequency. Time slots cor-
responding to sporadic tasks are left idle in the cyclic schedule. During execution, appli-
cation-level interrupts are enabled only during idle slots of the cyclic schedule. Assign 
priorities to sporadic tasks according to rate-monotonic order.

Various optimizations to this scheduling process are possible. Several simple optimiza-
tions that offer potential for relatively high payoff include:

1. When constructing the cyclic dispatch table, do not precisely simulate the rate-
monotonic scheduling technique. If it is possible to eliminate preemption of a low-
priority task by delaying execution of the high-priority task until after the low-prior-
ity task has completed (without violating the time constraints on the high-priority 
task), do so.

2. In cases for which it was necessary to degrade service quality in order to bound the 
total workload by 69% of CPU capacity prior to constructing the schedule, it may be 
possible to expand the amount of execution time granted to particular tasks once the 
cyclic dispatch table has been constructed.

3. Whenever the cyclic dispatch table includes chains of tasks that are executed one 
after another, additional analysis is performed to determine whether the tasks can be 
started ahead of schedule if the previous task(s) in the chain completes ahead of 
schedule. If so, configure the dispatch table to so indicate. This will result in longer, 
more useful “idle” times during which spontaneous and sporadic tasks and non-real-
time threads can execute.

4. If the static cyclic schedule is considered to be too long because the least common 
multiple of task periods is too large, simply use rate monotonic scheduling for all 
tasks. The real-time executive would need to maintain a dynamic queue of awake 
times in order to trigger execution of periodic tasks at appropriate times.

Real-Time Management of 
Dynamic Memory 

Ideally, the real-time programmer would be assured that all of the memory required for 
execution of a real-time activity would be available in the requested sizes at the desired 
times. While this may be possible in certain execution environments, it is not practical in 
others. And relatively high memory and/or run-time overhead costs are associated with 
providing these sorts of guarantees. As with management of CPU time, we propose that 
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for most execution environments, memory be treated as a real-time resource that can be 
shown to be available most of the time, but cannot always be guaranteed. For those users 
who require absolute guarantees of memory availability, higher cost hardware imple-
mentations are available, assuming that they are willing to limit themselves to execution 
environments that have been specially designed to provide hard-real-time responsive-
ness. We view this compromise as unavoidable.

The dynamic memory needs of a particular real-time activity can be characterized in 
terms of the maximum amount of memory that the application needs to retain as live at 
any instant of time and the maximum rate at which the application needs to allocate new 
objects. The second of these parameters is directly related to the rate at which the gar-
bage collector must reclaim objects.

As mentioned above, the real-time activity’s configuration manager has the responsibil-
ity of determining the values of these parameters in terms of the local execution environ-
ment. The activity’s administrator negotiates with the real-time executive to determine 
how much memory will be made available to the application. The real-time executive 
grants a memory budget to the activity’s administrator which is expressed in terms of 
pessimistic, expected, and optimistic values for each parameter. The pessimistic budget 
represents the minimum amount of memory that the real-time executive will provide to 
this activity. In some execution environments, it will not be possible for the real-time 
executive to promise any amount of dynamic memory; thus application developers who 
desire to write code that runs in such environments should be prepared to deal with the 
possibility that dynamic memory cannot be guaranteed. The expected budget represents 
the amount of memory that the real-time executive expects to be able to provide based 
on average-case behavior of the garbage collector and the application. The optimistic 
budget represents an upper bound on the total amount of memory that the real-time 
executive intends to make available to the activity. For example, the sum over all real-
time activities of their optimistic memory budgets probably should not exceed the total 
amount of available memory1.

Implementation

There are many possible ways to implement the run-time support required for execution 
of Real-Time Java. The simplest and most portable implementation of the real-time 
executive would be written in Java itself and could be downloaded into anyone’s exist-
ing Java virtual machine. Of course, such an implementation would not be able to pro-
vide a high degree of compliance with hard real-time execution constraints, but would at 
least serve as a common foundation upon which programs that care about the passage of 
real time could execute. 

1. The sum may actually exceed the total amount of available memory in environments that do 
not enforce any sort of logical partitioning of the dynamic heap.

