
Precise Concrete Type Inference for Object-Oriented Languages

John Plevyak Andrew A. Chien

Department of Computer Science
1304 W. Springfield Avenue

Urbana, IL 61801
{jplevyak, a&en} @cs.uiuc. edu

Abstract

Concrete type information is invaluable for pro-
gram optimization. The determination of concrete
types in object-oriented languages is a flow sensi-
tive global data flow problem. It is made difficult
by dynamic dispatch (virtual function invocation)
and first class functions (and selectors) - the very
program structures for whose optimization its re-
sults are most critical. Previous work has shown
that constraint-based type inference systems can
be used to safely approximate concrete types [15],
but their use can be expensive and their results
imprecise.

We present an incremental constraint-based type
inference which produces precise concrete type in-
formation for a much larger class of programs at
lower cost. Our algorithm extends the analysis
in response to discovered imprecisions, guiding the
analysis’ effort to where it is most productive. This
produces precise information at a cost proportional
to the type complexity of the program. Many pro-
grams untypable by previous approaches or prac-
tically untypable due to computational expense,
can be precisely analyzed by our new algorithm.
Performance results, precision, and running time,
are reported for a number of concurrent object-
oriented programs. These results confirm the algo-
rithm’s precision and efficiency.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or soecific permission.
OOPSLA 94- iO/94 Portland, Oregon USA
0 1994 ACM O-89791 -688-3/94/0010..$3.50

1 Introduction

Type information is of central importance for en-

abling efficient implementations of high-level lan-

guages. It can be derived from explicit program-

mer declarations or via type inference, analysis of

program structure. It can be used to assist pro-

grammers to detect errors, reason about program

operation, and in some cases, to optimize the im-

plementation. However, traditional type inference

systems infer principal or most general types, en-

suring that the program is a legal composition of

data types and their operations. While a great deal

of progress has been made with respect to the in-

ference of this type information [13, 14, 41, more

precise information is required for optimization of

object-oriented languages. For example, the’most

general type of a max function would take any two

comparable objects and produce a comparable ob-

ject result. Thus, a principal typing would ensure

that the argument types matched each other and

the return type. However, this level of information

is inadequate for optimization since optimizing the

maz operation for integers (32 bits), complex num-

bers (64 bits), bignums (many bits), though they

are all numbers, requires different transformations.

Concrete types distinguish implementations of

data types and discriminate the actual classes or

physical data layouts which occur in a program.

Thus concrete type inference can provide the lower

level and more specific information which is essen-

tial for program optimization. For example, in the

case of max, concrete type information would dis-

324

tinguish calls on the basis of the implementation

types of the arguments, allowing each to be op-

timized appropriately. Concrete type information

enables optimizations which traditional type infor-

mation cannot.

While object-oriented languages can ease the

task of programming, they make optimization more

difficult. Increased use of polymorphism both in

modern languages and programming practice de-

crease the likelihood that type declarations com-

bined with principal types will provide useful con-

crete type information. This is primarily be-

cause polymorphism leverages programming effort

by sharing code over a number of uses, confounding

concrete type information.

Concrete type inference in object-oriented lan-

guages is both especially critical for efficiency and

especially difficult to obtain. Object-oriented lan-

guages use type-dependent dispatch pervasively, so

concrete type information is essential to deriving

accurate control flow - a prerequisite to virtually all

program analysis and optimization. However, the

presence of type-dependent dispatch means that

the control flow, type inference, and data flow prob-

lems are coupled. Previous work [15] formulated

the concrete type inference problem as a mono-

tonic solution of a constraint network, solving all

three problems simultaneously. However, it has

drawbacks: 1) it does not type many common pro-

gram structures, and 2) its logical extension to such

structures has space and time complexity exponen-

tial in program type structure.

Our concrete type inference algorithm extends

precision incrementally where needed, consequen-

tially producing more precise type information

while requiring less computation. Our algorithm

exploits a shallow analysis of the type information

to guide the extension of effort into program re-

gions where imprecise results were obtained. The

extension discriminates the control and data flow

paths that caused imprecisions and reanalyzes the

program. The process iterates until precise type

information is obtained. The key to making the

analysis efficient is the use of entry sets and con-

tainer sets which collect similar flow histories to-

gether, reducing the cost of flow-sensitive analy-

sis. Our analysis produces an interprocedural call

graph in which functions and methods have been

cloned (virtually) to eliminate polymorphism. This

graph can be used to generate an implementation

in which dynamically dispatched calls are statically

bound or to do further analysis with more precise

control flow information.

Extensible precision and efficient flow sensitive

analysis allow our algorithm to precisely type

deeply polymorphic structures. Examples of these

include nested procedures and data structures, and

recursive versions of each. Such polymorphic struc-

tures cannot be practically typed by schemes such

as [15].

The major contributions of this paper are:

1. A concrete type inference algorithm which

can type many previously untypable object-

oriented programs.

2. An efficient algorithm which uses resources

proportional to program type complexity to

obtain precise information.

3. An empirical evaluation of the incremental

type inference algorithm using a col.lection

of concurrent object-oriented programs which

substantiates the increased precision and prac-

ticality of the algorithm.

The basis of our algorithm is a labeling scheme

which allows type variables to be distinguishing

based on the dynamic program structure. This

scheme is flexible, allowing appropriate levels of

precision and summary in different parts of the

program. Splitting for precision and summariza-

tion for efficiency are the critical issues addressed

by labels. This extensible precision allows our al-

gorithm to precisely type programs with arbitrarily

deep polymorphic structures. The empirical evalu-

ation substantiates the existence of deep polymor-

phic structures, and the effectiveness and practi-

cality of the algorithm.

The remainder of the paper is organized as fol-

lows. Section 2 covers background material, nota-

325

tion and constraint-based type inference. In Sec-

tion 3, we introduce our type inference algorithm.

Subsequently, in Section 4, we illustrate some uses

of the resulting information. Section 5 discusses

our implementation of the incremental inference

techniques and reports results for a number of pro-

grams, some as large as 2,000 lines. Discussion of

our results and a summary of related work can be

found in Section 6, and the paper is summarized

in Section 7.

2 Background

2.1 Project Context

The type inference algorithm was developed as part

of the Illinois Concert System. However, the al-

gorithm is general and can be directly applied to

a wide range of languages. The goal of the Con-

cert System is to develop portable efficient imple-

mentations of concurrent object-oriented languages

on parallel machines. This work includes a vari-

ety of research in program analysis, optimization

and runtime techniques. 1 At present, the Concert

system compiles the Concurrent Aggregates (CA)

language [9, lo], a dynamically typed concurrent

object-oriented language with single inheritance as

well as first class selectors, continuations, and mes-

sages for execution on the Thinking Machines CM5

[21]. All program examples are written in Concur-

rent Aggregates.

