
BLOKE: Optimizing BRIL with STOKE

Kei Imada

Abstract
We present bloke, a scalable implementa-

tion of STOKE on an educational intermedi-

ate representation language. In contrast to

STOKE’s two-stage process, BLOKE supports a

user-defined number of phases that smoothly

transitions from synthesis to optimization. We

found that BLOKE was able to find superopti-

mizations of loop-free code written in Bril. Fur-

thermore, we found BLOKE to be scalable with

respect to the number of cores a machine has.

Introduction
Compiler optimizations usually seek to im-

prove a metric on a program. Dead code elimi-

nation decreases the number of instructions of

programs and loop invariant code motion aims

to decrease the number of instructions executed

within a loop.

Contrary to the name "optimizations," these

algorithms don’t seek to optimize, or find the

best possible program for the metric. Given this

misnomer, Alexia Massalin coined the term su-
peroptimizers.

Given an instruction set, the su-

peroptimizer finds the shortest pro-

gram to compute a function. [3]

Most problemswithin the field of superopti-

mizations are intractable, and therefore we gen-

erally employ exhaustive bottom-up search or

stochastic search.

In this paper, we apply stochastic meth-

ods to find superoptimizations of loop-free pro-

grams. Similar to STOKE [8], we use Markov-

Chain Monte-Carlo (MCMC) methods to con-

duct a random walk on the space of programs.

In contrast with STOKE, which uses a two-

stage process to introduce the program perfor-

mance component, our BLOKE implementation

gradually introduces the performance compo-

nent into the MCMC search.

We will first give a primer on Bril, the

Metropolis Hastings algorithm, and STOKE, the

precursor to BLOKE. We then describe BLOKE,

our stochastic superoptimizer for loop-free Bril

programs. Finally, we evaluate BLOKE to show

that BLOKE can find superoptimizations of Bril

programs scalably.

Bril
Bril, the Big Red Intermediate Language, is

an intermediate representation (IR) language

for Cornell University’s Advanced Compilers

(CS 6120) course [5]. Inspired from the LLVM

IR, Bril is a statically typed language with inte-

ger operations such as "add," comparison oper-

ations such as "eq," logical operations such as

"and," control flow operations such as "br," and
the ability to return a value with "ret" [6]. Fig-
ure 1 provides an example program written in

Bril.

@main(a: int, b: int): int {
(a + b) * (a + b)
sum1: int = add a b;
sum2: int = add a b;
prod1: int = mul sum1 sum2;

Clobber both sums.
sum1: int = const 0;
sum2: int = const 0;

Use the sums again.
sum3: int = add a b;
prod2: int = mul sum3 sum3;

ret prod2;
}
Figure 1: clobber Benchmark

For ease of use, Bril uses a JSON format

and has Typescript and Rust commandline in-

terpreters that support a profiling flag "-p" to
count the number of dynamic instructions exe-

cuted at runtime.

1

MCMC Sampling
Rejection sampling methods are in general

intractable on high-dimensional probabilistic

models where the sample space increases expo-

nentially with the number of dimensions. For

the superoptimization problem, even if we limit

the length of the program, the number of possi-

ble programs is exponential with respect to the

number of possible instructions and operands.

Furthermore, MC sampling requires us to

draw independent samples. This is counterin-

tuitive when as an input to a superoptimization

program, we are given a program to optimize.

We could instead use the original program as a

prior to make our acceptance decisions.

MCMC addresses these issues through the

use of a Markov Chain, where a sample is de-

pendent on the prior samples. Markov Chains

solve the curse of dimensionality through lim-

iting the sample space at each iteration to a mu-

tation of the previous samples.

Metropolis-Hastings Algorithm
Markov Chain Monte Carlo (MCMC) meth-

ods draw samples from previous samples. The

Metropolis-Hastings algorithm is a MCMC

method, where for every MCMC iteration, we

base our sample based on the previous sample.