The Java Virtual Machine In general, we recognize that virtual machine support for real-time activities is a matter 
of degree:
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1. The nature of most current desktop computing environments is such that interference 
from, for example, other Unix processes is beyond the control of the Java virtual 
machine. In these environments, real-time response is provided “as much as possi-
ble.” Within the Java run-time system, resources are allocated according to the real-
time execution plan, as it is adjusted dynamically to accommodate for interference 
from other non-Java processes. Note that because of non-determinism in the execu-
tion environment, it is even more important in these systems to be able to refine the 
plan for execution of real-time tasks on the fly.

2. In embedded Java systems (e.g. Java running on a single-tasking CPU, or, for exam-
ple, on a dedicated network terminal), interference from other activities outside the 
control of Java is eliminated. However, such systems may choose not to use time-
deterministic implementations of all language features in order to provide higher 
throughput and/or more efficient utilization of available system resources (e.g. mem-
ory).

3. In embedded Real-Time Java environments, great care would be taken to ensure that 
all components of the Java implementation work together to provide time-con-
strained execution of real-time activities. Average-case performance may suffer 
because of trade-offs selected in order to achieve tight real-time control.

4. In order to achieve the tightest possible latency bounds combined with highest possi-
ble system throughput, it will be desirable to integrate a custom software implemen-
tation with custom hardware designed to support real-time garbage collection and 
fine-grained control of time. With proper hardware support, tight real-time guaran-
tees can be provided without degrading average-case system throughput. 

Note that this approach represents an important advance over the current practice, even 
for run-time environments that do not guarantee rigorous compliance with real-time 
constraints. In current general purpose computing systems, the run-time environment 
has no awareness of what real-time behavior is desired and what parameters are avail-
able within which to adjust the execution of individual real-time activities in order to 
achieve the desired real-time behavior. Though many run-time implementations may not 
provide strictly “correct” real-time behavior, we expect that most environments will find 
it possible to quickly adjust for any real-time noncompliance by dynamically adjusting 
the quality of service of individual components.

Code Generation Model In order to enable analysis of worst-case execution times of all atomic segments, includ-
ing the startup and finalization code associated with real-time tasks, these code seg-
ments must be distinguished from other code by the Java translator. Whether the 
distinguishing characteristic consists of special byte-code instructions or simply of 
reserved method names remains to be determined.

The Byte-Code Analyzer In traditional Java run-time implementations, Java byte-code programs are analyzed 
prior to execution in order to verify that the code conforms to expected conventions. In 
an implementation of a Real-Time Java run-time system, the byte code analyzer has the 
additional responsibility of determining through analysis the worst-case times required 
to execute atomic segments of code, including the startup code and finalization code 
associated with real-time tasks. We do not expect to be able to analyze arbitrarily com-
plex code segments. Part of the design of Real-Time Java that remains to be refined is a 
standard that describes the control structures that the byte-code analyzer is capable of 
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analyzing to determine worst-case execution times. Furthermore, we do not necessarily 
expect to obtain tight bounds on task execution times. The purpose of execution time 
analysis is to enable reliable operation of the real-time system. Scheduling decisions are 
based more on average-case measured task execution times rather than on worst-case 
times derived through static analysis.

Whenever possible, it is desirable that the byte-code analyzer also determine the worst-
case stack size of each thread and real-time task. If this information is available, the cre-
ation of threads and tasks is likely to be more efficient in that the amount of memory set 
aside to represent the stack is typically smaller. Further, run-time efficiency is improved 
because the object methods invoked during execution of the corresponding thread or 
real-time task need not check for stack overflow.

Byte Code Translation When translating code segments that are intended to be executed atomically, the byte 
code translator must generate code to enforce atomicity. For best performance, the ato-
micity enforcing code should be in-lined at the point from which the atomic segment is 
invoked. Atomic code invoked from within a sporadic task may need to be surrounded 
by invocations of kernel functions that provide dynamic mutual exclusion protection. 
When the same code is invoked from within a periodic task, the most efficient imple-
mentation may be to simply check the time remaining in the task’s time slice before 
entering into the atomic segment of code. If the run-time system is able to efficiently 
make this information available, the byte code translator should generate the code 
required to obtain and compare with this time.

The Real-Time Executive The real-time executive has three major responsibilities:

1. To make resource allocation decisions. In order to minimize its impact on system 
throughput, such decisions are made relatively rarely. Once made, individual activi-
ties do much of the work required to manage the resources that have been granted 
them without necessitating further interaction with the real-time executive.

2. To dispatch tasks and raise watchdog timeout exceptions at appropriate times. These 
events may be very frequent (e.g. thousands of events per second) so it is important 
to minimize the effort required to service them.