2.2 Polymorphism

We differentiate data polymorphism and func-

tional polymorphism. Data polymorphism includes

polymorphic variables and polymorphic contain-

ers: objects in which an instance variable may

contain other objects of more than one concrete

type. Functional polymorphism refers to functions

which can operate on arguments with a variety of

types. Examples of both appear in Figures 1 and

‘The Illinois Concert System including this type infer-

ence system is available from http://www-csag.cs.uiuc.edu.
Interested parties can contact achienQcs.uiuc.edu for more
information.

(function rootclass max (i j>
(if (> i j) (reply i)

(reply j>>>

(sequential
(max I 2) ;; la
(max 1.0 2.0)) ;; lb

Figure 1: Polymorphic Function

2. We define level of polymorphism as the depth

of the polymorphic reference path or polymorphic

function call path for data and functional poly-

morphism, respectively. An effective type inference

system should produce accurate results in the pres-

ence of the many levels of polymorphism found in

real application programs.

(class A a (parameters i)
(initial (set-a self i)>)

(method A geta (> (reply a))

(sequential
(geta (new A 1)) ;; 2a
(geta (new A 1.0))) ;; 2b

Figure 2: Polymorphic Container

2.3 Constraint-Based Type Inference

Constraint-based type inference techniques con-

struct a constraint network whose solution is the

desired type information. Generally, the network

nodes are type variables and the directed edges

are constraints. Constraints are induced by data

flow, the creation of objects, and the use of vari-

ables. Type variables take on values which are sets

of concrete types, and the solution for each variable

is bounded by constraints from below and above.

For example, when an object of type C is created,

the type of the variable to which it is assigned must

be of at least of type {C}, so a constraint is formed

for that type variable. Using [VI to denote the type

of variable TJ the basic constraints for creation and

assignment are:

326

These basic constraints reflect local data flow. In

addition, there are connecting constraints along the

edges of the interprocedural call graph which reflect

global data flow. Each method invocation gener-

ates constraints between the actual arguments (ai)

and formal parameters (p;) of the method. The re-

turn value is also constrained in an analogous fash-

ion. An example constraint graph and its solution

are shown in Figure 3. In equational form, the con-

necting constraints for an invocation are:

x selector a0 al...a, - t/c E 1x1.

method c :: selector po pl...pn.Vi 5 n.l[pi]l _> [[ui]

Solving the system of constraints is achieved

by maintaining a work pile of invocations (inter-

procedural edges) which are processed by finding

the target method or function and applying lo-

cal (intraprocedural) and connecting (interproce-

dural) constraints. These constraints are solved by

propagating the changes through all connected con-

straints. A nice exposition of the basic constraint

technique is given in [161.

Values must be propagated through the con-

straints eagerly because of the coupling between

types and control flow. The concrete type of the

target of a message send determines the possi-

ble flow of control at that send through type-

dependent dispatch. The algorithm uses the cur-

rent solution to approximate the possible interpro-

cedural control flow, putting invocation paths on

the work pile as they are discovered. This works

as long as the value of each type variable increases

monotonically. Figure 3 illustrates the instantia-

tion of an interprocedural constraint. When the

constraint for statement lb (Figure 1) to the func-

tion max is created, the variable i can be a float

as well as an integer, inducing the creation of an

edge from the statement (> i j> to the > method

for floats.

2.4 Imprecision and Type Variables

When the analysis has determined that a variable

may only be of one concrete type, it knows it has

precise information. 2 We say that an imprecision

occurs when the constraint network admits a solu-

tion with a number of concrete types. At run time,

variables in the program text refer to objects of dif-

ferent concrete types in different situations. Impre-

cisions result from the summarization of these run

time variables in the dynamic program execution

by the static constraint network structure. Thus,

the key to resolving imprecisions is to discriminate

(avoid summarizing) such variables. The inference

algorithm creates a type variable for each set of run

time variables it wishes to distinguish. Thus sepa-

rate type variables, each subject to a different set

of constraints, can discriminate different uses of a

single variable in the program text.

(function rootclass leq (i j)
(reply (or (eq i j> (< i j)>))

(function rootclass max (i j)

(if (leq i j> (reply j> ;; 3a

(reply i> 1)

(concurrent
(if (or (max 1.1 1.2) ;; 3b

(max 1 1)) ;; 3c

Figure 4: Multi-level Polymorphic Function

The critical issue for both precision and efficiency

is when to use additional type variables for greater

resolution. In order to handle polymorphic func-

tions, others have proposed creating separate type

variables for each call site at which the function

containing the variable was invoked. Similarly, sep-

arate type variables would be created for the con-

tents of polymorphic containers based on the point

at which the object was created, its creation point.
Unfortunately, this single level of discrimination is

insufficient to infer precise types within common

program structures such as polymorphic libraries

with multi-level call trees, functions which create

and initialize container objects, and polymorphic

containers of polymorphic containers (see Figures 4

2Those variables which are truly polymorphic will be im-
precise under all analyses.

327

Constraints

I X-Y

xc y

max12
1 :{integer) l:{integer}

d

P:{integer}
maxl2

max i j
i:{integer}

t

j:{integer}
ygyg;

< i
/I

Type Dependent Dispatch

/ I

< i j

Type Dependent Dispatch

1 .O:{float}

O.O:{float}

° er, f loat) ‘&I f:{integer,float)
I I I I

Figure 3: Constraint Graph Example for Figure 1

and 5 for illustrations of these cases).

(class A a (parameters i>
(initial (set-a self i)))

(class B b (parameters i)
(initial (set-b self i)>)

(function rootclass createB (i)
(reply (new B (* i i))))

(let ((vl (new A (createB 1)))
(v2 (new A (createB 1.0))))

. * *

Figure 5: Multi-level Polymorphic Container

Extension in the obvious manner, increasing the

level of discrimination to some fixed level Ic, incurs

a cost exponential in Ic, and despite that does not

ensure a precise typing. Our incremental type in-

ference algorithm not only types such multi-level

polymorphic program structures, it does so effi-

ciently, allocating effort only where necessary. This

algorithm is described in detail in the next sec-

tion. A detailed empirical comparison with other

approaches is given in Section 5.

3 Incremental Type Inference

Precise and efficient type inference can be achieved

by incrementally extending precision, focusing on

detected imprecisions. This allows the typing of

programs with arbitrarily complex type structure

at a cost proportional to the complexity of that

structure. Thus, program sections with simple type

structures are typed quickly, and the algorithm

concentrates effort in program sections with com-
plex type structure; the result is an efficient type

inference algorithm.

