Marmot: an Optimizing Compiler for Java

Robert Fitzgerald, Todd B. Knoblock, Erik Ruf,
Bjarne Steensgaard, and David Tarditi

Microsoft Research*
Draft of October 29, 1998.

Abstract

Performance optimizations for high level languages are
best developed and evaluated in the context of an op-
timizing compiler and an efficient runtime system. To
this end, we have constructed Marmot, a native com-
piler and runtime system for Java. Marmot is a com-
plete system, using well-known scalar, object, and low-
level optimizations, without reliance on external (fixed)
compilers, back ends, runtime systems, or libraries. Ini-
tial performance results demonstrate that Marmot is
competitive with existing Java systems, and suggests
targets for future optimization research.

1 Introduction

Our long-term research focuses on the study of per-
formance tradeoffs in the implementation of high-level
programming languages. We are particularly concerned
with implementation choices affecting the performance
of large applications.

To this end, we have built Marmot, a bytecode-to-
native-code compiler, runtime system, and library for
Java. Marmot is

Current: Marmot implements both standard scalar
optimizations (of the sort found in Fortran, C and
C++ [Muc97]) and basic object-oriented optimiza-
tions such as call binding based on class hierarchy
analysis [BS96, DGC95]. Modern representation
techniques such as SSA and type-based compila-
tion [CFR'89, Tar96] are also used. These im-
prove optimizations and support tracing garbage
collection.

Complete: Marmot implements all Java language fea-
tures except dynamic class loading and reflection?.
It supports a useful subset of the Java libraries:

*Corresponding author: Todd Knoblock, Microsoft Research,
Redmond, WA 98052, tel. (425) 936-4852, fax (425) 936-7329,
email toddk@microsoft.com.

These features are of secondary importance for our chosen
domain of applications: large static applications. Reflection
would be relatively simple to support. Dynamic class loading
would require additional effort, principally to permit inter-class
optimizations in the presence of changes to the class hierarchy.

most of java.lang, java.util, java.io and java.awt,
but not java.applet, java.beans, java.text, java.net,
etc.

Flexible: Marmot implements all phases of com-
pilation and runtime support except source-to-
bytecode translation, with no reliance on outside
back ends, garbage collectors, etc. This makes
Marmot a good testbed for studying implementa-
tion techniques for high-level languages. Indeed, to
support ease of modification, the Marmot compiler,
libraries, and runtime system are implemented in
Java wherever possible.

In this paper, we describe the architecture of the
Marmot system in detail. We present preliminary per-
formance measurements demonstrating that Marmot-
generated executables are competitive with those pro-
duced by other research and commercial Java systems.
We also compare Marmot with a C compiler via translit-
erated benchmark code.

To our knowledge, Marmot is the first project to sys-
tematically apply traditional compiler technologies to a
native-code compiler built specifically for Java and to
report the results. Other projects have relied on compi-
lation to C or adaptation of existing backends for other
languages. Implementors of commercial Java compil-
ers have neither described their architectures in detail
nor released performance results for even medium-sized
programs (5K lines).

Marmot is intended primarily as a testbed for study-
ing tradeoffs in high-level language implementation
techniques. We chose to study Java because it has
many features that are representative of high-level lan-
guages, such as object-orientation, strong typing, au-
tomatic storage management, multi-threading support,
and exception handling. Java’s popularity makes it
likely that large applications will become available for
empirical studies.

Marmot is current and complete to avoid skewing
implementation studies. If aspects of the system are
substandard, the relative value of additional implemen-
tation efforts may be over- or understated. For example,
if basic, well-understood optimizations are not applied,
then experimental optimizations may find opportunities

for improvement which would have been eliminated any-
way via a standard technique. Similarly, if the language
semantics are simplified, one may erroneously find opti-
mization opportunities which would not be legal under
the full semantics. For example, Java’s precise excep-
tion semantics limits code motion opportunities.

The remainder of the paper is organized as follows.
Section 2 describes the architecture of Marmot, includ-
ing the internal representations, compiler phases, run-
time system, and libraries. Section 3 presents perfor-
mance results. The paper concludes with a discussion
of related work and directions for future research.