3. To maintain an accurate representation of real time and make this available to inde-
pendent real-time activities.

Resource allocation decisions. In the best of worlds, resource allocation is straightfor-
ward because there are sufficient resources to satisfy every application’s desires. But in 
the real world, resources are limited and every application desires as much as it can get. 
The simplest method for resource allocation is to divide resources equally in proportion 
to the sizes of each application’s requests. Alternately, it may be desirable for the 
resource allocator to treat certain activities as more important than others, thus favoring 
their requests for resources. We view these matters as local administrative issues and do 
not consider them to be part of the Real-Time Java programming interface. It appears 
that it would be straightforward for particular run-time environments to provide users 
with menus that enable them to specify their preferences in this regard. It also seems 
possible that, at the user’s discretion, automatic determination of importance could be 
provided by tools that, for example, monitor which windows are visible and/or active 
and automatically treat the corresponding activities as more important.
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Dispatch of tasks and watchdog timers. Two of the most popular scheduling tech-
niques for implementation of current real-time systems are static cyclic and rate mono-
tonic scheduling. A static cyclic schedule, which is computed prior to execution time, is 
simply an agenda denoting time slots when particular tasks are to be executed. Once the 
agenda has completed, it is repeated. There are a number of reasons that static cyclic 
scheduling is often preferred in, for example, commercial avionics and military systems:

1. Because the schedule is computed prior to execution time, it is perfectly known 
exactly when each task will execute. There is no uncertainty, for example, in timing 
analysis introduced by the possibility that certain tasks will be blocked from execut-
ing important code by semaphore-like locks owned by lower priority activities.

2. There is very low run-time overhead associated with a static cyclic agenda because 
all scheduling decisions are made prior to execution time. The dispatcher treats the 
agenda as a circular queue and always looks at the head of the queue to determine 
the next event with which it must concern itself.

3. There is no need to incur any run-time overhead or kernel calls in the implementa-
tion of mutual exclusion locks. Such locks can be enforced prior to run-time by 
scheduling tasks in such a way that they are known not to interfere with one another.

4. Because scheduling decisions are made prior to run time, an arbitrarily large amount 
of effort can be spent in computing an efficient schedule. With sufficiently large 
expenditure of scheduling effort, it is possible to achieve 100% system utilization. 
With much less effort, utilization of 69% is easily achieved. 

The main disadvantage of static cyclic schedules is that they are static, unchanging. 
Sporadic events are not easily handled in these environments, but changes in the system 
workload can be accommodated by replacing one cyclic schedule with another.

Rate monotonic scheduling characterizes a technique in which the worst-case execution 
times and the worst-case execution frequencies of all tasks are known prior to run time, 
but the exact times at which particular tasks will be invoked is not known. The general 
technique is to assign task priorities in order of decreasing execution frequency. So the 
task that executes most frequently has highest priority and the task with least frequent 
execution has lowest priority. The run-time scheduler has the responsibility of ensuring 
that at all times, the highest priority task that is ready to run is scheduled for execution.

Note that there is more run-time overhead with a rate-monotonic scheduler because the 
scheduler must maintain a priority queue of all tasks that are ready to run. Additionally, 
there is execution-time overhead and uncertainty introduced because of the need to 
enforce mutual exclusion using dynamic locks.

Our recommendation is to implement cyclic and ongoing real-time tasks using a dynam-
ically constructed static cyclic schedule and to implement sporadic tasks using rate 
monotonic scheduling techniques. The scheduling of spontaneous tasks is implemented 
through the use of a second dispatch queue that interleaves time slots with the cyclic dis-
patch queue.

Ideally, tasks that are executing as part of a static cyclic schedule would be allowed to 
enquire of the run-time kernel to determine how much time is remaining in their current 
execution time allotment. This time can be used as a guidepost to determine whether it 
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is possible to complete the next atomic segment of code based on knowledge of the 
worst-case time required to execute the atomic code. In systems for which this is possi-
ble, this offers an efficient implementation of mutual exclusion enforcement for cyclic 
and ongoing real-time tasks.

Run-Time Services In Real-Time Java, most scheduling decisions are based on typical execution times 
rather than worst-case times. Since Java software is developed on different hardware 
than the systems on which it normally runs, and since developed Java byte codes run on 
a variety of different hardware configurations, it is necessary to analyze the code in the 
environment in which it is going to run.

