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Abstract 

Concrete type information is invaluable for pro- 
gram optimization. The determination of concrete 
types in object-oriented languages is a flow sensi- 
tive global data flow problem. It is made difficult 
by dynamic dispatch (virtual function invocation) 
and first class functions (and selectors) - the very 
program structures for whose optimization its re- 
sults are most critical. Previous work has shown 
that constraint-based type inference systems can 
be used to safely approximate concrete types [15], 
but their use can be expensive and their results 
imprecise. 

We present an incremental constraint-based type 
inference which produces precise concrete type in- 
formation for a much larger class of programs at 
lower cost. Our algorithm extends the analysis 
in response to discovered imprecisions, guiding the 
analysis’ effort to where it is most productive. This 
produces precise information at a cost proportional 
to the type complexity of the program. Many pro- 
grams untypable by previous approaches or prac- 
tically untypable due to computational expense, 
can be precisely analyzed by our new algorithm. 
Performance results, precision, and running time, 
are reported for a number of concurrent object- 
oriented programs. These results confirm the algo- 
rithm’s precision and efficiency. 
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1 Introduction 

Type information is of central importance for en- 

abling efficient implementations of high-level lan- 

guages. It can be derived from explicit program- 

mer declarations or via type inference, analysis of 

program structure. It can be used to assist pro- 

grammers to detect errors, reason about program 

operation, and in some cases, to optimize the im- 

plementation. However, traditional type inference 

systems infer principal or most general types, en- 

suring that the program is a legal composition of 

data types and their operations. While a great deal 

of progress has been made with respect to the in- 

ference of this type information [13, 14, 41, more 

precise information is required for optimization of 

object-oriented languages. For example, the’most 

general type of a max function would take any two 

comparable objects and produce a comparable ob- 

ject result. Thus, a principal typing would ensure 

that the argument types matched each other and 

the return type. However, this level of information 

is inadequate for optimization since optimizing the 

maz operation for integers (32 bits), complex num- 

bers (64 bits), bignums (many bits), though they 

are all numbers, requires different transformations. 

Concrete types distinguish implementations of 

data types and discriminate the actual classes or 

physical data layouts which occur in a program. 

Thus concrete type inference can provide the lower 

level and more specific information which is essen- 

tial for program optimization. For example, in the 

case of max, concrete type information would dis- 
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tinguish calls on the basis of the implementation 

types of the arguments, allowing each to be op- 

timized appropriately. Concrete type information 

enables optimizations which traditional type infor- 

mation cannot. 

While object-oriented languages can ease the 

task of programming, they make optimization more 

difficult. Increased use of polymorphism both in 

modern languages and programming practice de- 

crease the likelihood that type declarations com- 

bined with principal types will provide useful con- 

crete type information. This is primarily be- 

cause polymorphism leverages programming effort 

by sharing code over a number of uses, confounding 

concrete type information. 

Concrete type inference in object-oriented lan- 

guages is both especially critical for efficiency and 

especially difficult to obtain. Object-oriented lan- 

guages use type-dependent dispatch pervasively, so 

concrete type information is essential to deriving 

accurate control flow - a prerequisite to virtually all 

program analysis and optimization. However, the 

presence of type-dependent dispatch means that 

the control flow, type inference, and data flow prob- 

lems are coupled. Previous work [15] formulated 

the concrete type inference problem as a mono- 

tonic solution of a constraint network, solving all 

three problems simultaneously. However, it has 

drawbacks: 1) it does not type many common pro- 

gram structures, and 2) its logical extension to such 

structures has space and time complexity exponen- 

tial in program type structure. 

Our concrete type inference algorithm extends 

precision incrementally where needed, consequen- 

tially producing more precise type information 

while requiring less computation. Our algorithm 

exploits a shallow analysis of the type information 

to guide the extension of effort into program re- 

gions where imprecise results were obtained. The 

extension discriminates the control and data flow 

paths that caused imprecisions and reanalyzes the 

program. The process iterates until precise type 

information is obtained. The key to making the 

analysis efficient is the use of entry sets and con- 

tainer sets which collect similar flow histories to- 

gether, reducing the cost of flow-sensitive analy- 

sis. Our analysis produces an interprocedural call 

graph in which functions and methods have been 

cloned (virtually) to eliminate polymorphism. This 

graph can be used to generate an implementation 

in which dynamically dispatched calls are statically 

bound or to do further analysis with more precise 

control flow information. 

Extensible precision and efficient flow sensitive 

analysis allow our algorithm to precisely type 

deeply polymorphic structures. Examples of these 

include nested procedures and data structures, and 

recursive versions of each. Such polymorphic struc- 

tures cannot be practically typed by schemes such 

as [15]. 

The major contributions of this paper are: 

1. A concrete type inference algorithm which 

can type many previously untypable object- 

oriented programs. 

2. An efficient algorithm which uses resources 

proportional to program type complexity to 

obtain precise information. 

3. An empirical evaluation of the incremental 

type inference algorithm using a col.lection 

of concurrent object-oriented programs which 

substantiates the increased precision and prac- 

ticality of the algorithm. 

The basis of our algorithm is a labeling scheme 

which allows type variables to be distinguishing 

based on the dynamic program structure. This 

scheme is flexible, allowing appropriate levels of 

precision and summary in different parts of the 

program. Splitting for precision and summariza- 

tion for efficiency are the critical issues addressed 

by labels. This extensible precision allows our al- 

gorithm to precisely type programs with arbitrarily 

deep polymorphic structures. The empirical evalu- 

ation substantiates the existence of deep polymor- 

phic structures, and the effectiveness and practi- 

cality of the algorithm. 

The remainder of the paper is organized as fol- 

lows. Section 2 covers background material, nota- 
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tion and constraint-based type inference. In Sec- 

tion 3, we introduce our type inference algorithm. 

Subsequently, in Section 4, we illustrate some uses 

of the resulting information. Section 5 discusses 

our implementation of the incremental inference 

techniques and reports results for a number of pro- 

grams, some as large as 2,000 lines. Discussion of 

our results and a summary of related work can be 

found in Section 6, and the paper is summarized 

in Section 7. 