2 System Architecture

Marmot is organized as a sequence of transformations
which operate on several different program representa-
tions (see Figure 1). The following sections describe
the more important representations and optimizations
following the order of their use.

2.1 Bytecode

Marmot takes verified Java bytecode [LY97] as input.
Compiling a Java program begins with a class file con-
taining the main method. This class is converted and
all statically referenced classes in it are queued for pro-
cessing. The conversion continues from the work queue
until the transitive closure of all reachable classes have
been converted.

Using bytecode has several advantages. The Java
bytecode specification has been stable for the past year,
whereas the Java language specification has continued
to evolve. Compiling bytecode avoids the construction
of a front end for Java (lexical analysis, parser, constant
folder, and typechecker). Finally, it allows the system
to compile programs where only the class files, and not
the Java source files, are available.

By further restricting the input language to verified
bytecode, Marmot is able to make a number of simpli-
fying assumptions during processing which rely on the
bytecode being well behaved. Since Java-to-bytecode
compilers are supposed to generate verifiable bytecode,
this is not a significant restriction for our purposes.

Bytecode is a high-level intermediate format that re-
tains most of the information present in the source files,
save formatting, comments, and some variable names
and types. However, its irregular, redundant, stack-
oriented nature makes it unattractive for use as an inter-
nal representation in an optimizing compiler. Marmot
translates bytecode to a more conventional virtual regis-
ter based intermediate form, reconstructing source-level
type information that was omitted in the bytecode.

2.2 High-Level Intermediate Form

The Java intermediate representation, JIR, is the high-
level intermediate form used in Marmot. It has the
usual characteristics of a modern intermediate form: It
is a temporary-variable based, static single assignment,

3-address representation. In addition, it is also strongly
typed.

A method is represented as a control flow graph with
a distinguished root (entry) block. Each graph node
(basic block) consists of a sequence of effect statements
and concludes with a control statement. An effect state-
ment is either a side effect statement or an assignment
statement. A side effect consists of an expression, and
represents a statement that does not record the result
of evaluating the expression. An expression consists of
one of the following;:

e A local variable, v.
e A constant, c.

e A type, T.

A field reference, v.f£.
e A static field reference, £.

e An array index expression, v[i].

A direct application of an operator to operands,
op(vi,...,n).

An indirect (virtual) application of an operator to
operands, op(v1,...,Vn).

An assignment is comprised of two expressions, the
source and destination of the assignment. The desti-
nation must be a variable, field, static field, or array
index expression. All well formed statements are linear,
meaning that they contain at most one of the following
expression forms: field reference, array index, or func-
tion application.

Each basic block concludes with a control statement
which specifies the succeeding basic block to execute
under normal control flow. A control statement is one
of the following forms:

goto Unconditional jump.

if (v) Conditional transfer

return Method exit (for void methods)
return(v) Method exit (for non-void methods)
throw(v) Raise exception.

switch(v) [t1,...,t,] Multiway transfer, t1,..
the case tag constants.

., tn are

2.2.1 Representing Exceptions and Handlers in
JIR

In order to represent exception handlers, the ba-
sic blocks of JIR differ from the classic definition
(e.g., [ASU86, App98, Muc97]) in that they are sin-
gle entry, but multiple exit. In addition, basic blocks
are not terminated at function call boundaries. If a
statement causes an exception either directly, or via an
uncaught exception in a function call, execution of the
basic block terminates.

low-level
user code java conversion to high-level IR high-level high-level IR conversion to low-level IR optimization,
bytecode JIR JIR) optimization JIR) MIR (MIR) code
0 generation
java x86
bytecode assembly
Iibrarie_s, marmot native .
marmot java runtime x86 object assembly,
runtime linking
x86
executable

win32 native

executable

Figure 1: The Marmot compilation process.

JIR models Java exception handling by labeling ba-
sic blocks with distinguished exception edges. These
edges indicate the class of the exceptions handled, the
binding variable in the handler, and the basic block to
transfer control to if that exception occurs durring ex-
cecution of the guarded statements. The presence of an
exception edge does not imply that the block will throw
such an exception under some execution path.