The application developer is responsible for providing a configuration manager that is 
capable of exercizing each task in the local execution environment to determine its exe-
cution time requirements. In order to measure task execution times, the run-time system 
must provide the ability to accurately measure time. Furthermore, it may be desirable 
that the run-time environment provide an ability to invalidate and/or disable memory 
caches so as to allow measurement of code when it is not benefiting from cache speed-
ups.

Facilities must be provided in the run-time environment to explicitly invoke sporadic 
and spontaneous tasks from within other real-time tasks, and for embedded Java imple-
mentations, to automatically invoke sporadic tasks in response to particular interrupts. 
The question of whether to expect the run-time system to enforce sporadic task execu-
tion frequencies remains to be addressed.

The real-time activity’s administrator is responsible for negotiating with the real-time 
executive to obtain time and memory budgets for execution of the real-time tasks that 
comprise the activity. In order for the administrator to determine the time required to 
execute the atomic segments of code that comprise part of this activity, the run-time sys-
tem needs to provide a mechanism whereby the worst-case execution times of atomic 
segments, as determined by the real-time version of the byte-code analyzer, can be 
determined. Perhaps this information can be obtained by invoking a special worst-case-
execution-time method that is associated with each atomic segment object.

In order to allow an activity’s administrator to adjust task periods so as to align them 
with the existing cyclic dispatch table, there must be a standard mechanism by which 
Java programs can determine the current length of the dispatch table.

At the Java source and byte-code levels of abstraction, all atomic segments of real-time 
code use the same representation. However, translation of atomic segment byte codes to 
native machine instructions will depend on the mutual exclusion enforcement mecha-
nisms that are used in the host Java virtual machine implementation. In some cases, 
implementation may consist simply of disabling interrupts. In others, it may consist of 
setting a particular variable to point to the instruction that follows the critical segment of 
code so that any attempt to context switch could be preceded by execution of all of the 
instructions that precede the instruction so identified. Yet another possible implementa-
tion is to check how much time is remaining in the current task’s time slot and only 
allowing entry into the atomic code segment if the remaining time is at least as great as 
the known worst-case time required to execute the atomic code segment. Whatever the 
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implementation technique, it is important that the run-time support system provide the 
mechanisms necessary to implement it.

In embedded Real-Time Java systems, it will be necessary to develop custom device 
drivers for nonstandard hardware components. Such device drivers can be implemented 
as native methods. Regardless of implementation technique, it would be desirable to 
standardize the interface to custom device drivers. This would benefit both the imple-
mentor of the device driver and the device driver’s users. Note that it will also be neces-
sary to allow such native drivers to include interrupt handlers that trigger execution of 
sporadic Java tasks.

In order to support reliable real-time garbage collection, it is desirable to eliminate all 
aspects of conservative pointer scanning from the system. Otherwise, it is not possible 
to defragment memory and memory leaks may be introduced by conservative scanning. 
Consequently, we recommend that new conventions be developed for the implementa-
tion of native methods in environments that intend to provide fully accurate garbage col-
lection. In these environments, all access to Java data structures must be stylized 
through, for example, use of C macros in order to make it possible for the garbage col-
lector to accurately distinguish pointers from non-pointers within the native method’s 
stack frame and static variables.

Real-Time Garbage 
Collection

There are a variety of garbage collection techniques that can, to varying degrees, sup-
port real-time garbage performance as it has been characterized in this report. Below, 
several of the feasible techniques are summarized briefly. This list is not intended to be 
exhaustive. First, we identify several of the ways in which the garbage collection sub-
system may introduce unpredictability into the run-time environment.

Garbage collection faults. Since all of the threads and real-time activities running in a 
particular Java execution environment share use of a single dynamic heap, it is possible 
for one uncooperative thread to crash all other threads by simply allocating and hoard-
ing all available memory. To prevent this from happening, the real-time executive must 
enforce dynamic memory allocation budgets. One possible implementation consists of:

1. Tagging every allocated object with a field that identifies the activity that allocated it.

2. Tallying the total amount of each activity’s dynamic memory that is live at the termi-
nation of each garbage collection pass.

3. Dividing the free memory that is available upon completion of garbage collection 
between currently executing activities, reserving some of this memory for new activ-
ities that might be instantiated prior to completion of the next garbage collection 
pass. This partitioning of memory is represented as an activity-specific allocation 
budget.