2 Background 

2.1 Project Context 

The type inference algorithm was developed as part 

of the Illinois Concert System. However, the al- 

gorithm is general and can be directly applied to 

a wide range of languages. The goal of the Con- 

cert System is to develop portable efficient imple- 

mentations of concurrent object-oriented languages 

on parallel machines. This work includes a vari- 

ety of research in program analysis, optimization 

and runtime techniques. 1 At present, the Concert 

system compiles the Concurrent Aggregates (CA) 

language [9, lo], a dynamically typed concurrent 

object-oriented language with single inheritance as 

well as first class selectors, continuations, and mes- 

sages for execution on the Thinking Machines CM5 

[21]. All program examples are written in Concur- 

rent Aggregates. 

2.2 Polymorphism 

We differentiate data polymorphism and func- 

tional polymorphism. Data polymorphism includes 

polymorphic variables and polymorphic contain- 

ers: objects in which an instance variable may 

contain other objects of more than one concrete 

type. Functional polymorphism refers to functions 

which can operate on arguments with a variety of 

types. Examples of both appear in Figures 1 and 

‘The Illinois Concert System including this type infer- 

ence system is available from http://www-csag.cs.uiuc.edu. 
Interested parties can contact achienQcs.uiuc.edu for more 
information. 

(function rootclass max (i j> 
(if (> i j) (reply i) 

(reply j>>> 

(sequential 
(max I 2) ;; la 
(max 1.0 2.0)) ;; lb 

Figure 1: Polymorphic Function 

2. We define level of polymorphism as the depth 

of the polymorphic reference path or polymorphic 

function call path for data and functional poly- 

morphism, respectively. An effective type inference 

system should produce accurate results in the pres- 

ence of the many levels of polymorphism found in 

real application programs. 

(class A a (parameters i) 
(initial (set-a self i)>) 

(method A geta (> (reply a)) 

(sequential 
(geta (new A 1)) ;; 2a 
(geta (new A 1.0))) ;; 2b 

Figure 2: Polymorphic Container 

2.3 Constraint-Based Type Inference 

Constraint-based type inference techniques con- 

struct a constraint network whose solution is the 

desired type information. Generally, the network 

nodes are type variables and the directed edges 

are constraints. Constraints are induced by data 

flow, the creation of objects, and the use of vari- 

ables. Type variables take on values which are sets 

of concrete types, and the solution for each variable 

is bounded by constraints from below and above. 

For example, when an object of type C is created, 

the type of the variable to which it is assigned must 

be of at least of type {C}, so a constraint is formed 

for that type variable. Using [VI to denote the type 

of variable TJ the basic constraints for creation and 

assignment are: 
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These basic constraints reflect local data flow. In 

addition, there are connecting constraints along the 

edges of the interprocedural call graph which reflect 

global data flow. Each method invocation gener- 

ates constraints between the actual arguments (ai) 

and formal parameters (p;) of the method. The re- 

turn value is also constrained in an analogous fash- 

ion. An example constraint graph and its solution 

are shown in Figure 3. In equational form, the con- 

necting constraints for an invocation are: 

x selector a0 al...a, - t/c E 1x1. 

method c :: selector po pl...pn.Vi 5 n.l[pi]l _> [[ui] 

Solving the system of constraints is achieved 

by maintaining a work pile of invocations (inter- 

procedural edges) which are processed by finding 

the target method or function and applying lo- 

cal (intraprocedural) and connecting (interproce- 

dural) constraints. These constraints are solved by 

propagating the changes through all connected con- 

straints. A nice exposition of the basic constraint 

technique is given in [ 161. 

Values must be propagated through the con- 

straints eagerly because of the coupling between 

types and control flow. The concrete type of the 

target of a message send determines the possi- 

ble flow of control at that send through type- 

dependent dispatch. The algorithm uses the cur- 

rent solution to approximate the possible interpro- 

cedural control flow, putting invocation paths on 

the work pile as they are discovered. This works 

as long as the value of each type variable increases 

monotonically. Figure 3 illustrates the instantia- 

tion of an interprocedural constraint. When the 

constraint for statement lb (Figure 1) to the func- 

tion max is created, the variable i can be a float 

as well as an integer, inducing the creation of an 

edge from the statement (> i j> to the > method 

for floats. 

2.4 Imprecision and Type Variables 

When the analysis has determined that a variable 

may only be of one concrete type, it knows it has 

precise information. 2 We say that an imprecision 

occurs when the constraint network admits a solu- 

tion with a number of concrete types. At run time, 

variables in the program text refer to objects of dif- 

ferent concrete types in different situations. Impre- 

cisions result from the summarization of these run 

time variables in the dynamic program execution 

by the static constraint network structure. Thus, 

the key to resolving imprecisions is to discriminate 

(avoid summarizing) such variables. The inference 

algorithm creates a type variable for each set of run 

time variables it wishes to distinguish. Thus sepa- 

rate type variables, each subject to a different set 

of constraints, can discriminate different uses of a 

single variable in the program text. 

(function rootclass leq (i j) 
(reply (or (eq i j> (< i j)>)) 

(function rootclass max (i j) 

(if (leq i j> (reply j> ;; 3a 

(reply i> 1) 

(concurrent 
(if (or (max 1.1 1.2) ;; 3b 

(max 1 1)) ;; 3c 

Figure 4: Multi-level Polymorphic Function 

The critical issue for both precision and efficiency 

is when to use additional type variables for greater 

resolution. In order to handle polymorphic func- 

tions, others have proposed creating separate type 

variables for each call site at which the function 

containing the variable was invoked. Similarly, sep- 

arate type variables would be created for the con- 

tents of polymorphic containers based on the point 

at which the object was created, its creation point. 
Unfortunately, this single level of discrimination is 

insufficient to infer precise types within common 

program structures such as polymorphic libraries 

with multi-level call trees, functions which create 

and initialize container objects, and polymorphic 

containers of polymorphic containers (see Figures 4 

2Those variables which are truly polymorphic will be im- 
precise under all analyses. 
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Constraints 

I X-Y 

xc y 

max12 
1 :{integer) l:{integer} 

d 

P:{integer} 
maxl2 

max i j 
i:{integer} 

t 

j:{integer} 
ygyg; 

< i 
/I 

Type Dependent Dispatch 

/ I 

< i j 

Type Dependent Dispatch 

1 .O:{float} 

O.O:{float} 

&deg er, f loat) ‘&I f:{integer,float) 
I I I I 

Figure 3: Constraint Graph Example for Figure 1 

and 5 for illustrations of these cases). 