The incremental algorithm proceeds as follows.

First, a fast analysis is done using the basic

constraint-based algorithm (since it allocates a sin-

gle type variable for each variable appearing stat-

ically in the program text, we call this the static

algorithm). Second, the constraint network is ana-

lyzed for imprecisions, and extended locally in the

area of the imprecision. This extension invalidates

a portion of the solution which is then recomputed.

The process of extension and recomputation is re-
peated until the algorithm determines that no more

benefit may be gained. Extension and inference

cannot go on simultaneously because the solution

must increase monotonically. Modification of a de-

veloping constraint network could leave the solu-

tion in an state inconsistent with the network.

Since precision must be extended locally for the

algorithm to be both efficient and precise, we use

an extensible labeling scheme for type variables.

These labels are extended in the area an impreci-
sion occurred by tracing the imprecision from the

confluence point (the place where two smaller types

combine to form a larger union type) back to its

source and then increasing precision along the en-

tire path from source to confluence.

The labeling scheme for type variables is de-

328

scribed in Sections 3.1-3.2, and the mechanisms for

extending precision are described in Sections 3.3-

3.4. Section 3.5 deals with the issue of recursive

procedures and data structures.

3.1 Type Variables: Sets of Run Time
Variables

Type variables are used to distinguish different uses

of a variable in the program text. As a result, they

correspond directly to the precision of inference.

Our type inference algorithm creates type variables

and labels them to discriminate the run time in-

stances of a program variable. This discrimination

produces precise type inference. In this section,

we first discuss run time variables and then show

how to summarize them with type variables, thus

ensuring a finite analysis.

For each textual program variable there may be a

number of run time variables which are generated

by the execution of the program. Distinguishing

these run time variables is critical for precise flow-

sensitive analysis. For example, in Figure 1 the

function max is called in two different environments

(la and lb) with arguments of type integer and

float respectively. Recording this flow sensitive

information for max requires two sets of type vari-

ables: ila,jla and irb,jrb for the textual variables

i,j. We label (discriminate) run time variables by

their ezecution environment (e.g. for a stack allo-

cated variable, the call path which resulted in its

allocation). In this case, the type variables can be

distinguished by one level of their execution envi-

ronments (call points la and lb).

The call path is sufficient to discriminate func-

tional polymorphism but not data polymorphism.

In object-oriented languages, the state of the object

on which a method is invoked is also part of the ex-

ecution environment; the value of an instance vari-

able can determine the return type of the method,

as illustrated in Figure 2. In this case, the return

type of geta depends on the type of a in the target

object. To discriminate these cases we also label

type variables with the creation point of the object

which contains them: aza and azb.

The resulting labeling scheme can be summa-

rized as follows:

TypeVariable = ProgramVaTiableE,,i,.,,,nt

Environment = CallPoint X CreationPoint 1

Environment0

Cal/Point = CallStatement x Environment

CreationPoint = CreationStatement x Environment

A type variable is a program variable labeled

with an environment. The environment is de-

termined by the statement and environment in

which the method was called, and the statement

and environment where the target object was cre-

ated. The recursion in the definition ends with

the initial environment where the program began

(Environmento).

3.2 Entry and Creation Sets

Since programs may contain a potentially infinite

number of run time variables, any finite analysis

must approximate these with a finite set of type

variables. The choice of how to summarize is crit-

ical to the precision and efficiency of the type in-

ference since the nodes of the constraint network

are type variables, and the value of a node is the

union of the concrete types of the set of run time

variables it represents. We group execution envi-

ronments and creation points into entry sets at the

entry of methods and creation sets for each object

allocation point. Type variables are now labeled

with these sets inducing partitions on the run time

variables.

Entry sets summarize collections of calling envi-

ronments. Each entry set is a collection of interpro-

cedural call graph edges incident on the method or

function. Distinct type variables are maintained for

each entry set (as in Figure 6), providing flow sensi-

tive analysis. Because each entry set may summa-

rize the information from a number of interproce-

dural edges, type information for each edge within

the entry set is intermingled. This summarization

enables the algorithm to be efficient since the sum-

marized variables are only analyzed once for all the

edges in the set.

329

Constraints and Data flow
I

Call -

1.. Return - - -- 7

I max 1

! {integer}

i {integer}

2 max5 7

I

Cl / {integer} i
\1

ji,.,mmT;;iz.i; j

i 1 : {integer} r 1 : {integer}

j 1 : {integer}

{integer}

{integer}

max 1.0 2.0

{float} k

{float}

A creation set summarizes the collection of run

time objects created at a set of creation points.

Each creation set collects outgoing data flow edges

at creation points. Recall that creation points are

the program statement and execution environment

where an object was created. Thus, creation sets

summarize all the objects created at a number of

run time allocation points for the purposes of anal-

ysis. Generally, objects which have similar usage

are collected together.

To simplify the exposition, in this paper we asso-

ciate a single entry set and creation set with each

environment. The algorithm ensures this by con-

struction. Thus, the labeling scheme is refined as

follows:

EntrySet = P(CalIStatement x Environment)

CreationSet = P(CreationStatement X Environment)

Environment = EntrySet x CreationSet (Environment0

We use P, the power set, to indicate that entry

the estimated type of that variable, and the places

where the objects it contains may have been cre-

ated (creation sets in our algorithm). These values

flow forward in the data flow graph. Our algorithm

also maintains the set of selectors or function point-

ers which each variable may contain since, like the

type of a variable, these may influence control flow.

Imprecision any of these three values can result in

an imprecision in type, and require extension of

the analysis. There is an additional type of data

flow value which refers to paths through the net-

work itself, but we will defer discussion of it to

Section 3.4.2. Some of the algorithm portions de-
scribed in the following section can operate on more

than one of these data flow values and are therefore

parameterized by the function Value.

3.4 Splitting

and creation sets summarize any number of call

graph edges or creation points. Since an entry set

is associated with a single method and appears in

only one environment, it uniquely determines both

its creation set and the environment. Taking ad-

vantage of this, we will use entry sets and environ-

ments interchangeably in the rest of the paper.

3.3 Data Flow Values

Splitting divides entry and creation sets, allocating

additional inference effort and increasing the pre-

cision of analysis. Each split introduces more type

variables, potentially eliminating imprecisions from

the inferred types. Choosing the best set to split is

important because splitting at the wrong place or

choosing partitions that are too smalI wastes effort.

On the other hand, choosing partitions that are not

small enough can incur additional iterations of the

type inference algorithm.