Algorithm 1 MCMC Algorithm

Require: xt is the current sample

Require: X is the sample space

Require: p : X Ñ r0, 1s, x ÞÑ P pxq

Require: q : X ˆ X Ñ r0, 1s,
px, x1q ÞÑ P px1|xq

Ensure: xt`1 is the next sample

1: x1 Ð candidate xt`1 given xt

2: α Ð min p1, ppx1q¨qpx1,xtq{ppxtq¨qpxt,x1qq

3: if uniform_sample(r0, 1s) < α then
4: xt`1 Ð x1

5: else
6: xt`1 Ð xt

7: end if

STOKE
Schkufza et al. were one of the first to use

MCMC for superoptimization in their STOKE

project [8]. The problem statement for STOKE

is: given a loop-free program P of length l and
a runtime metric r : P Ñ Rě0

, what is the

equivalent program with the smallest runtime?

That is, given a set of programs up to length l,
denoted Pl where

Pl “ tP 1
P P : P 1

is of length lu,
and the set of programs equivalent to P ,

P“ “ tP 1
P P : P 1

” P u,
we search for Pmin where

Pmin “ argmin
P 1PPlXP“

rpP 1
q.

To solve this problem stochastically, STOKE

samples from Pl, the program space. In partic-

ular, STOKE defines mutations of programs to

evaluate line 1 of Algorithm 1. A mutation is

one of the following:

• opcode: with a fixed probability, choose an

instruction at random and replace its opcode

with another opcode at random;

• operand: with a fixed probability, choose an

instruction at random and replace one of its

operands with another operand at random;

• swap: with a fixed probability, choose two

instructions at random and swap their places;

and

• instruction: with a fixed probability, choose

an instruction at random and replace it with

an instruction constructed randomly.

Let’s observe that these mutations are sym-
metric. That is, given a mutation m : Pl Ñ Pl,

we have that qpx,mpxqq “ qpmpxq, xq. This

means that line 2 of Algorithm 1 can be simpli-

fied to

α Ð minp1, ppx1qq{ppxqq,
where ppxq is the probability that x “ Pmin .

Schkufza et al. defines p in terms of costs,

further explained in the next section.

2

Cost Function
In STOKE, the p function for Algorithm 1 is

defined in terms of the cost function c : P Ñ

Rě0
,

ppxq “
1

Z
expp´β ¨ cpxqq,

where Z is a partition function that normalizes

p and β is a hyperparameter constant. In gen-

eral computing Z is difficult, but conveniently

the calculation of α in line 2 cancels the Z-term
out. STOKE defines the cost function as

cpxq “ eqpxq ` perfpxq,
where eq: X Ñ Rě0

is the correctness cost to
require that the resulting program is equivalent

to the original program and perf: X Ñ Rě0
is

the performance cost to ensure that the resulting
program is an optimization.

Correctness Cost
Calculating correctness of a program is inef-

ficient if not hard. This is why the STOKE cor-

rectness cost function has a fast but unsound

validation component using test cases and a

slow but sound verification component using

satisfiability modulo theory (SMT) solvers:

eqpxq “

#

valpxq if valpxq ą 0;

verpxq otherwise.

Given testcases τ “ pi1, o1q, . . . , pin, onq

where oj is the output of the initial program

x0 given input ij , the validation component val:
X Ñ Rě0

is defined as the sum over the Ham-

ming distances d of the outputs, including ad-

ditional cost if the program produces an error:

valpxq “
ÿ

pi,oqPτ

dpxpiq, oq ` errpx, iq.

The error component err : X ˆ I Ñ Rě0
,

with input space I , takes in a program x P X
and an input i P I , and computes an error term

e P Rě0
such that errpx, iq “ 0 if and only if x

does not produce an error on input i.
The verification function of STOKE calcu-

lates whether program x is equivalent to the

initial program x0:

verpxq “

#

1 if Di P Irxpiq ‰ x0piqs;

0 otherwise.
(1)

STOKE uses the STP theorem prover [2] to

calculate the verification function. Code se-

quences are translated to SMT formulae and is

queried whether there is an input i P I such

that x and x0 produce different outputs or side

effects.