(class A a (parameters i> 
(initial (set-a self i))) 

(class B b (parameters i) 
(initial (set-b self i)>) 

(function rootclass createB (i) 
(reply (new B (* i i)))) 

(let ((vl (new A (createB 1))) 
(v2 (new A (createB 1.0)))) 

. * * 

Figure 5: Multi-level Polymorphic Container 

Extension in the obvious manner, increasing the 

level of discrimination to some fixed level Ic, incurs 

a cost exponential in Ic, and despite that does not 

ensure a precise typing. Our incremental type in- 

ference algorithm not only types such multi-level 

polymorphic program structures, it does so effi- 

ciently, allocating effort only where necessary. This 

algorithm is described in detail in the next sec- 

tion. A detailed empirical comparison with other 

approaches is given in Section 5. 

3 Incremental Type Inference 

Precise and efficient type inference can be achieved 

by incrementally extending precision, focusing on 

detected imprecisions. This allows the typing of 

programs with arbitrarily complex type structure 

at a cost proportional to the complexity of that 

structure. Thus, program sections with simple type 

structures are typed quickly, and the algorithm 

concentrates effort in program sections with com- 
plex type structure; the result is an efficient type 

inference algorithm. 

The incremental algorithm proceeds as follows. 

First, a fast analysis is done using the basic 

constraint-based algorithm (since it allocates a sin- 

gle type variable for each variable appearing stat- 

ically in the program text, we call this the static 

algorithm). Second, the constraint network is ana- 

lyzed for imprecisions, and extended locally in the 

area of the imprecision. This extension invalidates 

a portion of the solution which is then recomputed. 

The process of extension and recomputation is re- 
peated until the algorithm determines that no more 

benefit may be gained. Extension and inference 

cannot go on simultaneously because the solution 

must increase monotonically. Modification of a de- 

veloping constraint network could leave the solu- 

tion in an state inconsistent with the network. 

Since precision must be extended locally for the 

algorithm to be both efficient and precise, we use 

an extensible labeling scheme for type variables. 

These labels are extended in the area an impreci- 
sion occurred by tracing the imprecision from the 

confluence point (the place where two smaller types 

combine to form a larger union type) back to its 

source and then increasing precision along the en- 

tire path from source to confluence. 

The labeling scheme for type variables is de- 
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scribed in Sections 3.1-3.2, and the mechanisms for 

extending precision are described in Sections 3.3- 

3.4. Section 3.5 deals with the issue of recursive 

procedures and data structures. 

3.1 Type Variables: Sets of Run Time 
Variables 

Type variables are used to distinguish different uses 

of a variable in the program text. As a result, they 

correspond directly to the precision of inference. 

Our type inference algorithm creates type variables 

and labels them to discriminate the run time in- 

stances of a program variable. This discrimination 

produces precise type inference. In this section, 

we first discuss run time variables and then show 

how to summarize them with type variables, thus 

ensuring a finite analysis. 

For each textual program variable there may be a 

number of run time variables which are generated 

by the execution of the program. Distinguishing 

these run time variables is critical for precise flow- 

sensitive analysis. For example, in Figure 1 the 

function max is called in two different environments 

(la and lb) with arguments of type integer and 

float respectively. Recording this flow sensitive 

information for max requires two sets of type vari- 

ables: ila,jla and irb,jrb for the textual variables 

i,j. We label (discriminate) run time variables by 

their ezecution environment (e.g. for a stack allo- 

cated variable, the call path which resulted in its 

allocation). In this case, the type variables can be 

distinguished by one level of their execution envi- 

ronments (call points la and lb). 

The call path is sufficient to discriminate func- 

tional polymorphism but not data polymorphism. 

In object-oriented languages, the state of the object 

on which a method is invoked is also part of the ex- 

ecution environment; the value of an instance vari- 

able can determine the return type of the method, 

as illustrated in Figure 2. In this case, the return 

type of geta depends on the type of a in the target 

object. To discriminate these cases we also label 

type variables with the creation point of the object 

which contains them: aza and azb. 

The resulting labeling scheme can be summa- 

rized as follows: 

TypeVariable = ProgramVaTiableE,,i,.,,,nt 

Environment = CallPoint X CreationPoint 1 

Environment0 

Cal/Point = CallStatement x Environment 

CreationPoint = CreationStatement x Environment 

A type variable is a program variable labeled 

with an environment. The environment is de- 

termined by the statement and environment in 

which the method was called, and the statement 

and environment where the target object was cre- 

ated. The recursion in the definition ends with 

the initial environment where the program began 

(Environmento). 

3.2 Entry and Creation Sets 

Since programs may contain a potentially infinite 

number of run time variables, any finite analysis 

must approximate these with a finite set of type 

variables. The choice of how to summarize is crit- 

ical to the precision and efficiency of the type in- 

ference since the nodes of the constraint network 

are type variables, and the value of a node is the 

union of the concrete types of the set of run time 

variables it represents. We group execution envi- 

ronments and creation points into entry sets at the 

entry of methods and creation sets for each object 

allocation point. Type variables are now labeled 

with these sets inducing partitions on the run time 

variables. 