The basic constraint-based approach maintains two Splitting an entry set (function splitting) divides

different data flow values: concrete types and cre- its edges over a number of smaller entry sets. Split-

ation points. That is, for each variable, it records ting a creation set (container splitting) likewise di-

I- max (entry set 2)

i z : {float} r 2 : {float}

j z : {float}

Figure 6: Entry Sets Example for Figure 1

330

max12 msx 1 .O 2.0 max12 max 1.0 2.0

{integer} 11
{float} It

{integer} {float}

Function Splitting
I {integer}

I--l-* VVI v v I Coat}

max (entry set 1) max (entry set 2)

i : {integer,float) return : {integer,float} i 1: {integer} return 1: {integer} i 2 : {float} return z : {float)

j : {integer.float} i 1: {integer} j 2 : {float}

Figure 7: Function Splitting for integers and floats.

vides the creation points of the original creation set

over a number of smaller creation sets. While some

polymorphic functions can be handled by eagerly

splitting entry sets, eager splitting of creation sets

is not effective for polymorphic containers. This is

because the decision to split a creation set must be

made at the creation point. However, the neces-

sity of the split cannot be known until the instance

variables are actually used, generally much later in

the analysis. A full discussion involves heuristics

and termination issues which are beyond the scope

of this paper. Our implementation includes eager

splitting, and interested readers are referred to [17]

for more information. We discuss non-eager func-

tion and container splitting in the following sec-

tions.

3.4.1 Function Splitting

Function splitting partitions an entry set, separat-

ing the type inference for the execution environ-

ments in each partition. Our algorithm finds the

entry sets that must be split to resolve a particular

imprecision, then splits them. Identifying the ap-

propriate entry sets involves tracing back through

the constraint network from the imprecision to its

primary source. Typically, this is a confluence of

type information (a meet a A b where a, b + 0 and

a # b). Splitting entry sets between the confluence

and the imprecision is sufficient to eliminate the

imprecision.

In the following paragraphs, we describe the

identification of type confluences and entry sets

which must be split in detail. First, we define the

functions FlowVars(tw) and BackVars(tv) on the

constraint network:

FlowVars(tv) Given a type variable tv return

those type variables tw’ which have direct con-

straints Type(tv) c Type(M).

BackVars(tv) Similar to FlowVaTs but with

Type(tv) 2 Type(U).

These functions are used to follow constraints

back to the sources of the imprecision.

1

{tv} if 3b E BackVars(tv)~

ConfVar(tv, Value) = Value(tv) # Value(b)

0 otherwise

ConfVars(tv, Value) = ConfVar(tv) U

{b 1 b E BackVaTs A ConfVars(b, Value)}

To find the sources of an imprecision in tw, we

find the type variables at confluences involving

some portion of Value(h). ConfVar(tv, Value)
indicates that the type variable tv is a conflu-

ence point with respect to Value(h), and thus a

possible source of the imprecision. The function

ConfVars(tv, Value(h)) finds all type variables

which are at confluences contributing to the final

imprecision.

Imprecision can also arise from interprocedu-

ral control flow ambiguity due to imprecision in

the selector or the type of the target at a mes-

sage send. With such imprecisions, we trace back

through the constraint network to find the conflu-

ences which cause the imprecision. Also, impre-

cision in the creation set of the target of a mes-

sage can result in imprecision in instance variables

331

within the method. We extend ConfVars(tw, im)
to ConfVars’(tw, im) to handles these three cases.

ConfVars’(tv, Value) = ConfVars(tv, Value) U

{tu” 1 tu’ E ConfVars(tv, Value) A

((tv’ is an argument or return variable of send) A

(tv” E ConfVars’(TargetOfSend(send),Type) V

tv” E ConfVars’(TargetOfSend(send), CreationSets) V

tv” E ConfVars’(SelectorOfSend(aend), Selectors))

The three occurrences of ConfVu~s’on the bot-

tom trace back imprecisions in target type, creation

sets, and the message selectors respectively. This

identifies all causes of an imprecisions which can be

resolved with function splitting.

Figure 7 illustrates function splitting involving

the max function from Figure 1. At the left, the

actual arguments for the formal parameters i and

j coming from max 1 2 and max 1.0 2.0 have dif-

ferent concrete types, so there is a type confluence.

The imprecision manifests itself in the imprecise

return type {integer,float}, when it is clear that

the return type for the first call is integer and

for the second call it is float. Splitting the entry

set introduces two sets of type variables ir, j r and

iz,j 2, eliminating the confluence and producing a

precise typing.

3.4.2 Container Splitting

Container splitting partitions creation sets, sepa-

rating the type information for the creation points

in each partition. Container splitting is necessary

when there is an imprecision in type at an instance

variable. Partitioning the creation points allows

a more precise typing for the objects represented

by each partition, reducing imprecisions caused by

data polymorphism. The term container splitting

is used because we must split the type information

for the object which “contains” a polymorphic ref-

erence.

Figure 8 is an example of container splitting

based on the program example in Figure 2. On the

left, the two creation points, (new A 1) and (new

A 1 .O> are part of the same creation set. As such,

they constrain the value of the instance variable a

and consequentially the return type of geta to be

integer or float. Splitting the creation set dis-

criminates the two cases, allowing a function split-

ting on geta to produce a precise typing of geta

for both cases.

Container splitting is more complex than func-

tion splitting because the point of confluence (the

instance variable) is linked to the creation points

by data flow, not control flow. As a result, the cre-

ation set which must be split may be distant from

the imprecision. Thus splitting the creation set is

not enough, we must ensure the additional discrim-

ination introduced by the splitting is maintained to

the point of the imprecision,

Container splitting involves four basic opera-

tions.

1. Identifying the assignments to the instance

variable which give rise to the imprecision.

2. Identifying the paths from the origin(s) of the

creation set to the methods containing the as-

signments.

3. Ensuring a container set split will increase

discrimination at the imprecision by splitting

along these paths.

4. Resolving the imprecision via container set

splitting.

Container splitting addresses type imprecision

for instance variables, so the first step is to iden-

tify the assignments which produce the impreci-

sion. These are conflicting assignments to the same

instance variable of objects from the same creation

set. After we have the assignments, we find data

flow paths from the creation points in the creation

set to the assignments. These paths must propa-

gate any discrimination we introduce by container

splitting, or we will fail to refine the imprecision.

We ensure this discrimination will be preserved

along the data flow paths by splitting functions and

containers where necessary. With paths in hand,

we resolve the assignments into different creation

sets by splitting the container sets. This overall

algorithm is what we term container splitting.