If the theorem prover returns sat, then

there exists a counterexample c P I such that

xpcq ‰ x0pxq, and can then be added to the test

cases used in the faster val function.

If the prover returns unsat, then that

means for all inputs i P I , xpiq “ x0piq, and
therefore the two programs are equivalent.

Performance Cost
Instead of expensive JIT compilation,

STOKE opts a simple heuristic to statically ap-

proximate program runtime:

perfpxq “
ÿ

iPinstrpxq

latencypiq, (2)

where latencypiq is the average latency of

an instruction i.

Two-Stage Process
STOKE uses a two-stage process to find op-

timized programs. STOKE first has the synthesis
phase that focus solely on correctness. STOKE

then uses the optimization phase to introduce

the performance component of the cost func-

tion, which allows the search for the fastest pro-

gram in the correct program space.

In short, the synthesis and the optimization

phases have these cost functions:

• synthesis, eqpxq; and

• optimization, eqpxq ` perfpxq.

BLOKE
BLOKE is a stochastic superoptimizer for

Bril programs. Inspired from the explore-and-

exploit nature of simulated annealing, we won-

dered whether gradually introducing the per-

3

formance component to STOKE would help us

find superoptimizations faster. Therefore, one

key difference between BLOKE and STOKE is

the introduction of a gradual performance fac-

tor into its cost function. This allows us to first

explore the space of equivalent programs, then

gradually exploit performant programs to su-

peroptimize our intial program.

For simplicity, we only consider loop-free

Bril programs with integer return values and

only primitive operations. Adding support for

more Bril operations such as function calls is

future work.

@main(a: int, b: int): int {
sum3: int = add a b;
prod2: int = mul sum3 sum3;
ret prod2;
nop;
sum1: int = add a a;
x4: bool = fge x2 x2;
sum2: int = mul a sum1;
nop;

}
Figure 2: BLOKE optimization of clobber

Figure 2 shows the optimization BLOKE

may produce when Figure 1 is the input. We

successfully find that the last three lines of Fig-

ure 1 are the only necessary lines for an opti-

mized equivalent program.

Architecture
Figure 3 shows high-level architecture of

BLOKE. The user would call the optimizer
library which samples using STOKE’s random

walk method. The sample library can call the

Brilirs interpreter to run test cases, or call

the bril_equivalence library to prove that

a program in the walk is equivalent to the in-

put program. The equivalence library would lift

the Bril programs into Z3 formulas using the

bril2z3 library and call Z3 to prove equiva-

lence or find a counterexample.

Correctness Cost
Since we have integer outputs, we can use

the usual Euclidean metric to define the valida-

tion cost similar to STOKE:

valpxq “
ÿ

pi,oqPτ

|xpiq ´ o| ` errpx, iq.

Currently we set errpx, iq “ 2 for all inputs.

Varying the error cost based on the error type

is future work.

SMT Bril Equivalence checking
For the verification cost, we adopted Equa-

tion 1 and wrote two libraries, bril2z3 and

bril_equivalence.
bril2z3 allows conversion of Bril pro-

grams to Z3 formulas. Since Z3 formulas do not

have a concept of variable assignment, we need

tomorph the Bril program to a formwhere each

variable used in the program has one and ex-

actly one definition.

@main(a.0: int, b.0: int): int {
.main.b0:
a.1: int = id a.0;
b.1: int = id b.0;

.main.b1:
sum1.0: int = add a.1 b.1;
sum2.0: int = add a.1 b.1;
prod1.0: int = mul sum1.0 sum2.0;
sum1.1: int = const 0;
sum2.1: int = const 0;
sum3.0: int = add a.1 b.1;
prod2.0: int = mul sum3.0 sum3.0;
ret prod2.0;

}
Figure 4: SSA form of clobber

This is called the static single-assignment

(SSA) form of a program, and there are exist-

ing algorithms to convert any program written

in an intermediate representation language like

Bril to SSA form [7].