Entry sets summarize collections of calling envi- 

ronments. Each entry set is a collection of interpro- 

cedural call graph edges incident on the method or 

function. Distinct type variables are maintained for 

each entry set (as in Figure 6), providing flow sensi- 

tive analysis. Because each entry set may summa- 

rize the information from a number of interproce- 

dural edges, type information for each edge within 

the entry set is intermingled. This summarization 

enables the algorithm to be efficient since the sum- 

marized variables are only analyzed once for all the 

edges in the set. 
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Constraints and Data flow 
I 

Call - 

1.. Return - - -- 7 

I max 1 

! {integer} 

i {integer} 

2 max5 7 

I 

Cl / {integer} i 
\1 

ji,.,mmT;;iz.i; j 

i 1 : {integer} r 1 : {integer} 

j 1 : {integer} 

{integer} 

{integer} 

max 1.0 2.0 

{float} k 

{float} 

A creation set summarizes the collection of run 

time objects created at a set of creation points. 

Each creation set collects outgoing data flow edges 

at creation points. Recall that creation points are 

the program statement and execution environment 

where an object was created. Thus, creation sets 

summarize all the objects created at a number of 

run time allocation points for the purposes of anal- 

ysis. Generally, objects which have similar usage 

are collected together. 

To simplify the exposition, in this paper we asso- 

ciate a single entry set and creation set with each 

environment. The algorithm ensures this by con- 

struction. Thus, the labeling scheme is refined as 

follows: 

EntrySet = P(CalIStatement x Environment) 

CreationSet = P(CreationStatement X Environment) 

Environment = EntrySet x CreationSet ( Environment0 

We use P, the power set, to indicate that entry 

the estimated type of that variable, and the places 

where the objects it contains may have been cre- 

ated (creation sets in our algorithm). These values 

flow forward in the data flow graph. Our algorithm 

also maintains the set of selectors or function point- 

ers which each variable may contain since, like the 

type of a variable, these may influence control flow. 

Imprecision any of these three values can result in 

an imprecision in type, and require extension of 

the analysis. There is an additional type of data 

flow value which refers to paths through the net- 

work itself, but we will defer discussion of it to 

Section 3.4.2. Some of the algorithm portions de- 
scribed in the following section can operate on more 

than one of these data flow values and are therefore 

parameterized by the function Value. 

3.4 Splitting 

and creation sets summarize any number of call 

graph edges or creation points. Since an entry set 

is associated with a single method and appears in 

only one environment, it uniquely determines both 

its creation set and the environment. Taking ad- 

vantage of this, we will use entry sets and environ- 

ments interchangeably in the rest of the paper. 

3.3 Data Flow Values 

Splitting divides entry and creation sets, allocating 

additional inference effort and increasing the pre- 

cision of analysis. Each split introduces more type 

variables, potentially eliminating imprecisions from 

the inferred types. Choosing the best set to split is 

important because splitting at the wrong place or 

choosing partitions that are too smalI wastes effort. 

On the other hand, choosing partitions that are not 

small enough can incur additional iterations of the 

type inference algorithm. 

The basic constraint-based approach maintains two Splitting an entry set (function splitting) divides 

different data flow values: concrete types and cre- its edges over a number of smaller entry sets. Split- 

ation points. That is, for each variable, it records ting a creation set (container splitting) likewise di- 

I- max (entry set 2) 

i z : {float} r 2 : {float} 

j z : {float} 

Figure 6: Entry Sets Example for Figure 1 
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max12 msx 1 .O 2.0 max12 max 1.0 2.0 

{integer} 11 
{float} It 

{integer} {float} 

Function Splitting 
I {integer} 

I--l-* VVI v v I Coat} 

max (entry set 1) max (entry set 2) 

i : {integer,float) return : {integer,float} i 1: {integer} return 1: {integer} i 2 : {float} return z : {float) 

j : {integer.float} i 1: {integer} j 2 : {float} 

Figure 7: Function Splitting for integers and floats. 

vides the creation points of the original creation set 

over a number of smaller creation sets. While some 

polymorphic functions can be handled by eagerly 

splitting entry sets, eager splitting of creation sets 

is not effective for polymorphic containers. This is 

because the decision to split a creation set must be 

made at the creation point. However, the neces- 

sity of the split cannot be known until the instance 

variables are actually used, generally much later in 

the analysis. A full discussion involves heuristics 

and termination issues which are beyond the scope 

of this paper. Our implementation includes eager 

splitting, and interested readers are referred to [17] 

for more information. We discuss non-eager func- 

tion and container splitting in the following sec- 

tions. 

3.4.1 Function Splitting 

Function splitting partitions an entry set, separat- 

ing the type inference for the execution environ- 

ments in each partition. Our algorithm finds the 

entry sets that must be split to resolve a particular 

imprecision, then splits them. Identifying the ap- 

propriate entry sets involves tracing back through 

the constraint network from the imprecision to its 

primary source. Typically, this is a confluence of 

type information (a meet a A b where a, b + 0 and 

a # b). Splitting entry sets between the confluence 

and the imprecision is sufficient to eliminate the 

imprecision. 

In the following paragraphs, we describe the 

identification of type confluences and entry sets 

which must be split in detail. First, we define the 

functions FlowVars(tw) and BackVars(tv) on the 

constraint network: 

FlowVars(tv) Given a type variable tv return 

those type variables tw’ which have direct con- 

straints Type(tv) c Type(M). 

BackVars(tv) Similar to FlowVaTs but with 

Type(tv) 2 Type(U). 

These functions are used to follow constraints 

back to the sources of the imprecision. 

1 

{tv} if 3b E BackVars(tv)~ 

ConfVar(tv, Value) = Value(tv) # Value(b) 

0 otherwise 

ConfVars(tv, Value) = ConfVar(tv) U 

{b 1 b E BackVaTs A ConfVars(b, Value)} 

To find the sources of an imprecision in tw, we 

find the type variables at confluences involving 

some portion of Value(h). ConfVar(tv, Value) 
indicates that the type variable tv is a conflu- 

ence point with respect to Value(h), and thus a 

possible source of the imprecision. The function 

ConfVars(tv, Value(h)) finds all type variables 

which are at confluences contributing to the final 

imprecision. 