332

csl = {2a,2b) csl ={2a} cs2 = {2b)

geta (new A 1 .O) ;; 2b geta(newA1) ;;2a geta (new A 1 .O) ;; 2b

WI 11

geta (new A 1) ;; 2a

[CSllI \

I’ Container Splitting

I/
-111111+)

4 ({integer,float} 1’ j {integer,float} 1:
i {integer}

‘getal pz---l i---z-J

a,,, : {integer,float} a,,, : {integer.float} a,,, : {integer}

return : {integer,float} return : {integer,float} return : {integer}

Figure 8: Container splitting for imprecision at U.

Identifying the Assignments First we find the

type variables which carry the imprecise informa-

tion to the instance variable with the function

AssignSets(v, Value). As before, it is parameter-

ized with the function Value which can be any im-

precise data flow value. We begin with a type

variable, U, which corresponds to an instance vari-

able at the point of an imprecision and end with a

set of sets of type variables, each of which repre-

sents a different use of the instance variable.

AssignSets(v, Value) = AS(BackVars(v), Value)

AS(us, Value) = if IJS = 0 then 0

else {ASet(vs, Value)} u

AS(vs - ASet(vs, Value), Value)

ASet(us, Value) =

{u / u E us A Value(v) = Value(First(vs))}

The variables in BuckVu~s(v) correspond to the

right hand sides of the assignments to the im-

precise instance variable. For efficiency, we use

AS(vs,Vul~e) to form subsets of the type vari-

able in vs which are identical with respect to

Value. The function ASet(vs, Value) finds one

subset of us with the same Value using the func-

tion First(vs) which selects the first type variable

in a set 2)s.

Identifying the Paths For element us of

AssignSets(v, Value) representing a different use

of the instance variable v, we compute the path

from the type variables representing the contain-
ing objects to their creation points. First, we find

/I {float}

acs2: {float}

return : {float}

the objects whose instance variables were assigned

from us a portion of Value(v) . Then we compute

the path between these objects and their creation

points. A new creation set would have to take this

path in order split the instance variable 2, for the

assignment set as and eliminate the imprecision.

CPath(as) = Closure(BackVars, ContainingVars(as))

ContainingVars(as) = {c 1 c = Target(e) A

e E Edges(es), es E EntrySet Au E as}

We compute the path CPath(us) back to the cre-

ation point for the variables in the set as by taking

the closure of BuckVa~s over the set of contain-

ers. The function ContuiningVurs(us) finds the

type variables which represent the containers of in-

stance variables assigned from the elements of us.

It uses EntrySet which returns the entry set

which determines o,~ and Edges(es) which returns

the interprocedural call graph edges summarized

by the entry set es. The Target(e) of edge e is the

type variable on which the method was invoked.

The path CPuth(us) is that which would be

taken by a new creation set whose existence would

eliminate the portion of the imprecision Value(us)

(see Figure 9) This path must be distinct from

the other paths computed for each element of

AssignSets(v,Vulue) because the union meet of

the CreationSets data flow value would make

it impossible to separate out the uses of the new

3Each type variable is determined by its environment,
and that environment is determined by an entry set.

333

I (integer) 1 .o {float)

value r integer)
$

value : (float)

es’ -L. r
acsi{intqef,flcat)

Type data flow

Y :(Gs1} Y ‘I=11
I30 es0 ,

es1 es2 (method A set-a (value)
[;,*,!$“’

es0 (let ((x (new A)) : Ba
(Y M’-+’ A))) ; @b

(set-a x 1) ; SC
(Set-a y 1.0)) ed

Program

es1 rt3cXesOxcsl

es2=edxes0xcs1

csl =[(@axesO), (8bxesO))

Entry and Creation Sets

J
sew : (csl} Self : csl)

es1 4

Creation set da1a now

CPath((Wes,)) = (self , x)
es1 es0

CPathWaluee,)) = 1 selA2 , yeso 1

Splinable(x .{x ,y),Wf I x , self
es0 es0 es0 es1 es0

es2 s ye@ B = TRUE

Container Split Equations

Figure 9: Example of Container Splitting Equations

creation set. Since the appearance of a type vari-

able on more than one of these paths represents

a secondary imprecision, for each type variable we

need to know the subset paths in which it is con-

tained.

TvCPaths(tv, ps) = {cpath (cpath E ps,tu E cpath)

AUCPaths(v, Value) = {cpath 1 cpath = CPath(4s) A

4s E AssignSets(v, Value)}

We define the function TvCPaths(tv, ps) to rep-

resent the subset of the paths ps which contains

tv. For example, given all the paths which carry

an imprecision of a particular Value at a par-

ticular variable o, the set going through tw is

TvCPaths(tv, AlICPaths(v, Value).

Ensuring Discrimination Using the paths de-

termined above, the next step is to determine

where confluences of the potential creation sets

represented by these paths occur. This is the

additional type of data flow value which we dis-

cussed above, imprecisions in which we must de-

tect and eliminate. We can extend our definition

of ConfVar to include imprecisions in these po-

tential creation set paths:

1

{tv} if 36 E V’ars(tv, Value) A

ConfV4r'(tv,V4lue) = Value(tv) # Value(b)

0 otherwise

The new ConfVar’ uses the Vars(tw, Value)

function which is either BackVars(tv) as before

or FlowVars(tv) when Value refers to the paths

themselves. Since the paths are separate at the

imprecision and converge at the instance variable,

they can be thought of as flowing backward in the

data flow graph. AssignSet requires a analogous

change, and the rest of the algorithm is identical.

The type variables which are ConfVar’s for

these paths need to be split, either by splitting

the entry sets of the enclosing functions (for nor-

mal type variables) or by splitting the creation set

(for instance variables) before we can split the cre-

ation set for which cp is a creation point. As with

function splitting, it is important to consider those

variables which might indirectly contribute to the

imprecision by way of another imprecision.

Resolving the Imprecision The last step is the

actual splitting of creation sets. When two or more
paths do not share any type variables, then the cre-

ation set can be split. A new creation set is created

for each path or set of paths which do not share

type variables, Figure 9 provides an example of

using these equations to determine that a creation

set can be split. The new creation set will cause

the instance variable at the point of the impreci-

sion to split thus removing the imprecision. We will

use the type variable which describes the result of

an object creation statement cp to stand in for the

creation point at those statements.