4

Figure 3: High level BLOKE architecture

And(a.1 == a.0,
b.1 == b.0,
sum1.0 == a.1 + b.1,
sum2.0 == a.1 + b.1,
prod1.0 == sum1.0*sum2.0,
sum1.1 == 0,
sum2.1 == 0,
sum3.0 == a.1 + b.1,
prod2.0 == sum3.0*sum3.0,
BRIL.RETURN.0 == IntV(prod2.0))

Figure 5: Z3 formula for clobber

With the SSA form of the loop-free pro-

gram, we can generate the Z3 formula of the

program. We encode all control flow paths of

the loop-free program into Z3 formulas and en-

code the return value of the program as a spe-

cial variable namewith a datatype that supports

all Bril primitive types. Figure 5 is an example

Z3 formula of clobber.
With the initial program x0 and the pro-

posed optimization x as Z3 formuls, we ask Z3

whether there exists an input ic where the two
outputs differ, that is, x0picq ‰ xpicq.

In the event that BLOKE found a counterex-

ample pic, x0picqq, we would the test case to the

test case collection τ .

Performance Cost
We first define a approximate performance

cost similar to Equation 2 where each instruc-

tion has latency 1, except for nop operations,

which will have latency 0:

perf«pxq “ |tnon-nop instructions in xu|.
Let ppx, iq be the the number of total dynamic

instructions executed in a run of a program x

with input i. The Bril interpreter conveniently
has a -p flag that would calculate ppx, iq if x
does not error on i. We only consider loop-free

programs, so we define the performance func-

tion perf
1
on a program x and input i:

perf
1
px, iq “

$

’

&

’

%

8 if x has a loop;

perf«pxq if x errors on input i;

ppx, iq otherwise.

With perf
1
, a program x, and test cases τ , we can

now define the performance cost as the maxi-

mum performance over all inputs i:
perfpx, τq “ max

pi,oqPτ
perf

1
px, iq.

N-Stage Process
STOKE has a Two-Stage Process. The syn-

thesis phase only considers equivalence, and

has a small β for a more random walk. The

optimization phase considers a combination of

equivalence and performance, and has a higher

β for a stricter walk.

In contrast to STOKE, BLOKE allows us to

smooth out the cost function and β with the in-

troduction of more than two phases. In particu-

lar, BLOKE introduces γ P r0, 1s to smoothly in-

corporate the performance component into the

cost function. If we have N BLOKE phases, we

would start with β “ βmin and γ “ 0, and lin-

early increase these two values until phase N ,

where we have β “ βmax and γ “ 1.

Figure 6: BLOKE parameter smoothing

5

Parallelization
To allow more than two BLOKE phases, we

needed to parallelize our sampling processes.

Luckily, only correct program rewrites are com-

municated between phases, which means for

each adjacent phase pair, we can use a single

queue as a communication medium.

As shown in Figure 7, the user will pass

the initial program x0 into the BLOKE opti-

mizer, which would put the program into the

in_queue of phase pipeline. In phase 1, we

spawn off a predetermined number of sampling

processes on the initial program.

Every time the sampling process of phase n
found a better optimization x1

, the process will

pass x1
into the phase n output queue to which

phase n`1 consumes with their own sampling

processes.

Figure 7: BLOKE parallelization

Evaluation
We implemented BLOKE in 3200 lines of

Python. We chose to not use the existing

STOKE library because x86 assembly code logic

was deeply entangled in its codebase.

Sadly, not many existing Bril benchmarks

can be optimized with BLOKE currently since

some opcodes are not supported. BLOKE

also cannot optimize programs with loops yet,

which is an item for future work. So to evaluate

BLOKE, we made short toy examples shown in

Figure 8.