The intuitive dynamic semantics of basic block exe-
cution are as follows. Execution proceeds sequentially
through the statements unless an exception is raised.
If an exception is encountered, then the ordered list of
exception edges for the current basic block is searched
to determine how to handle the exception. The first ex-
ception edge e : E such that the class F matches the
class of the raised exception is selected. The exception
value is bound to the binding variable, e, and control is
transferred to the destination of the exception edge. If
no matching exception edge exists, the current method
is exited, and the process repeats recursively.

Exception edges leaving a basic block differ semanti-
cally from the normal edges. While a normal edge indi-
cates the control destination once execution has reached
the end of the basic block, an exception edge indicates
that control may leave the basic block anywhere in the
block, e.g., before the first statement, or in the middle
of executing a statement. This distinction is especially
important while traversing edges backwards. While nor-
mal edges may be considered to have a single source (the
very end of the source block), exception edges have mul-
tiple sources (all statements in the source basic block
which might throw an instance of the edge’s designated
exception class). In this sense, JIR basic blocks are sim-
ilar to superblocks [CMCHO91].

The conversion of bytecode to JIR proceeds in three
steps:

1. Initial conversion to a temporary-variable based in-
termediate representation.

2. Conversion to static single assignment form.

3. Type elaboration.

The next three sections describe these steps.

2.3 Initial Conversion

The initial conversion from bytecode to JIR uses an ab-
stract interpretation algorithm [CC77]. An abstraction
of the bytecode VM stack is built and the effects of the
bytecode execution stream are modeled. A temporary
variable is associated with each stack depth, tempo for
the bottom-of-stack value, tempi for depth 1, and so
forth.

Bytecode instructions that manipulate the stack are
converted into effects on the stack model along with JIR
instructions that manipulate temporary variables. For
example, given an abstract stack of depth 28 with top
two values x and y, the bytecode iadd is translated to

temp 27 = x + y
and a new stack model with x and y popped, and
temp_27 as the new top-of-stack value. The assump-
tion that the source bytecode is verifiable assures that
all abstract stack models for a given control point will
be compatible.

Some care must be exercised in modeling the mul-
tiword long and double bytecode operations, which are
represented as multiple stack elements in the bytecode.
Conversion reassembles these split values into references
to multiword constants and values. Once again, verifia-
bility of the bytecode ensures that this is possible.

Some simplification and regularization of the byte-
code occurs during the conversion. For example, the
various if_icmp<cond>, if_acmp<cond>, ifnull, and
ifnonnull operations are all translated to JIR if con-
trol statements with an appropriate boolean test vari-
able. Similarly, the various iload n, aload n, istore.n,
astore._n, etc., are translated as simple references to lo-
cal variables. Where possible, fcmp, dcmp, and lcmp are
translated to simpler boolean comparisons. Reducing
the number of primitives in this way simplifies subse-
quent processing of JIR.

The initial conversion makes manifest some compu-
tations that are implicit in bytecode. This include op-
erations for class initialization and synchronized meth-

ods. This lowering to explicitly represented operations
is done to make the operations available for further anal-
ysis and optimization.

2.4 Static Single Assignment Conversion

The second step of converting from bytecode to
JIR is conversion to static single assignment (SSA)
form [CFR'89, CFRW91]. The conversion is based
upon Lengauer and Tarjan’s dominator tree algo-
rithm [LT79] and Sreedhar and Gao’s phi placement al-
gorithm [SG95]. Conversion is complicated by the pres-
ence of exception-handling edges, which must be con-
sidered during the computation of iterated dominance
frontiers. Such edges may also require that their source
blocks be split to preserve the usual one-to-one corre-
spondence between phi arguments and CFG edges.

After high level optimization is complete, the phi
nodes are eliminated before translation to the low-level
intermediate form. Phi elimination is implemented us-
ing a straightforward copy introduction strategy. The
algorithm uses edge splitting to limit the scopes of
copies, but does not attempt to reuse temporaries; that
optimization is subsumed by the coalescing register al-
locator.

2.5 Type Elaboration

The third and final step in constructing JIR from byte-
code is type elaboration. This pass infers type infor-
mation left implicit in the bytecode, and produces a
strongly-typed intermediate representation in which all
variables are typed, all coercions and conversions are
explicit, and all overloading of operators is resolved.