P3 = AIICPaths(v, Value)

=Pa = {cp 1 cp E cpath A cpath E pa A C~eationReault(cp)}

Splittable(cp, cps, ps) = Vcp’ E cps A

cp’ # cp A TvCPaihs(cp, ps) fi 2-vCPatha(cp’, ps)

334

We will use ps, the set of all type variables

on any path between the imprecision and a cre-

ation point, and cps, the set of all type vari-

ables resulting from a creation statement as in-

dicated by CreationResult(The function

Splittable(cp, cps, ps) then determines if a creation

set with creation points cps can be split, creating a

new creation set containing cp (a member of cps).
This is the case when no type variables occur on

both the path between cp and the imprecision and

the path between any other creation point cp’ in

cps and the imprecision. Since the paths flow back-

ward in the data flow graph with a union meet,

TvCPaths(cp,ps) summarizes the TvCPaths for

all type variables between cp and the imprecision.

Hence, when the intersection of TvCPaths(cp, ps)
and all other TwCPaths(cp’,ps) is empty, a new

creation set containing cp can be split from that

cant aining cps.

Once we have both removed all of the interven-

ing confluence points between the creation points

and the imprecision point and have split the cre-

ation set, the instance variable at the imprecision

point will be split. The new type variables for the

instance variable will each have portions of the orig-

inal data flow value, eliminating the confluence and

consequently the imprecision.

3.5 Recursion

Recursion in functions or data requires careful han-

dling to ensure that our algorithm terminates and

does so with precise type information. Splitting

some recursive functions is required to type poly-

morphic recursive functions precisely. However,

splitting them in all cases where precision may be

increased can lead to non-termination. We distin-

guish three types of recursion: 1) recursive data

structures (container recursion), 2) function recur-

sion, and 3) function-creation recursion. The first

case is the easiest. Creation sets are only split when

the algorithm can find a distinct path for the new

creation set, ensuring that an imprecision will be

eliminated. Recursion is bounded in the path find-

ing algorithm by determining paths only once for

each creation point.

For the other cases, we prevent non-termination

by identifying edges which are part of recursive

cycles. After each iteration and before splitting,

we identify the strongly connected components

(SCCs) in the graph where nodes are the entry and

creation sets and arcs are 1) interprocedural calls

from entry set to entry set, 2) creation set to the

environment they determine (which uniquely deter-

mine an entry set) and 3) entry sets to the creation

sets, one of whose creation points they determine.

The SCCs in this graph contain the sets of entry

sets that are recursive or that create an object on

which they are then invoked. Edges between entry

sets in the same SCC are not split. In addition,

splitting edges which point to recursive cycles can

also lead to infinite execution as it may successively

“peel” recursive cycles. Thus, these edges are also

prohibited from splitting beyond a constant level.

Note that allowing edges entering the cycle to split

to a constant level is enough to enable typing of re-

cursive structures with a period less than or equal

to the constant. These techniques are discussed in

detail in [17].

3.6 Safety, Termination and Complexity

The basic constraint-based type inference algo-

rithm is safe because it enforces the program’s data

flow and invocation type constraints [15]. Since the

incremental algorithm does not change the values

of the constraint network, but only refines the anal-

ysis by partitioning and applying the constraints

more precisely it is also safe. This remains true so

long as the connecting constraints represent a con-

servative approximation of the interprocedural call

graph, which the algorithm also ensures. A more

detailed discussion of these issues can be found in

P71-
Termination is ensured because there is only fi-

nite unfolding of a program without recursion and

recursion is blocked beyond a constant level (see

Section 3.5). While the complexity of the algorithm

is bound by the finite number of type variables, this

number is exponential if the level of polymorphism

335

in a program grows linearly in program size. In

practice we do not expect and have not found such

programs. In fact, our measurements show that

the level of polymorphism in programs increases

relatively slowly with program size.

4 Use

This analysis produces a wealth of information

about type information, data and control flow. In

the Concert System this information is used for

global constant propagation, removing unreachable

methods (tree shaking), and cloning as well as for

debugging and the insertion of type checks. We will

cover cloning and inserting type checks in greater

detail.

4.1 Cloning

Cloning makes new copies of a method for differ-

ent invocation contexts, such as the concrete types

of its arguments. This information is then used di-

rectly to optimize the cloned method as well as any

dependent calls. The resulting implementation can

leverage a few dynamic dispatches to execute large

tracts code with few if any dynamic dispatches. Of

course, these tracts are now candidates for a variety

of classical optimizations.

The organization of the type inference results

are particularly well-suited for eliminating dynamic

dispatches, as they contain entry sets which indi-

cate productive clones of methods. By using these

entry sets to direct code replication, we can con-

trol replication, and direct it to where it will do

the most good. The Concert compiler produces

method clones using entry sets as discussed in [17].

4.2 Type Checking

For statically typed languages, type checking can

be done before type inference, so we know that all

messages and functions will resolve legally during

type inference. For dynamically typed languages,

we have no such guarantee. However, the results

of concrete type inference can ensure the absence

of run time type errors allowing the compiler to

remove type checks or to alert the programmer to

possible program errors.

After each type inference iteration has completed

we determine where the typing is not adequately

precise to ensure that no run time type errors will

occur. These points of imprecision occur where any

type variable, a target of a message send, includes

types which fail to support any or all of the selec-

tors which may be sent to it. By applying func-

tion and container splitting to these imprecisions,

we type check the program. For programs which

do not type check, we can use the same informa-

tion to insert run time type checks. The Concert

compiler reports the insertion of type checks to the

user as warnings which often indicate programming

errors.4

5 Implementation and Empiri-
cal Results

We have implemented the incremental type infer-

ence algorithm and tested it on more than 35,000

lines of Concurrent Aggregates (CA) programs.

The implementation is fully integrated into the

compiler and complete; no language features were

excluded. In this section, we present excerpts from

our empirical studies; a concise table appears in

the appendix, with a complete report in [17].

Our test suite spans a range of program sizes be-

tween 40 and 2000 lines. The ion program simu-

lates the flow of ions across a biological membrane.

network simulates a queueing network. circuit is

an analog circuit simulator. pit is a particle-in-cell

code. The man program computes the Mandel-

brot set using a dynamic algorithm. tsp solves the
traveling salesman problem. The mmult program

multiplies integer and floating point matrices us-

ing a polymorphic library. poly evaluates integer

and floating point polynomials. test is a synthetic

code designed to test the algorithm’s effectiveness.

All programs were compiled with the standard CA

prologue (240 lines of code).