We measured our benchmarks on a Dell

PowerEdge R620 with 62.8GiB of memory and

32 3.4GHz Intel Xeon E5-2650 v2 cores running

Ubuntu 22.04.3 LTS. Each BLOKE run in our

evaluation was run with 10,000 iterations.

For each benchmark, we measured the

(1) performance of the optimizations BLOKE

found, (2) how multiple phases affected the op-

timizations, (3) how fast BLOKE runs with re-

spect to the number of processes BLOKE can

have running at one time, and (4) how the num-

ber of phases impacted BLOKE runtime.

Optimization Performance
To measure the (1) performance of the opti-

mizations BLOKE found, we ran the five bench-

marks with 5 BLOKE phases and β P r1, 10s.

Figure 9a shows the total number of dynamic

executions executed in the original program in

blue, and the number of dynamic executions ex-

ecuted in the optimized program in red. For

most of the benchmarks we were able to find

optimizations. For the ones that BLOKE found

optimizations, they turned out to be the most

optimal program.

We found that BLOKE did not find an opti-

mization for the distribute benchmark (Fig-

ure 8a). The benchmark does a simple a¨b`a¨c,
and the intent was for BLOKE to find the a ¨pb`

cq identity.

@main(a: int,
b: int,
c: int): int {

x1: int = add b c;
x2: int = mul a x1;
ret x2;

}
Figure 10: Intended distribute optimization.

We believe BLOKE was unable to find the

optimization shown in Figure 10 because there

are too many nonequivalent BLOKE steps to

6

https://github.com/keikun555/bloke/tree/a44958011ff8b5de40019aff6f0ccc7580fd7acc
https://github.com/keikun555/bloke/tree/a44958011ff8b5de40019aff6f0ccc7580fd7acc

@main(a: int,
b: int,
c: int): int {

x1: int = mul a b;
x2: int = mul a c;
x3: int = add x1 x2;
ret x3;

}

(a) distribute

@main(x: int): int {
one: int = const 1;
x: int = add x one;
x: int = add x one;
x: int = add x one;
x: int = add x one;
x: int = add x one;
ret one;

}

(b) dead_code

@main(a: int,
b: int): int {

true: bool = const true;
br true .then .else;

.then:
ret a;

.else:
ret b;

}

(c) unused_br

@main(x: int): int {
one: int = const 1;
y: int = id x;
x: int = add x one;
x: int = add x one;
x: int = add x one;
x: int = add x one;
x: int = add x one;
ret y;

}

(d) dead_code_alt

Figure 8: Toy examples used for BLOKE evaluation. clobber is shown in Figure 1.

(a) Optimizations BLOKE found. (b) Impact of phases to optimization performance.

Figure 9: Optimization performance.

reach the intended optimization. That is, any

single swap between a line in the intended op-

timization and a line in the original program re-

sults in an incorrect program, thereby increas-

ing the cost of the step in the random walk. To

fix this, we should run BLOKE with more sam-

pling iterations and a lower minimum βmin.

Number of Phases
Tomeasure (2) howmultiple phases affected

the optimization performance, we ran the five

benchmarks with β P r1, 10s. We also var-

ied the number of phases from 2 to 5. Fig-

ure 9b shows the impact of increasing the num-

ber of phases to the improvement in the opti-

mizations. At first glance, it looks like increas-

ing the number of phases improved the opti-

mizations found, and that we needed at most

four phases to converge. However, this may

mean we needed four times as many steps in

our random walk. More investigation is defi-

nitely needed to conclude the efficacy of multi-

ple phases on BLOKE.

Optimizer Scalability
To measure (3) how the number of phases

impacted BLOKE runtime, we ran the five

benchmarks with 5 BLOKE phases and β P

r1, 10s. We also varied the maximum number

of sampling processes BLOKE can have run-

ning at a time from 1 to 32. For tractability,

we gave each BLOKE trial a 30 minute time-

out. Figure 11a show that we see a sublin-

ear speedup for all benchmarks. The nonlinear

speedup is expected because we have commu-

nication overhead from the inter-phase queues.