Imprecision can also arise from interprocedu- 

ral control flow ambiguity due to imprecision in 

the selector or the type of the target at a mes- 

sage send. With such imprecisions, we trace back 

through the constraint network to find the conflu- 

ences which cause the imprecision. Also, impre- 

cision in the creation set of the target of a mes- 

sage can result in imprecision in instance variables 
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within the method. We extend ConfVars(tw, im) 
to ConfVars’(tw, im) to handles these three cases. 

ConfVars’(tv, Value) = ConfVars(tv, Value) U 

{tu” 1 tu’ E ConfVars(tv, Value) A 

((tv’ is an argument or return variable of send) A 

(tv” E ConfVars’(TargetOfSend(send),Type) V 

tv” E ConfVars’(TargetOfSend(send), CreationSets) V 

tv” E ConfVars’(SelectorOfSend(aend), Selectors)) 

The three occurrences of ConfVu~s’on the bot- 

tom trace back imprecisions in target type, creation 

sets, and the message selectors respectively. This 

identifies all causes of an imprecisions which can be 

resolved with function splitting. 

Figure 7 illustrates function splitting involving 

the max function from Figure 1. At the left, the 

actual arguments for the formal parameters i and 

j coming from max 1 2 and max 1.0 2.0 have dif- 

ferent concrete types, so there is a type confluence. 

The imprecision manifests itself in the imprecise 

return type {integer,float}, when it is clear that 

the return type for the first call is integer and 

for the second call it is float. Splitting the entry 

set introduces two sets of type variables ir, j r and 

iz,j 2, eliminating the confluence and producing a 

precise typing. 

3.4.2 Container Splitting 

Container splitting partitions creation sets, sepa- 

rating the type information for the creation points 

in each partition. Container splitting is necessary 

when there is an imprecision in type at an instance 

variable. Partitioning the creation points allows 

a more precise typing for the objects represented 

by each partition, reducing imprecisions caused by 

data polymorphism. The term container splitting 

is used because we must split the type information 

for the object which “contains” a polymorphic ref- 

erence. 

Figure 8 is an example of container splitting 

based on the program example in Figure 2. On the 

left, the two creation points, (new A 1) and (new 

A 1 .O> are part of the same creation set. As such, 

they constrain the value of the instance variable a 

and consequentially the return type of geta to be 

integer or float. Splitting the creation set dis- 

criminates the two cases, allowing a function split- 

ting on geta to produce a precise typing of geta 

for both cases. 

Container splitting is more complex than func- 

tion splitting because the point of confluence (the 

instance variable) is linked to the creation points 

by data flow, not control flow. As a result, the cre- 

ation set which must be split may be distant from 

the imprecision. Thus splitting the creation set is 

not enough, we must ensure the additional discrim- 

ination introduced by the splitting is maintained to 

the point of the imprecision, 

Container splitting involves four basic opera- 

tions. 

1. Identifying the assignments to the instance 

variable which give rise to the imprecision. 

2. Identifying the paths from the origin(s) of the 

creation set to the methods containing the as- 

signments. 

3. Ensuring a container set split will increase 

discrimination at the imprecision by splitting 

along these paths. 

4. Resolving the imprecision via container set 

splitting. 

Container splitting addresses type imprecision 

for instance variables, so the first step is to iden- 

tify the assignments which produce the impreci- 

sion. These are conflicting assignments to the same 

instance variable of objects from the same creation 

set. After we have the assignments, we find data 

flow paths from the creation points in the creation 

set to the assignments. These paths must propa- 

gate any discrimination we introduce by container 

splitting, or we will fail to refine the imprecision. 

We ensure this discrimination will be preserved 

along the data flow paths by splitting functions and 

containers where necessary. With paths in hand, 

we resolve the assignments into different creation 

sets by splitting the container sets. This overall 

algorithm is what we term container splitting. 
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4 ( {integer,float} 1’ j {integer,float} 1: 
i {integer} 

‘getal pz---l i---z-J 
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return : {integer,float} return : {integer,float} return : {integer} 

Figure 8: Container splitting for imprecision at U. 

Identifying the Assignments First we find the 

type variables which carry the imprecise informa- 

tion to the instance variable with the function 

AssignSets(v, Value). As before, it is parameter- 

ized with the function Value which can be any im- 

precise data flow value. We begin with a type 

variable, U, which corresponds to an instance vari- 

able at the point of an imprecision and end with a 

set of sets of type variables, each of which repre- 

sents a different use of the instance variable. 

AssignSets(v, Value) = AS(BackVars(v), Value) 

AS(us, Value) = if IJS = 0 then 0 

else {ASet(vs, Value)} u 

AS(vs - ASet(vs, Value), Value) 

ASet(us, Value) = 

{u / u E us A Value(v) = Value(First(vs))} 

The variables in BuckVu~s(v) correspond to the 

right hand sides of the assignments to the im- 

precise instance variable. For efficiency, we use 

AS(vs,Vul~e) to form subsets of the type vari- 

able in vs which are identical with respect to 

Value. The function ASet(vs, Value) finds one 

subset of us with the same Value using the func- 

tion First(vs) which selects the first type variable 

in a set 2)s. 

Identifying the Paths For element us of 

AssignSets(v, Value) representing a different use 

of the instance variable v, we compute the path 

from the type variables representing the contain- 
ing objects to their creation points. First, we find 

/I {float} 

acs2: {float} 

return : {float} 

the objects whose instance variables were assigned 

from us a portion of Value(v) . Then we compute 

the path between these objects and their creation 

points. A new creation set would have to take this 

path in order split the instance variable 2, for the 

assignment set as and eliminate the imprecision. 

CPath(as) = Closure(BackVars, ContainingVars(as)) 

ContainingVars(as) = {c 1 c = Target(e) A 

e E Edges(es), es E EntrySet Au E as} 

We compute the path CPath(us) back to the cre- 

ation point for the variables in the set as by taking 

the closure of BuckVa~s over the set of contain- 

ers. The function ContuiningVurs(us) finds the 

type variables which represent the containers of in- 

stance variables assigned from the elements of us. 