*This enables safe debugging of programs written in a

development mode since type inference with type checks

336

Algorithm Progs Progs Type Average
Typed Failed Checks Seconds

PRECISE 9 0 0 199
1 PALSBERG 1 3 1

0 1

6 1
91

99 I
718 1

150 1
STATIC 34]

Figure 10: Precision of Type Inference Algorithms

We implemented three different algorithms:

STATIC with one type variable per program vari-

able, PALSBERG with one level of constant function

and container splitting, and PRECISE which is our

algorithm. Figure 10 shows that STATIC was fast,

but unable to type even simple programs. PALS-

BERG fared little better, typing only three of nine

programs. In contrast, PRECISE was able to type all

the programs. Furthermore, the type information

produced by PRECISE eliminated the need for any

run time type checks while PALSBERG and STATIC

required many in the final code. All run times given

are for our CMU Common Lisp/PCL implementa-

tion on a SparclO/Sl.

Figure 11 shows that our algorithm not only pro-

duces better type information, it generally does so

faster. In two of the three cases, where both PRE-

CISE and PALSBERG were able to type the program,

the PRECISE algorithm was much faster. The rea-

son for this is that PRECISE focuses its effort on

regions of the program where it is productive. Of

course, when PRECISE returned greater type infor-

mation, it often required much longer run times.

Not only does PRECISE produce precise typings,

the entry set and container set mechanisms produce

a concise typing.5 That is, the incremental type in-

ference algorithm does not unnecessarily split type

variables. This is especially important when the

result of type inference is used with cloning to

eliminate dynamic dispatches. The “conciseness”

of a precise typing reduces the number of clones

required to produce output code without dynamic

dispatches. In Figure 12 we see that if we pro-

catches all run time type errors.
‘One measure of this is the number of type variables re-

quired (see appendix).

Program

ion 1934
circuit 1247
pit 759

tsp 500
mmult 139
test 39

network 1799
mandel 642

POlY 41

Lines PALSBERG

Typed?
NO
NO
NO
NO
NO
NO

YES
YES
YES

-1

Figure 11: Efficiency of Type Inference Algorithms

Time
Sec.

714
290
363

56
78
15

234

25
18

PRECISE/

PALSBERG

1.2
2.1
2.5
1.4
3.5
5.1

.65

.42
2.2

duced new clones for the type variables required

by the algorithm, PRECISE would produce a pro-

gram with between 1.5 and 2.5 as many methods

while eliminating almost all dynamic dispatches.

This is much better than the PALSBERG typing (not

precise), even ignoring the fact that run time type

checks are still required. Using the PALSBERG typ-

ing would produce a 2.5 - 4 times code expansion

but eliminate many fewer dynamic dispatches. The

number of dynamic dispatches eliminated and the

actual effect on code size using a more efficient al-

gorithm is covered in detail in [17].

Figure 12: Clones per Method by Algorithm

6 Discussion and Related Work

While in general, the static typing of all programs

which will not produce run time type errors is unde-

337

cidable, the PRECISE algorithm was able to type all

of our application programs. The empirical studies

indicate that our incremental type inference algo-

rithm significantly extends the range of program

behaviors that can be typed. However, there are

some possible program structures which wiIl re-

quire run time type checks, even with our improved

algorithm. These include: 1) programs which store

a variety of types in a single array, 2) programs

which build variant records and compute the tags,

and 3) programs which reuse storage to store dif-

ferent types (such as a program and its garbage

collector).

The use of non-standard abstract semantic in-

terpretation for type recovery in Scheme by Olin

Shivers [19] provides a good basis for this and other

work on practical type inference. In particular, the

ideas of a call context cache to approximate inter-

procedural data flow and the reflow semantics to

enable incremental improvements in the solution

foreshadow this work.

Iterative type analysis and message splitting us-

ing run time testing are conceptually similar tech-

niques developed in the SELF compiler [6, 7, 81. It-

erative type analysis uses structures similar to en-

try sets, but never attempted to accurately type

an entire program. Instead it recovers information

from small regions. Run time tests are used to se-

lect optimized code sequences when a particular al-

ternative is considered likely. We expect that these

techniques and virtually all other optimization of

object-oriented languages will benefit greatly from

the precise type information generated by our im-

proved inference techniques.

Type inference in object-oriented languages in

particular has been studied for many years [20, 121.

Constraint-based type inference is described by

Palsberg and Schwartzbach in [16, 151. Their ap-

proach was limited to a single level of discrimina-

tion and motivated our efforts to develop an ex-

tendible inference approach. Recently Agesen has

extended the basic one level approach to handle the

features of SELF [22] (see [l]). However, the prob-

lems with precision and cost inherent in a single

pass approach are tackled by exploiting specialized

knowledge about the SELF language [2].

The soft typing system of Cartwright and Fagan

[5] extends a Hindley-Mimer style type inference to

support union and recursive types as well as insert

type checks. To this Aiken, Wimmers, and Lak-

shman [3] add conditional and intersection types

enabling the incorporation of flow sensitive infor-

mation, However, these systems are for languages

which are purely functional where the question of

types involving assignment does not arise and ex-

tensions to imperative languages are not fully de-

veloped. Lastly, our algorithm shares some features

of the closure analysis and binding time analysis

phases used in self-applicative partial evaluators

[18], again for purely functional languages.

7 Summary and Future Work

We have developed and implemented an algo-

rithm for precise concrete type inference in object-

oriented languages. This algorithm uses entry sets

and creation sets to incrementally extend preci-

sion and direct type inference effort to where it

is fruitful. These techniques make efficient infer-

ence of concrete types in programs with many levels

of polymorphism in functions and data structures

practical.

We have implemented these techniques in the

Illinois Concert compiler and have used them to

infer concrete types on a number of programs.

These programs contain first class selectors, con-

tinuations, and messages and are written in the

dynamically typed concurrent object-oriented lan-

guage Concurrent Aggregates. Our empirical re-

sults indicate that the incremental type inference

algorithm is viable, practical, and productive. Not

only is the resulting concrete type information pre-

cise, the run time of the algorithm is reasonable for

use in an optimizing compiler.

Our compiler currently uses the type information

with cloning to eliminate dynamic dispatch, inline

functions and methods, unbox variables, as well as

for interprocedural constant propagation and lo-

cality approximation. In the future we will also

explore more efficient implementations of the type

338

inference algorithms, including templates [15] and

sparse evaluation graphs [ll] which may reduce the

memory and compute time requirements. We are

expanding the framework for more interprocedural

analyses, and increasing the type domain for sum-

marization [3] and to include integer ranges.

8 Acknowledgements

We would like to thank Vijay Karamcheti, Xingbin

Zhang, Julian Dolby and Mahesh Subramaniam for

their work on the Concert System and Tony Ng,

Jesus Izaguirre and Doug Beeferman for writing

applications and for working with early versions

of the algorithm’s implementation. We would also

like to thank our reviewers for their comments.