Number of Phases
To measure (4) how the number of phases

impacted BLOKE runtime, we ran the five

benchmarks with β P r1, 10s. We also varied

7

(a) Impact of processes to optimizer runtime. (b) Impact of phases to optimizer runtime.

Figure 11: Optimizer scalability.

the number of phases from 2 to 10. For tractabil-

ity, we gave each BLOKE trial a 30 minute time-

out. Figure 11b shows the effects of increasing

the number of phases to the optimizer runtime.

As expected, as the number of phases increases,

the runtime of BLOKE also increases. This is ex-

pected because the number of BLOKE sampling

processes increases with respect to the number

of phases we have. We hit the 30 minute time-

out at around seven phases.

Another interesting observation is that for

benchmarks like distribute where BLOKE

is unable to find an optimization, the runtime

of the optimizer is orders of seconds faster.

This is likely because all BLOKE sampling pro-

cesses in phase 1 produced the same program

output. Had the distribute benchmark had

dead code, we would likely see a similar up-

wards trend in runtime.

Related Works
BLOKE is based off of STOKE [8], a su-

peroptimizer for loop-free x86 assembly pro-

grams. We extend STOKE to optimize pro-

grams written in an educational intermediate

representation language called Bril. BLOKE use

similar equivalence and performance cost func-

tions as STOKE. In contrast to STOKE which

uses a two-stage process, BLOKE allows users

to specify the number of BLOKE phases (ě 2)
for a smoother transition between the synthe-

sis and optimization. BLOKE also uses Z3 while

STOKE uses the STP theorem prover [2].

BLOKE is not the first project that lifts Bril

to an SMT solver. Shrimp lifts Bril to SMT

solvers using Rosette [4] to prove the correct-

ness of compiler optimization passes. Nigam

et al. successfully verified the correctness of

local value numbering passes using Shrimp.

Rosette is an extension of the Racket program-

ming language. BLOKE does not use Rosette

since the Bril tools the autor had written previ-

ously for CS 6120 are in Python. Calling Rosette

from Python is not efficient, as it currently re-

quires subprocessing to the Racket command-

line, which is expensive.

The correctness cost of BLOKE where

we grow the list of testcases τ based on

the counter-example output of the Z3 solver

was inspired from CEGIS, or counter-example

guided inductive synthesis [1].

Future Work
There are plenty of extensions of BLOKE.

Our implementation of BLOKE has many op-

timization opportunities. For example, instead

of Python, we can write BLOKE in a statically

compiled language such as Rust or C/C++.

8

A natural extension BLOKE is to implement

it for LLVM IR, the language Bril took its in-

spiration from. A common way to enforce SSA

form of LLVM IR is to use memory operations,

so we will need to reason about the heap in the

hypothetical llvm2z3 library.

Another immediate extension is to address

the lack of compatible Bril benchmarks with

support for more Bril opcodes. In particular, we

should be able to model print statements and

memory with the theory of arrays. It is not ob-

vious howwe would model function calls in Z3.

Since traces are loop-free, we may be able

to model speculation calls and thus run BLOKE

on Bril traces. However, unless a subroutine in

a long-running program is frequently executed,

wewould not want stochastic search running in

a dynamic compiler in general (Figure 12).

Furthermore, if there is an efficient way of

synthesizing some class of loop-invariants, we

may be able to optimize some Bril loops.

Finally, there are exciting venues for the

further distribution of BLOKE workloads using

the Message Passing Interface (MPI) bindings

in Python. Furthermore, during the implemen-

tation of BLOKE, we observed that a BLOKE

phase is akin to a MapReduce operation, where

the Map operation is the BLOKE sampling pro-

cess and the Reduce is the concatenation of

the outputs of each sampling process. Further

work is needed to understand how different dis-

tributed algorithms such as MapReduce can be

effective for BLOKE.