Java source programs include complete static type
information, but some of this information is not in-
cluded in the bytecode:

e Local variables do not have type information.

e Stack cells are untyped (and so are the correspond-
ing temporaries in JIR at this stage).

e Values represented as small integers (booleans,
bytes, shorts, chars, and integers) are mixed within
bytecode methods.

The bytecode does preserve some type information,
namely:

e All class fields contain representations of the orig-
inally declared type.

e All function formals have types.

e Verified bytecode implies certain internal consis-
tency in the use of types for locals and stack tem-
poraries.

Although it is not possible in all case to recover the
user’s typings, type elaboration can always recover a
legal type elaboration of the intermediate code.

e Standard optimizations

— Array bounds check optimization

— Common subexpression elimination

— Constant propagation and folding with condi-
tional branch elimination

— Copy propagation

— Dead-assignment and dead-variable elimination

— Inlining

— Loop invariant code motion, including loop rota-
tion

— Loop induction variable elimination and strength
reduction

— Unconditional jump elimination

— Unreachable block elimination
e Object-oriented optimizations

— Stack allocation of objects
— Static method binding
— Type test and cast elimination

— Uninvoked method elimination and abstraction
e Java-specific optimizations
— Array store check elimination

— Cmp operator elimination

— Synchronization elimination

Figure 2: Optimizations performed by the high-level
optimizer.

In addition to its usefulness in analysis, garbage col-
lection, and representation decisions, the type informa-
tion serves as a consistency check for JIR. All optimiza-
tions on the JIR are expected to preserve correct typ-
ing, allowing type checking to be used as a pre- and
post-optimization semantic check. This is useful in de-
bugging Marmot.

2.6 High-Level Optimization

The high-level optimizer implements the optimizations
shown in Figure 2.

The high-level optimizer transforms the intermediate
representation (JIR) while preserving its static single as-
signment and type-correctness properties. Figure 2 lists
the transformations performed. These can be grouped
into three categories: (1) scalar optimizations for imper-
ative languages, (2) general object-oriented optimiza-
tions, and (3) Java-specific optimizations.

2.6.1 Standard Optimizations

The standard scalar and control-flow optimizations are
performed on a per-method basis using well-understood
intraprocedural dataflow techniques. Some analyses
(e.g., induction variable classification) make extensive
use of the SSA wuse-def relation, while others (e.g.,
availability analysis) use standard bit-vector techniques.

The remainder of this section presents a summary of our
experience implementing these optimizations under an
SSA-based representation in the face of Java’s ubiqui-
tous exception handlers.

The presence of exceptions complicates dataflow
analysis because the analysis must model the poten-
tial transfer of control from each (implicitly or explic-
itly) throwing operation to the appropriate exception
handler. The JIR representation models these transfers
coarsely via outgoing exception edges on each extended
basic block. Marmot bit-vector analyses achieve greater
precision by modeling the exception behavior of each
operation in each basic block, and using this informa-
tion to build edge-specific transfer functions relating the
block entry to each exception arc. The SSA-based anal-
yses do not need to perform this explicit modeling, as
the value flow resulting from exceptional exits from a
block is explicitly represented by phi expressions in the
relevant handler blocks.?

Java’s precise exception model further complicates
transformation by requiring that handlers have access
to the exact observable program state that existed im-
mediately prior to the throwing operation. Thus, not
only is the optimizer forbidden to relocate an operation
outside of the scope of any applicable handlers (as in
most languages), it is also unable to move a potentially
throwing operation past changes to any local variable
or storage location live on entry to an applicable han-
dler without building a specialized handler with appro-
priate fixup code.®> The present optimizer limits code
motion to effect-free, non-throwing operations. Also be-
cause of this, Marmot implements only full redundancy
elimination, and not partial redundancy elimination, in
our base system; fully redundant throwing expressions
may be removed without such complicated code motion.
Good partial redundancy elimination is likely to require
dynamic information to justify the extra analysis effort
and code expansion for specific code paths.