The research described in this paper was sup-

ported in part by National Science Foundation

grant CCR-9209336, Office of Naval Research

grants N00014-92-J-1961 and N00014-93-1-1086,

and National Aeronautics and Space Administra-

tion grant NAG 1-613. Additional support has

been provided by a generous special-purpose grant

from the AT&T Foundation.

References

PI

PI
131

WI

[51

0. Agesen, J. Palsberg, and M. Schwartzbach.
Type inference of SELF: Analysis of objects with

dynamic and multiple inheritance. In Proceedings
of ECOOP ‘93, 1993.

Ole Agesen. Personal communication, 1993.

Alexander Aiken, Edward L. Wimmers, and T. K.
Lakshman. Soft typing with conditional types.
In Twenty First Symposium on Principles of Pro-
gramming Languages, pages 151-162, Portland,
Oregon, January 1994.

Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh,
and Robert van Gent. Safe and decidable type
checking in an object-oriented language. In Pro-
ceedings of OOPSLA’93, pages 29-46, 1993.

Robert Cartwright and Mike Fagan. Soft typing.
In Proceedings of the ACM SIGPLAN ‘91 Confer-
ence on Programming Language Design and Imple-
mentation, pages 278-292, Ontario, Canada, June

1991.

PI

[71

PI

PI

PO1

P21

P31

El41

P51

[161

El71

C. Chambers and D. Ungar. Customization:
Optimizing compiler technology for SELF, a
dynamically-typed object-oriented programming
language. In Proceedings of SIGPLAN Conference
on Programming Language Design and Implemen-
tation, pages 146-60, 1989.

C. Chambers and D. Ungar. Iterative type analysis
and extended message splitting. In Proceedings of
the SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 150-60,

1990.

C. Chambers and D. Ungar. Making pure object-
oriented languages practical. In OOPSLA ‘91 Con-
ference Proceedings, 1991.

Andrew A. Chien. Concurrent Aggregates: Sup-
porting Modularity in Massively-Parallel Programs.
MIT Press, Cambridge, MA, 1993.

Andrew A. Chien, Vijay Karamcheti, John
Plevyak, and Xingbin Zhang. Concurrent aggre-
gates language report 2.0. Available via anony-
mous ftp from cs.uiuc.edu in /pub/csag or from
http://www-csag.cs.uiuc.edu/, September 1993.

J. Choi, R. Cytron, and J. Ferrante. Automatic
construction of sparse dataflow evaluation graphs.
In Proceedings of the ACM Symposium on Princi-
ples of Programming Languages, 1990.

J. Graver and R. Johnson. A type system for

smalltalk. In Proceedings of POPL, pages 136-150,

1990.

Robin Milner, Mads Tofte, and Robert Harper.
The Definition of Standard ML. The MIT Press,

1990.

John C. Mitchell, Furio Honsell, and Kathleen
Fisher. A lambda calculus of objects and method
specialization. In 1993 IEEE Symposium on Logic
in Computer Science, pages 26-38, June 1993.

N. Oxhoj, J. Palsberg, and M. Schwartzbach. Mak-
ing type inference practical. In Proceedings of
OOPSLA ‘92, 1992.

J. Palsberg and M. Schwartzbach. Object-oriented
type inference. In Proceedings of OOPSLA ‘91,
pages 146-61, 1991.

John Plevyak and Andrew Chien. Precise object-
oriented type inference and its use in program opti-

mization. To be issued as a technical report, 1994.

339

Program Lines Passes Type Edges Entry Typed? Checka Im Time
Vara Seia

PRECISE

STATIC

19347 5 50779- 3470 760 YES - 0 - 0 713.70
1799 3 29090 2228 730 YES 0 31 234.15
1247 6 34505 1801 430 YES 0 7 289.52

759 6 40284 2128 357 YES 0 0 363.18
642 1 17257 1011 442 YES 0 0 25.48
500 3 10290 627 207 YES 0 0 56.24
139 7 11518 543 147 YES 0 0 78.35

41 4 3819 234 90 YES 0 0 18.12
39 1 7 1 1581 1 130 1 76 YES (0 1 0 1 15.11

1799
1247

759
642
500
139
41
39

115800 7098 2817 NO 19 264
73864 6018 2296 YES 0 87
49849 2646 1097 NO 44 679
48420 2783 1068 NO 28 196
26280 1442 562 YES 0 0
18203 1150 472 NO 2 31
10928 595 216 NO 4 104
4233 250 137 YES 0 0
1353 123 100 NO 2 0

Table 1 Raw Results for Three Type Inference Algorithms

34729 3380
18874 1804
15491 976
16065 1300 L 8755 760

7006 571
3842 231
1848 138
1001 108

[18] Bernhard Rytz and Marc Gengler. A polyvari-
ant binding time analysis. Technical Report

YALEU/DCS/RR-909, Yale University, Depart-
ment of Computer Science, 1992. Proceedings of
the 1992 ACM Symposium on Partial Evaluation
and Semantics-Based Program Manipulation.

[19] Olin Shivers. Topics in Advanced Language Imple-
menlalion, chapter Data-Flow Analysis and Type

Recovery in Scheme, pages 47-88. MIT Press,

Cambridge, MA, 1991.

[20] Norihisa Suzuki. Inferring types in Smalltalk. In
Eighth Symposium on Principles of Programming
Languages, pages 187-199, January 1981.

[21] Thinking Machines Corporation, Cambridge, Mas-
sachusetts. CM-5 Technical Summary, October
1991.

[22] David Ungar and Randall B. Smith. SELF: The

power of simplicity. In Proceedings of OOPSLA
‘87, pages 227-41. ACM SIGPLAN, ACM Press,
1987.

577.51
357.47
136.03
144.16 1 60.78
40.78
22.36

8.25
2.94

NO 260 1096 131.16
NO 132 926 58.77
NO 111 405 28.93
NO 119 390 37.68
NO 59 524 16.52
NO 27 225 15.79
NO 4 89 7.60
NO 4 55 3.84
NO 2 19 2.92

A Experimental Results

Table 1 contains raw data from our tests. The

Passes column indicates how many passes were re-

quired for each algorithm to terminate. Type Vurs

is the number of type variables created by each al-

gorithm. Edges is the number of interprocedural

call graph edges and Entry Sets is the number of

(virtual) method clones created by each algorithm.

For STATIC this is the number of methods used by

the programs. Checks is the number of type checks

required by each algorithm to ensure that no un-

detected run time type errors occur. A program is

Typed? when it requires no run time type checks.

Im is the number of imprecise type variables re-

maining after the algorithms terminate. Time is

reported in seconds.

340