According to this convention, task A cannot reallocate the memory corresponding to a 
newly dead object until after the garbage collector has reclaimed this memory. Note that 
the time required by the garbage collector to reclaim this memory is system dependent. 
However, this system dependency is properly abstracted by the real-time activity’s 
administrator when it negotiates for access to dynamic memory both in terms of the 
maximum amount of live memory and in terms of the maximum rate of memory alloca-
tion. See “Administrator” on page 11.
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The ideal garbage collector would instantaneously reclaim and defragment the memory 
associated with each object that becomes dead. However, practical implementations of 
garbage collectors need time first to recognize objects as dead, and then to defragment 
free memory segments. Therefore, the memory allocator may fail to satisfy legal alloca-
tion requests either because dead memory has not yet been reclaimed, or because 
reclaimed memory is fragmented to the degree that there is not a sufficiently large free 
segment currently available, even though the total amount of free memory is larger than 
the size of the request. In both of these cases, waiting for additional garbage collection 
to complete before reissuing the allocation request may solve the problem. 

In this model of dynamic memory management, there are two possible reasons why an 
allocation request cannot be immediately satisfied: (1) the task’s total allocation budget 
has been exceeded, or (2) the available free pool does not have a sufficiently large allo-
catable segment because of fragmentation. We recommend that individual tasks be able 
to distinguish between these two situations at the time their allocation requests are 
rejected. This suggests the need for a per-thread state variable that identifies the problem 
associated with the thread’s most recently denied allocation request. 

In a different execution model, the run-time system might allow tasks to allocate beyond 
their dynamic memory budget, under the assumption that the garbage collector will sub-
sequently discover that the task has released sufficient memory to justify the allocation 
request. This allows more aggressive utilization of available memory amongst well-
behaved trusted tasks. However, if the garbage collector subsequently discovers that a 
particular task’s memory budget has been exceeded, the only way to recover from this 
error is to kill the task, reclaiming all of its memory. Meanwhile, availability of memory 
for other tasks in the system has been compromised. Additional time is required to 
reclaim the memory that had been erroneously allocated to the rogue task in order to 
make it available to the other tasks for which the memory had originally been reserved. 
Currently unresolved is the exact handling that is given to a task that is discovered after 
the fact to have violated its memory allocation budget. Presumably, we would define an 
exception to be raised in this case, and would disable any dynamic memory allocation 
from being performed within the corresponding exception handler. Upon termination of 
the exception handlers, the activity is considered to be dead.

Conservative mark and sweep garbage collection. Conservative garbage collectors 
are unable to reliably distinguish between pointers and non-pointers [9]. Because the 
compiler is not required to generate the code that would be necessary to tag pointers, 
conservative garbage collection is fairly easy to implement and has a low run-time over-
head. In conservative garbage collectors, the garbage collector treats any word that con-
tains a value that represents a valid address as a pointer. This means that it is possible for 
an integer whose value is in the range that represents legal addresses to cause dead 
memory to be conservatively retained. Furthermore, since it is uncertain whether the 
suspected pointer really represents raw data or a memory address, it is not possible for 
the garbage collector to relocate the referenced object in order to defragment memory.

Nevertheless, conservative techniques are very popular in implementations of garbage 
collection for C and C++, and it appears that they will also be popular in implementa-
tions of Java. They perform well on average, both in terms of memory allocation 
throughput, and in terms of memory utilization. 



Implementation

24 Issues in the Design and Implementation of Real-Time Java

In order to make a conservative garbage collector compatible with real-time constraints, 
it is necessary to partition the free pool into segments of different sizes and to divide the 
total garbage collection effort over time. Suppose, for example, that free list 0 represents 
objects ranging in size from 16 to 31 bytes, that list 1 represents objects ranging from 32 
to 63 bytes, and so on. Given this organization, the time required to allocate memory is 
bounded by the time required to examine each free list. On a 32-bit computer, there 
would be no more than 32 free lists.

For purposes of discussing time division of the total garbage collection effort, assume 
that the conservative collector uses a mark and sweep garbage collection technique. The 
total effort required to perform garbage collection consists of the effort required to mark 
and scan all live objects added with the effort required to sweep through the complete 
heap. An upper bound on the number of live objects is the sum of the number of objects 
that were live upon completion of the previous garbage collection pass and the number 
of objects that were allocated since completion of the previous garbage collection pass. 
At the moment garbage collection begins, the free lists contain a certain known amount 
of memory. Pace the allocation of this memory against the progress of the garbage col-
lector, making sure, for example, that 30% of the garbage collection effort has com-
pleted prior to allocation of 30% of the remaining free pool.