While the explicit SSA representation benefits both
analysis (e.g., flow-sensitive modeling without the use
of per-statement value tuples) and transformation (e.g.,
transparent extension of value lifetimes), it significantly
increases the implementation complexity of many trans-
formations. The main difficulty lies in appropriately
creating and modifying phi operations to preserve SSA
invariants as the edge structure of the control flow graph
changes.* This transformation-specific phi-operator

?Due to the invariant that a basic block may not contain
multiple SSA variable definitions reaching a single phi node in a
handler block (c.f. Section 2.4), it is always possible to precisely
represent the statement-level exception information at the basic
block level.

3Performing such code motion requires a sophisticated effect
analysis and may require significant code duplication; e.g., if the
throwing operation is moved out of a loop.

4Using SSA as our sole representation denies us the standard
option of simply reanalyzing the base representation to reconsti-
tute the SSA hypergraph. After initial conversion, that base no
longer exists. Since converting out of and back into SSA form on
each CFG edit would be prohibitively expensive, we are forced
to write custom phi-maintenance code for each CFG transforma-
tion. Choi et al. [CSS96] describe phi maintenance for several
loop transformations, but do not give a solution for general CFG

maintenance is often the most difficult implementation
task (and largest compilation-time cost) in Marmot op-
timizations.

Briggs et al. [BCHS88] noted that systems treating
all phi operations in a basic block as parallel assign-
ments may require a scheduling pass to properly serial-
ize these assignments during the phi elimination phase.
The Marmot optimizer avoids this issue by giving phi-
assignments the normal sequential semantics of state-
ments, including the ability of a loop-carried definition
to kill itself. This requires some extra care in copy prop-
agation but does not affect other analyses, and has the
benefit of simplifying the phi elimination phase of SSA.

Unlike most of the optimizations shown in Figure 2,
array bounds check optimization is not yet a standard
technique, particularly in the face of Java’s exception
semantics. Several techniques for array bounds check
optimization have been developed for Fortran [MCMS82,
Gup90, Asu9l, Gup93, CG95, KW95] and other con-
texts [SI77, XP98].

Marmot employs the folklore optimization that the
upper and lower bounds checks for a zero-origin array
may be combined into a single unsigned check for the
upper bound [App98]. Also, the common subexpres-
sion elimination optimization removes fully redundant
checks. The remaining bounds checks are optimized in
two phases.

First, the available inequality facts relating locals
and constants in a method are collected using a dataflow
analysis. Sources of facts are control flow branch-
ing, array creation, and available array bounds checks.
To these facts are added additional facts derived from
bounds and monotonicity of induction variables.

Second, an inequality decision procedure, Fourier
elimination [DE73, Duf74, Wil76], is used at each array
bounds check to determine if the check is redundant rel-
ative to the available facts. If both the lower- and upper-
bound checks are redundant, then the bounds check is
removed. See Knoblock [Kno98] for additional informa-
tion on array bounds check optimizations in Marmot.

2.6.2 Object-Oriented Optimizations

Marmot’s object-oriented optimizations are imple-
mented using a combination of inter-module flow-
insensitive and per-method flow-sensitive techniques.
The instantiation and invocation analysis, ITA, si-
multaneously computes conservative approximations of
the sets of instantiated classes and invoked methods.
Given an initial set of classes and methods known to be
instantiated and invoked, it explores all methods reach-
able from the call sites in the invoked method set (sub-
ject to the constraint that the method’s class be in-
stantiated), adding more methods as more constructor
invocations are discovered. This is similar to the Rapid
Type Analysis algorithm of Bacon [Bac97], except that
ITA does not rely on a precomputed call graph, elimi-
nating the need for an explicit Class Hierarchy Analy-
sis [DGCY5] pass. We use an explicit annotation mech-

mutation.

anism to document the invocation and instantiation be-
havior of native methods in our library code.

Marmot uses the results of this analysis in several
ways. A treeshake transformation rebinds virtual calls
having a single invoked target and removes or abstracts
uninvoked methods.® This not only removes indirection
from the program, but also significantly reduces compi-
lation times (e.g., many library methods are uninvoked
and thus do not require further compilation). Other
analyses use the ITA to bound the runtime types of ref-
erence values, or to build call graphs. For example, the
inliner may use this analysis to inline all methods having
only one call site.