It uses EntrySet which returns the entry set 

which determines o,~ and Edges(es) which returns 

the interprocedural call graph edges summarized 

by the entry set es. The Target(e) of edge e is the 

type variable on which the method was invoked. 

The path CPuth(us) is that which would be 

taken by a new creation set whose existence would 

eliminate the portion of the imprecision Value(us) 

(see Figure 9) This path must be distinct from 

the other paths computed for each element of 

AssignSets(v,Vulue) because the union meet of 

the CreationSets data flow value would make 

it impossible to separate out the uses of the new 

3Each type variable is determined by its environment, 
and that environment is determined by an entry set. 
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Figure 9: Example of Container Splitting Equations 

creation set. Since the appearance of a type vari- 

able on more than one of these paths represents 

a secondary imprecision, for each type variable we 

need to know the subset paths in which it is con- 

tained. 

TvCPaths(tv, ps) = {cpath (cpath E ps,tu E cpath) 

AUCPaths(v, Value) = {cpath 1 cpath = CPath(4s) A 

4s E AssignSets(v, Value)} 

We define the function TvCPaths(tv, ps) to rep- 

resent the subset of the paths ps which contains 

tv. For example, given all the paths which carry 

an imprecision of a particular Value at a par- 

ticular variable o, the set going through tw is 

TvCPaths(tv, AlICPaths(v, Value). 

Ensuring Discrimination Using the paths de- 

termined above, the next step is to determine 

where confluences of the potential creation sets 

represented by these paths occur. This is the 

additional type of data flow value which we dis- 

cussed above, imprecisions in which we must de- 

tect and eliminate. We can extend our definition 

of ConfVar to include imprecisions in these po- 

tential creation set paths: 

1 

{tv} if 36 E V’ars(tv, Value) A 

ConfV4r'(tv,V4lue) = Value(tv) # Value(b) 

0 otherwise 

The new ConfVar’ uses the Vars(tw, Value) 

function which is either BackVars(tv) as before 

or FlowVars(tv) when Value refers to the paths 

themselves. Since the paths are separate at the 

imprecision and converge at the instance variable, 

they can be thought of as flowing backward in the 

data flow graph. AssignSet requires a analogous 

change, and the rest of the algorithm is identical. 

The type variables which are ConfVar’s for 

these paths need to be split, either by splitting 

the entry sets of the enclosing functions (for nor- 

mal type variables) or by splitting the creation set 

(for instance variables) before we can split the cre- 

ation set for which cp is a creation point. As with 

function splitting, it is important to consider those 

variables which might indirectly contribute to the 

imprecision by way of another imprecision. 

Resolving the Imprecision The last step is the 

actual splitting of creation sets. When two or more 
paths do not share any type variables, then the cre- 

ation set can be split. A new creation set is created 

for each path or set of paths which do not share 

type variables, Figure 9 provides an example of 

using these equations to determine that a creation 

set can be split. The new creation set will cause 

the instance variable at the point of the impreci- 

sion to split thus removing the imprecision. We will 

use the type variable which describes the result of 

an object creation statement cp to stand in for the 

creation point at those statements. 

P3 = AIICPaths(v, Value) 

=Pa = {cp 1 cp E cpath A cpath E pa A C~eationReault(cp)} 

Splittable(cp, cps, ps) = Vcp’ E cps A 

cp’ # cp A TvCPaihs(cp, ps) fi 2-vCPatha(cp’, ps) 
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We will use ps, the set of all type variables 

on any path between the imprecision and a cre- 

ation point, and cps, the set of all type vari- 

ables resulting from a creation statement as in- 

dicated by CreationResult( The function 

Splittable(cp, cps, ps) then determines if a creation 

set with creation points cps can be split, creating a 

new creation set containing cp (a member of cps). 
This is the case when no type variables occur on 

both the path between cp and the imprecision and 

the path between any other creation point cp’ in 

cps and the imprecision. Since the paths flow back- 

ward in the data flow graph with a union meet, 

TvCPaths(cp,ps) summarizes the TvCPaths for 

all type variables between cp and the imprecision. 

Hence, when the intersection of TvCPaths(cp, ps) 
and all other TwCPaths(cp’,ps) is empty, a new 

creation set containing cp can be split from that 

cant aining cps. 

Once we have both removed all of the interven- 

ing confluence points between the creation points 

and the imprecision point and have split the cre- 

ation set, the instance variable at the imprecision 

point will be split. The new type variables for the 

instance variable will each have portions of the orig- 

inal data flow value, eliminating the confluence and 

consequently the imprecision. 

3.5 Recursion 

Recursion in functions or data requires careful han- 

dling to ensure that our algorithm terminates and 

does so with precise type information. Splitting 

some recursive functions is required to type poly- 

morphic recursive functions precisely. However, 

splitting them in all cases where precision may be 

increased can lead to non-termination. We distin- 

guish three types of recursion: 1) recursive data 

structures (container recursion), 2) function recur- 

sion, and 3) function-creation recursion. The first 

case is the easiest. Creation sets are only split when 

the algorithm can find a distinct path for the new 

creation set, ensuring that an imprecision will be 

eliminated. Recursion is bounded in the path find- 

ing algorithm by determining paths only once for 

each creation point. 

For the other cases, we prevent non-termination 

by identifying edges which are part of recursive 

cycles. After each iteration and before splitting, 

we identify the strongly connected components 

(SCCs) in the graph where nodes are the entry and 

creation sets and arcs are 1) interprocedural calls 

from entry set to entry set, 2) creation set to the 

environment they determine (which uniquely deter- 

mine an entry set) and 3) entry sets to the creation 

sets, one of whose creation points they determine. 

The SCCs in this graph contain the sets of entry 

sets that are recursive or that create an object on 

which they are then invoked. Edges between entry 

sets in the same SCC are not split. In addition, 

splitting edges which point to recursive cycles can 

also lead to infinite execution as it may successively 

“peel” recursive cycles. Thus, these edges are also 

prohibited from splitting beyond a constant level. 