Note that there is no worst-case bound on memory leaks that might be introduced by 
conservative scanning. Further, defragmentation of the heap is not possible. Thus, it 
would not be possible for a Java virtual machine that is using conservative garbage col-
lection techniques to guarantee any lower bound on the amount of memory that will be 
available to particular real-time activities. Nevertheless, since conservative garbage col-
lection has been demonstrated to perform well on average, expected and optimistic 
memory availability will be useful quantities.

Copying garbage collection. Copying garbage collection consists of periodically copy-
ing all live objects from one region of memory, called from-space to another equal-sized 
region of memory, called to-space [10]. If some of the objects residing in from-space are 
no longer live, the copied objects will not fill to-space. Thus, it is typically possible to 
allocate new objects in to-space while old live objects are being relocated, under the 
assumption that much of the current contents of from-space is dead. If all tasks that 
share access to the dynamic heap are trusted to be well behaved, this is a reasonable 
assumption. But if some of the tasks are unknown or untrusted, as is typical in Java exe-
cution environments, then it is somewhat risky to allocate new objects from to-space 
until after garbage collection has terminated.

One of the greatest benefits of copying garbage collection is that it fully defragments the 
free pool each time it completes a garbage collection pass. Thus, tasks that stay within 
their allocation budgets are guaranteed that memory will never be denied to them 
because of fragmentation problems. In fact, this is the only garbage collection technique 
that we are aware of which offers this guarantee to the client applications.

A disadvantage of copying garbage collection is that it imposes a high run-time over-
head on execution of software. First, copying garbage collection is incompatible with 
conservative garbage collection techniques. Thus, extra code must be executed to main-
tain tags that distinguish pointers from non-pointers. Second, to coordinate the sharing 
of data structures between background garbage collection activities and ongoing execu-
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tion of application software, it is necessary to execute several extra instructions each 
time the application software refers to a dynamically allocated object. In particular, each 
time a word is fetched from memory, its value must be examined to determine if it is a 
pointer to from-space. If so, the word is replaced with the corresponding to-space 
pointer before making its value available to the application software. Note that this 
requires the referenced object to be copied to to-space if it had not already been copied. 
This overhead has been measured to more than double the execution time of certain 
benchmark applications [11]. A third disadvantage of copying garbage collection is that 
it requires a minimum of twice as much memory as is actually accessible to the applica-
tion at any instant of time.

Brook’s optimization to copying garbage collection. This optimization is designed to 
reduce the execution-time penalty of copying garbage collection at the expense of one 
extra word per object [12]. The extra word serves as an indirection pointer. For the old 
copies of to-space objects residing in from-space, the indirection pointer refers to the 
corresponding to-space object. For a from-space object that has not yet been copied, the 
indirection pointer refers to itself. Similarly, for every to-space object, the indirection 
pointer refers back to itself. Every access to an object follows the indirection pointer to 
find the currently active version of the object. Meanwhile, garbage collection consists of 
sweeping through the objects copied into to-space and replacing all from-space pointers 
with the corresponding to-space addresses. Brook’s optimization replaces the condi-
tional range-checking test required by each memory read operation with a level of indi-
rection associated with every read and write operation. In comparison with traditional 
non-real-time implementations of Lisp on Motorola 68000 processors, Brooks reports 
that the cost of fetching a pointer out of a dynamically allocated object takes 125% 
longer in the original copying algorithm and only 37.5% longer in his improved algo-
rithm [12]. 

Accurate incremental mark and sweep garbage collection. Note that the incremental 
mark and sweep garbage collection technique described above is compatible with accu-
rate garbage collection techniques as well as with conservative techniques. In compari-
son with conservative mark and sweep garbage collection, the benefit of accurate 
garbage collection is that memory leaks cannot be introduced by the conservative scan-
ning process. However, there is a high cost associated with tagging of all pointers to 
enable accurate garbage collection. In comparison with copying garbage collection, the 
benefits include much higher utilization of memory and smaller run-time overhead; 
since live objects are not relocated, less effort is required to coordinate garbage collec-
tion with activation processing. 