Local type propagation computes flow-sensitive es-
timates of the runtime types (e.g., sets of classes and
interfaces) carried by each local variable in a method,
and uses the results to bind virtual calls and fold type
predicates. It relies upon the flow-insensitive analysis to
bound the values of formals and call results but takes
advantage of local information derived from object in-
stantiation and type casting operations to produce a
more precise, program-point-specific, result. This infor-
mation allows the optimizer to fold type-related opera-
tions (e.g., cast checks and instanceof), as well as stat-
ically binding more method invocations than the flow-
insensitive analysis could alone. Type operations not
folded by the type propagator may still be eliminated
later by other passes.

The stack allocation optimization improves locality
and reduces garbage collection overhead by allocating
objects with bounded lifetimes on the stack rather than
on the heap. It uses an inter-module escape analysis
to associate object allocation sites with method bod-
ies whose lifetime bounds that of the allocated object.
The allocation is then moved up the call graph into
the lifetime-dominating method, while a storage pointer
is passed downward so that the object can be initial-
ized at its original allocation site. See Gay and Steens-
gaard [GS98] for details of this optimization.

2.6.3 Java-Specific Optimizations

To date, work on Marmot has concentrated on efforts
to implement fairly standard scalar and object-oriented
optimizations in the context of Java; thus, the present
version of the optimizer contains relatively few transfor-
mations specific to the Java programming language.
Java’s covariant array subtyping rule requires that
writes to arrays of reference types must be checked at
runtime. The intermediate representation makes these
checks explicit so they can be optimized independently
of the array assignments (i.e., we can remove checks
while still performing the store to the array). Marmot
eliminates such checks in two ways: (1) by eliminating
fully redundant checks in the CSE pass, and (2) by re-
moving checks when the local type propagator can prove
that the value being stored cannot be of a more general

5Method abstraction is required when a method’s body is
uninvoked but its selector continues to appear in virtual calls.
We do not prune the class hierarchy, as uninstantiated classes
may still hold invoked methods or be used in runtime type tests.

runtime type than the array’s runtime element type. In
isolation, the latter technique is not very effective due
to the imprecision of the ITA (e.g., java.lang.0bject []

could conceivably denote any instantiated reference ar-
ray type). Marmot addresses this limitation by adding a
simple global analysis (similar to type-based alias anal-
ysis [DMMO98]) which computes a flow-insensitive alias
relation on instantiated array types. The resulting im-
provement in precision allows the removal of additional
array store checks.

Because Java programs may execute multiple
threads simultaneously, many of the methods in the
standard library guard potential critical sections with
synchronization operations. The cost of these opera-
tions is then paid by multi-threaded and single-threaded
programs alike. Marmot optimizes the single-threaded
case by using the ITA to detect that no thread objects
are started, allowing it to remove all synchronization
operations from the program before further optimiza-
tions are performed. Similar analyses appear in Ba-
con [Bac97] and Muller et al. [MMBC97].

2.6.4 Phase Ordering

Figure 3 shows how the optimizations are organized. We
briefly describe the phases here.

Because SSA conversion and type elaboration are
relatively expensive, it is profitable to run the treeshake
optimization to remove unused methods from the rep-
resentation prior to conversion. This pass also detects
single-threaded code and removes synchronization op-
erations if possible. This is the only high-level opti-
mization pass which operates on an untyped, non-SSA
representation.

Before performing inter-module optimizations, Mar-
mot applies a suite of simple optimizations on each
method. These optimizations remove significant num-
bers of intermediate variables, unconditional jumps, and
redundant coercions introduced by the bytecode trans-
lation and type elaboration phases. Doing so reduces
code size, speeding later optimizations, and also im-
proves the accuracy of the inliner’s code size heuristics.

The inter-module optimization phase runs the tree-
shake pass again, followed by multiple passes of inlining,
alternating with various folding optimizations. Stack al-
location invokes the inliner on individual call sites where
the transformed target is known to be small. Finally,
a variety of optimizations are applied to each method.
Some optimizations avoid the need for re-folding entire
methods by performing on-demand value propagation
and folding on the SSA hypergraph. Others momen-
tarily transform the representation in violation of the
SSA invariants, and rely on SSA restoration utilities to
reestablish these invariants.