Note that allowing edges entering the cycle to split 

to a constant level is enough to enable typing of re- 

cursive structures with a period less than or equal 

to the constant. These techniques are discussed in 

detail in [17]. 

3.6 Safety, Termination and Complexity 

The basic constraint-based type inference algo- 

rithm is safe because it enforces the program’s data 

flow and invocation type constraints [15]. Since the 

incremental algorithm does not change the values 

of the constraint network, but only refines the anal- 

ysis by partitioning and applying the constraints 

more precisely it is also safe. This remains true so 

long as the connecting constraints represent a con- 

servative approximation of the interprocedural call 

graph, which the algorithm also ensures. A more 

detailed discussion of these issues can be found in 

P71- 
Termination is ensured because there is only fi- 

nite unfolding of a program without recursion and 

recursion is blocked beyond a constant level (see 

Section 3.5). While the complexity of the algorithm 

is bound by the finite number of type variables, this 

number is exponential if the level of polymorphism 
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in a program grows linearly in program size. In 

practice we do not expect and have not found such 

programs. In fact, our measurements show that 

the level of polymorphism in programs increases 

relatively slowly with program size. 

4 Use 

This analysis produces a wealth of information 

about type information, data and control flow. In 

the Concert System this information is used for 

global constant propagation, removing unreachable 

methods (tree shaking), and cloning as well as for 

debugging and the insertion of type checks. We will 

cover cloning and inserting type checks in greater 

detail. 

4.1 Cloning 

Cloning makes new copies of a method for differ- 

ent invocation contexts, such as the concrete types 

of its arguments. This information is then used di- 

rectly to optimize the cloned method as well as any 

dependent calls. The resulting implementation can 

leverage a few dynamic dispatches to execute large 

tracts code with few if any dynamic dispatches. Of 

course, these tracts are now candidates for a variety 

of classical optimizations. 

The organization of the type inference results 

are particularly well-suited for eliminating dynamic 

dispatches, as they contain entry sets which indi- 

cate productive clones of methods. By using these 

entry sets to direct code replication, we can con- 

trol replication, and direct it to where it will do 

the most good. The Concert compiler produces 

method clones using entry sets as discussed in [17]. 

4.2 Type Checking 

For statically typed languages, type checking can 

be done before type inference, so we know that all 

messages and functions will resolve legally during 

type inference. For dynamically typed languages, 

we have no such guarantee. However, the results 

of concrete type inference can ensure the absence 

of run time type errors allowing the compiler to 

remove type checks or to alert the programmer to 

possible program errors. 

After each type inference iteration has completed 

we determine where the typing is not adequately 

precise to ensure that no run time type errors will 

occur. These points of imprecision occur where any 

type variable, a target of a message send, includes 

types which fail to support any or all of the selec- 

tors which may be sent to it. By applying func- 

tion and container splitting to these imprecisions, 

we type check the program. For programs which 

do not type check, we can use the same informa- 

tion to insert run time type checks. The Concert 

compiler reports the insertion of type checks to the 

user as warnings which often indicate programming 

errors.4 

5 Implementation and Empiri- 
cal Results 

We have implemented the incremental type infer- 

ence algorithm and tested it on more than 35,000 

lines of Concurrent Aggregates (CA) programs. 

The implementation is fully integrated into the 

compiler and complete; no language features were 

excluded. In this section, we present excerpts from 

our empirical studies; a concise table appears in 

the appendix, with a complete report in [17]. 

Our test suite spans a range of program sizes be- 

tween 40 and 2000 lines. The ion program simu- 

lates the flow of ions across a biological membrane. 

network simulates a queueing network. circuit is 

an analog circuit simulator. pit is a particle-in-cell 

code. The man program computes the Mandel- 

brot set using a dynamic algorithm. tsp solves the 
traveling salesman problem. The mmult program 

multiplies integer and floating point matrices us- 

ing a polymorphic library. poly evaluates integer 

and floating point polynomials. test is a synthetic 

code designed to test the algorithm’s effectiveness. 

All programs were compiled with the standard CA 

prologue (240 lines of code). 

*This enables safe debugging of programs written in a 

development mode since type inference with type checks 
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Algorithm Progs Progs Type Average 
Typed Failed Checks Seconds 

PRECISE 9 0 0 199 
1 PALSBERG 1 3 1 

0 1 

6 1 
91 

99 I 
718 1 

150 1 
STATIC 34 ] 

Figure 10: Precision of Type Inference Algorithms 

We implemented three different algorithms: 

STATIC with one type variable per program vari- 

able, PALSBERG with one level of constant function 

and container splitting, and PRECISE which is our 

algorithm. Figure 10 shows that STATIC was fast, 

but unable to type even simple programs. PALS- 

BERG fared little better, typing only three of nine 

programs. In contrast, PRECISE was able to type all 

the programs. Furthermore, the type information 

produced by PRECISE eliminated the need for any 

run time type checks while PALSBERG and STATIC 

required many in the final code. All run times given 

are for our CMU Common Lisp/PCL implementa- 

tion on a SparclO/Sl. 

Figure 11 shows that our algorithm not only pro- 

duces better type information, it generally does so 

faster. In two of the three cases, where both PRE- 

CISE and PALSBERG were able to type the program, 

the PRECISE algorithm was much faster. The rea- 

son for this is that PRECISE focuses its effort on 

regions of the program where it is productive. Of 

course, when PRECISE returned greater type infor- 

mation, it often required much longer run times. 

Not only does PRECISE produce precise typings, 

the entry set and container set mechanisms produce 

a concise typing.5 That is, the incremental type in- 

ference algorithm does not unnecessarily split type 

variables. This is especially important when the 

result of type inference is used with cloning to 

eliminate dynamic dispatches. The “conciseness” 

of a precise typing reduces the number of clones 

required to produce output code without dynamic 

dispatches. In Figure 12 we see that if we pro- 

catches all run time type errors. 
‘One measure of this is the number of type variables re- 

quired (see appendix). 