Mostly stationary real-time garbage collection. Mostly stationary garbage collection 
is a hybrid between copying and accurate mark and sweep garbage collection. The free 
pool is divided into N equal-sized demi-spaces. Two of the demi-spaces serve as to- and 
from-space respectively. The rest are collected using mark and sweep techniques. The 
benefit of this technique is that it offers memory utilization efficiencies close to that of 
mark and sweep techniques on average while still allowing memory to be defragmented 
in real time. Mark and sweep garbage collection is typically at least 50% more efficient 
than copying garbage collection [13]. In the worst case, the memory utilization of 
mostly stationary garbage collection is approximately the same as for the fully copying 
technique [13].
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Real-time generational garbage collection. One straightforward technique for imple-
mentation of generational garbage collection is to adapt the mostly stationary garbage 
collection technique. Treat the fully copying region as a nursery, and treat the mark and 
sweep region as a second generation. Generational garbage collection performs well on 
average, but it is unable to find garbage residing in the second generation. Occasional 
full garbage collection passes are necessary, using the mostly stationary technique.

Note that generational garbage collection techniques do not improve worst-case laten-
cies. Rather, they are intended to improve average case behavior at the cost of less pre-
dictable worst-case behavior. And there are many applications for which the 
assumptions on which the potential performance benefits of generational garbage col-
lection depend are not valid. For example, Wade Hennessey, the principal scientist who 
oversaw garbage collection of ScriptX at Kaleida Laboratories, reported that in many of 
the multimedia titles he has studied, being able to quickly reclaim large amounts of 
recently discarded memory is much more important than improving average-case 
throughput [14]. According to Hennessey, it is quite common for multimedia applica-
tions to build over time relatively large data structures, and then to release the entire data 
structure in a single action. If parts of the data structure live long enough to be promoted 
into the older generations, which is quite likely, it would be difficult for a generational 
garbage collector to quickly reclaim the corresponding memory.

Hardware-assisted real-time garbage collection. Though there are numerous soft-
ware-implemented real-time garbage collection techniques available, the benefits of 
adding a hardware accelerator to support garbage collection are very significant [15-17]. 
Hardware support consists of a special integrated circuit that sits between the system’s 
level-two caches and memory. Some of the particular benefits of the hardware accelera-
tor include:

1. Hardware support significantly reduces the run-time overhead required to coordinate 
garbage collection with ongoing application processing, including the cost of tag-
ging memory to identify pointers. Depending on the garbage collection technique 
that is being implemented and the nature of the workload that is being measured, 
hardware support improves overall throughput by 30 – 50% or even more.

2. Hardware support shrinks the amount of memory required to reliably support partic-
ular workloads by 50% or more. This is a very important benefit, considering that 
memory is the single most expensive component of many embedded real-time com-
puter systems. This benefit is made possible by efficient use of defragmenting gar-
bage collection techniques and by the hardware accelerator’s ability to parallelize 
much of the effort of garbage collection, making it possible to reclaim and recycle 
memory much more quickly than if all of the garbage collection has to be performed 
by the main CPU during “idle” times.

3. The hardware accelerator enables garbage collection primitive operations to be per-
formed much more quickly. Whereas software garbage collection techniques typi-
cally offer worst-case execution latencies measured in tens of milliseconds, 
hardware-accelerated garbage collection offers worst-case latencies measured in 
microseconds.
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Commercialization Opportunities

We are committed to commercialization of the Real-Time Java language standard 
described in this report. Once open standards have been established, we intend to 
develop embedded implementations of the standards for commercial sale to developers 
of embedded real-time systems. Our hope is to deliver a software implementation of 
Real-Time Java by 3rd quarter, 1996 and a hardware-accelerated implementation by 1st 
quarter 1997. The hardware accelerator will be available for purchase separately, either 
as a single chip, as a royalty license for use of the chip’s Verilog description, or as a 
VLSI core1.

We welcome opportunities to partner with other companies who might share our goal of 
supporting Real-Time Java as a development environment for creation of reliable, high 
performance, portable real-time software components. We are also seeking additional 
venture capital to help finance our development efforts as we strive to meet the 
announced product delivery dates.

We feel that the application domains for Real-Time Java represent a very important 
emerging market that is much larger than any single company can hope to dominate. We 
encourage others to become involved in filling some of the voids that might currently 
exist within this marketplace. Examples of potential opportunities for participation 
include development of:

1. Software development tools, such as graphical user interface generators.

2. Reusable component software libraries.

3. Real-time debugging and monitoring tools.

4. Application software for both clients and servers.

5. Infrastructure support to facilitate the development of real-time distributed applica-
tions including, for example, wireless telecommunication for in-vehicle navigation 
computers.
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