2.7 Low-Level Intermediate Form

The low-level intermediate form, MIR, is in most ways
a conventional low-level intermediate representation.
MIR shares the control-flow graph and basic block rep-
resentations of JIR, enabling reuse of algorithms that

folding

""""""" \

SSA
restoration

sparse |
propagation

SSA
conversion/
type
elaboration

per-method
pre-global
cleanup

pre-SSA
cleanup

—»

!

inter-module
optimizations

per-method
optimizations

phi
elimination

coercion elim
constant prop
copy prop
cmp lowering
dead assign
jump elim

treeshake

Figure 3: Optimization phases. The boxes with solid
outlines are utilities invoked by these phases.

operate on the CFG.

The instruction set of MIR includes a subset of the
instruction set of the Intel x86 processor family, which
is the current target architecture of Marmot. There are
six distinct kinds of low-level MIR instructions: data in-
structions with no operands, data instructions with one
operand, data instructions with two operands, machine-
level function calls (the 80x86 call instruction), control
instructions with no operands, control instructions with
one operand. All machine-level function calls are anno-
tated with their register use-def information. Control
instructions may optionally be annotated with regis-
ter use-def information, allowing MIR to encode use-def
information for non-local transfers of control (such as
function return or throwing an exception). The instruc-
tion set of MIR also includes high-level instructions for
function call, return, and throwing exceptions; these are
replaced by actual machine instructions during register
allocation. This simplifies the translation from JIR to
MIR. It also allows decisions about interprocedural reg-
ister usage to be deferred until the register allocation
phase, which will make it easier to incorporate inter-
procedural register allocation techniques into Marmot.

The operands of MIR are registers, constants (inte-
gers or symbolic addresses), effective addresses, register
pairs (which are used to represent 64-bit integers when
these integers are passed or returned from a function),
and floating-point register stack locations (x86 floating
point instructions use a register stack).

MIR differs from conventional low-level intermediate
formats by keeping representation information about
each operand. Representation information is a simpli-
fied version of type information that distinguishes be-
tween:

e traceable pointers,
e pointers to code,
pointers to static data,

interior pointers (that point to locations within an
object)

inlining
stack alloc
treeshake

array bound check
array store check
constant prop
copy prop
cse
dead assign
jump elim
local class prop
loop inv code motion
strength reduction

outlines are optimization phases; while those with dashed

e 8 16, 32, and 64-bit signed integers, and 16-bit
unsigned integers

e 32 and 64-bit floating point numbers

Traceable pointers point to the base of an object,
while interior pointers point into the middle of an ob-
ject. Tracking interior pointers is particularly useful be-
cause garbage collection implementations often do not
handle them. For these implementations, it may be ver-
ified that code generation never produces code where in-
terior pointers are live at program points where garbage
collection may occur without a corresponding traceable
pointer.

2.8 Conversion to MIR

To convert JIR to MIR, Marmot first determines explicit
data representations and constructs meta-data. It then
converts converts each method using the data represen-
tations chosen during the first phase.

2.8.1 Constructing Meta-Data

Marmot implements all meta-data, including virtual
function tables (vtables) and java.lang.Class in-
stances, as ordinary Java objects. These classes are de-
fined in the Marmot libraries and their data layouts are
determined by the same means used for all other classes.
Once the meta-class layout has been determined, MIR
conversion is able to statically construct the required
meta-data instances for all class and array types.

2.8.2 Converting Methods to MIR

For each JIR basic block in the CFG and updates the
JIR basic block

Marmot converts methods to MIR procedures us-
ing syntax-directed translation [ASU86]. For each JIR
block in the JIR CFG, it creates a corresponding MIR
block, then translates each statement in the JIR block
to one or more MIR statements in the MIR block. Most

JIR statements map to two or more MIR instructions;
a one-to-one mapping cannot be created because most
MIR instructions have one fewer addresses than their
corresponding JIR statements. For example, consider
the translation of a three-address statement such as
a = b op ¢, where a, b, and ¢ are local variables. Mar-
mot translates this to MIR as

mov tmp,b
op tmp,c
mov a,tmp

where tmp is a new pseudo-register and mov tmp,c as-
signs the value of ¢ to tmp. The translation of two-
address JIR statements similarly introduces a tempo-
rary pseudo-register. We rely on the register coalescing
phase of the register allocator to remove unnecessary
moves and temporaries.