Program 

ion 1934 
circuit 1247 
pit 759 

tsp 500 
mmult 139 
test 39 

network 1799 
mandel 642 

POlY 41 

Lines PALSBERG 

Typed? 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
YES 
YES 

-1 

Figure 11: Efficiency of Type Inference Algorithms 

Time 
Sec. 

714 
290 
363 

56 
78 
15 

234 

25 
18 

PRECISE/ 

PALSBERG 

1.2 
2.1 
2.5 
1.4 
3.5 
5.1 

.65 

.42 
2.2 

duced new clones for the type variables required 

by the algorithm, PRECISE would produce a pro- 

gram with between 1.5 and 2.5 as many methods 

while eliminating almost all dynamic dispatches. 

This is much better than the PALSBERG typing (not 

precise), even ignoring the fact that run time type 

checks are still required. Using the PALSBERG typ- 

ing would produce a 2.5 - 4 times code expansion 

but eliminate many fewer dynamic dispatches. The 

number of dynamic dispatches eliminated and the 

actual effect on code size using a more efficient al- 

gorithm is covered in detail in [17]. 

Figure 12: Clones per Method by Algorithm 

6 Discussion and Related Work 

While in general, the static typing of all programs 

which will not produce run time type errors is unde- 
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cidable, the PRECISE algorithm was able to type all 

of our application programs. The empirical studies 

indicate that our incremental type inference algo- 

rithm significantly extends the range of program 

behaviors that can be typed. However, there are 

some possible program structures which wiIl re- 

quire run time type checks, even with our improved 

algorithm. These include: 1) programs which store 

a variety of types in a single array, 2) programs 

which build variant records and compute the tags, 

and 3) programs which reuse storage to store dif- 

ferent types (such as a program and its garbage 

collector). 

The use of non-standard abstract semantic in- 

terpretation for type recovery in Scheme by Olin 

Shivers [19] provides a good basis for this and other 

work on practical type inference. In particular, the 

ideas of a call context cache to approximate inter- 

procedural data flow and the reflow semantics to 

enable incremental improvements in the solution 

foreshadow this work. 

Iterative type analysis and message splitting us- 

ing run time testing are conceptually similar tech- 

niques developed in the SELF compiler [6, 7, 81. It- 

erative type analysis uses structures similar to en- 

try sets, but never attempted to accurately type 

an entire program. Instead it recovers information 

from small regions. Run time tests are used to se- 

lect optimized code sequences when a particular al- 

ternative is considered likely. We expect that these 

techniques and virtually all other optimization of 

object-oriented languages will benefit greatly from 

the precise type information generated by our im- 

proved inference techniques. 

Type inference in object-oriented languages in 

particular has been studied for many years [20, 121. 

Constraint-based type inference is described by 

Palsberg and Schwartzbach in [16, 151. Their ap- 

proach was limited to a single level of discrimina- 

tion and motivated our efforts to develop an ex- 

tendible inference approach. Recently Agesen has 

extended the basic one level approach to handle the 

features of SELF [22] (see [l]). However, the prob- 

lems with precision and cost inherent in a single 

pass approach are tackled by exploiting specialized 

knowledge about the SELF language [2]. 

The soft typing system of Cartwright and Fagan 

[5] extends a Hindley-Mimer style type inference to 

support union and recursive types as well as insert 

type checks. To this Aiken, Wimmers, and Lak- 

shman [3] add conditional and intersection types 

enabling the incorporation of flow sensitive infor- 

mation, However, these systems are for languages 

which are purely functional where the question of 

types involving assignment does not arise and ex- 

tensions to imperative languages are not fully de- 

veloped. Lastly, our algorithm shares some features 

of the closure analysis and binding time analysis 

phases used in self-applicative partial evaluators 

[18], again for purely functional languages. 

7 Summary and Future Work 

We have developed and implemented an algo- 

rithm for precise concrete type inference in object- 

oriented languages. This algorithm uses entry sets 

and creation sets to incrementally extend preci- 

sion and direct type inference effort to where it 

is fruitful. These techniques make efficient infer- 

ence of concrete types in programs with many levels 

of polymorphism in functions and data structures 

practical. 

We have implemented these techniques in the 

Illinois Concert compiler and have used them to 

infer concrete types on a number of programs. 

These programs contain first class selectors, con- 

tinuations, and messages and are written in the 

dynamically typed concurrent object-oriented lan- 

guage Concurrent Aggregates. Our empirical re- 

sults indicate that the incremental type inference 

algorithm is viable, practical, and productive. Not 

only is the resulting concrete type information pre- 

cise, the run time of the algorithm is reasonable for 

use in an optimizing compiler. 

Our compiler currently uses the type information 

with cloning to eliminate dynamic dispatch, inline 

functions and methods, unbox variables, as well as 

for interprocedural constant propagation and lo- 

cality approximation. In the future we will also 

explore more efficient implementations of the type 
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inference algorithms, including templates [15] and 

sparse evaluation graphs [ll] which may reduce the 

memory and compute time requirements. We are 

expanding the framework for more interprocedural 

analyses, and increasing the type domain for sum- 

marization [3] and to include integer ranges. 
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NO 111 405 28.93 
NO 119 390 37.68 
NO 59 524 16.52 
NO 27 225 15.79 
NO 4 89 7.60 
NO 4 55 3.84 
NO 2 19 2.92 

A Experimental Results 

Table 1 contains raw data from our tests. The 

Passes column indicates how many passes were re- 

quired for each algorithm to terminate. Type Vurs 

is the number of type variables created by each al- 

gorithm. Edges is the number of interprocedural 

call graph edges and Entry Sets is the number of 

(virtual) method clones created by each algorithm. 

For STATIC this is the number of methods used by 

the programs. Checks is the number of type checks 

required by each algorithm to ensure that no un- 

detected run time type errors occur. A program is 

Typed? when it requires no run time type checks. 

Im is the number of imprecise type variables re- 

maining after the algorithms terminate. Time is 

reported in seconds. 
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