Conclusion
We presented BLOKE, a scalable implemen-

tation of STOKE on Bril with an extension to

increase STOKE’s two-stage process of synthe-

sis and optimization. We found that BLOKE

was able to find superoptimizations of loop-

free code written in Bril, an educational inter-

mediate representation language. Furthermore,

we found BLOKE to be scalable with respect to

the number of cores we gave BLOKE. In short,

we have found a scalable superoptimizer for

an educational intermediate representation lan-

guage.

Figure 12: Is it Worth the Time? from xkcd

Acknowledgements
We would like to thank our second monitor

for providing us with much productivity.

References
[1] A. Abate, C. David, P. Kesseli, D. Kroen-

ing, and E. Polgreen. “Counterexample

Guided Inductive Synthesis Modulo The-

ories: 30th International Conference, CAV

2018, Held as Part of the Federated Logic

Conference, FloC 2018, Oxford, UK, July

14-17, 2018, Proceedings, Part I”. In: July

2018, pp. 270–288. isbn: 978-3-319-96144-

6. doi: 10.1007/978-3-319-96145-
3_15.

[2] V. Ganesh and D. L. Dill. “A Decision Pro-

cedure for Bit-Vectors and Arrays”. In:

Computer Aided Verification. Ed. by W.

Damm and H. Hermanns. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2007,

pp. 519–531. isbn: 978-3-540-73368-3.

9

https://xkcd.com/1205/
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15

[3] A. Massalin. “Superoptimizer: A Look at

the Smallest Program”. In: SIGARCH Com-
put. Archit. News 15.5 (Oct. 1987), pp. 122–
126. issn: 0163-5964. doi: 10 . 1145 /
36177 . 36194. url: https : / / doi .
org/10.1145/36177.36194.

[4] R. Nigam and S. Thomas. Shrimp: Verify-
ing IRS with rosette. url: https://www.
cs.cornell.edu/courses/cs6120/
2019fa / blog / a - verification -
backend/.

[5] A. Sampson. bril. https : / / github .
com/sampsyo/bril. 2019.

[6] A. Sampson. Bril: A compiler intermedi-
ate representation for learning. https://
capra.cs.cornell.edu/bril/.

[7] A. Sampson. Lesson 6: Static Single As-
signment. url: https : / / www . cs .
cornell . edu / courses / cs6120 /
2023fa/lesson/6/.

[8] E. Schkufza, R. Sharma, and A. Aiken.

“Stochastic Superoptimization”. In: CoRR
abs/1211.0557 (2012). arXiv: 1211.0557.
url: http://arxiv.org/abs/1211.
0557.

10

https://doi.org/10.1145/36177.36194
https://doi.org/10.1145/36177.36194
https://doi.org/10.1145/36177.36194
https://doi.org/10.1145/36177.36194
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/a-verification-backend/
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/a-verification-backend/
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/a-verification-backend/
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/a-verification-backend/
https://github.com/sampsyo/bril
https://github.com/sampsyo/bril
https://capra.cs.cornell.edu/bril/
https://capra.cs.cornell.edu/bril/
https://www.cs.cornell.edu/courses/cs6120/2023fa/lesson/6/
https://www.cs.cornell.edu/courses/cs6120/2023fa/lesson/6/
https://www.cs.cornell.edu/courses/cs6120/2023fa/lesson/6/
https://arxiv.org/abs/1211.0557
http://arxiv.org/abs/1211.0557
http://arxiv.org/abs/1211.0557

	Abstract
	Introduction
	Bril
	MCMC Sampling
	Metropolis-Hastings Algorithm

	STOKE
	Cost Function
	Correctness Cost
	Performance Cost

	Two-Stage Process

	BLOKE
	Architecture
	Correctness Cost
	SMT Bril Equivalence checking

	Performance Cost
	N-Stage Process
	Parallelization

	Evaluation
	Optimization Performance
	Number of Phases

	Optimizer Scalability
	Number of Phases

	Related Works
	Future Work
	Conclusion
	Acknowledgements