The translation of JIR statements to MIR instruc-
tions is for the most part routine. Some aspects of the
translation deserve further comment:

e Run-time type operations. JIR provides several
operations that use run-time type information:
checkcast, instanceof, and checkarraystore.
We have implemented all these operations as
Java functions that use run-time type information
stored in VTable instances. Marmot translates
each operation as a call to the appropriate Java
function.

e Exception handlers. JIR exception handling blocks
may have two kinds of edges coming into them: ex-
ception edges and normal edges. Exception edges
assign a variable, while normal edges represent just
transfer of control. The conversion to MIR splits
every block that is the target of an exception edge
into two blocks. The first block contains code
which implements the variable assignment and the
second block contains code corresponding to the
original JIR block. The first block jumps to the
second block. The conversion redirects all normals
arcs to the original JIR block to the second block.
It redirects all exception arcs to the first block.

e Switch statements. Marmot converts dense
switches to jump tables and small or sparse
switches to a chain of conditional branches. A
switch is defined to be dense if it contains cases for
more than half of the integers between the smallest
and largest integer cases of the switch. A switch
is small if there are three or fewer cases for the
switch.

e Field references. Marmot maps field references to
effective addresses which are then used as operands
in instructions. It does not assume a RISC-like
instruction set where load and store instructions
must be used for memory accesses.

e Long integer operations. The x86 architecture
does not support 64-bit integers natively. Marmot
translates 64-bit integer operations to appropriate

sequences of 32-bit integer operations. It places all
these sequences inline except for 64-bit multiplica-
tion and division, for which it generates calls to
runtime functions.

Marmot maps 64-bit JIR variables to pairs of 32-
bit pseudo-registers. Most uses of these pairs dis-
appear, of course, as part of the above translation,
but the pairs do appear in MIR functions in the
high-level call and return instructions and formal
argument lists. The register allocator eliminates
these occurrences.

e Long comparisons: fmpg, fcmpl, 1cmp. The conver-
sion to JIR eliminates most occurrences of these
operators, replacing them with simpler boolean
comparison operations. Marmot generates inline
code for the remaining occurrences of each opera-
tion.

2.9 Low-Level Optimization

After Marmot converts a JIR method to an MIR
method, it performs several low-level optimizations.
First, it eliminates unnecessary assignments to boolean
variables that are used immediately in conditional
branches. These assignments arise because JIR con-
ditional statements only take boolean variables as ar-
guments; they do not incorporate comparisons. For
example, Marmot translates if (a>b) to JIR of
theformt = a>b; if (t) Marmot translates this
JIR to MIR of the form t = a>b to cmp a,b; setg t
and if (t) to test t,t; jne Marmot im-
proves the whole code sequence by looking for code of
the form setcc t; test t,t; jne and changing
it to setcc t; jcc ..., where cc represent the appro-
priate comparison condition code. If the setcc turns
out to be unnecessary, it will be eliminated by dead-
code elimination.

Second, Marmot replaces unconditional jumps to
control instructions and conditional branches to uncon-
ditional jumps. Third, it eliminates dead and unreach-
able code. Finally, it does peephole optimizations. Mar-
mot does not yet do instruction scheduling.

2.10 Register Allocation

Marmot uses graph-coloring register allocation in the
style of Chaitin [CACT81, Cha82], incorporating im-
provements to the coloring process suggested by Briggs
et al. [BCT94]. The allocator has five phases:

1. The first phase eliminates high-level procedure
calls, returns, and throws. It does this by introduc-
ing appropriate low-level control transfer instruc-
tions and making parameter passing and value re-
turn explicit as moves between physical locations
and pseudo-registers.

2. The second phase eliminates unnecessary regis-
ter moves by coalescing pseudo-registers. It co-
alesces registers aggressively and does not use the
more conservative heuristics suggested by [BCT94,

GA96]. The phase rewrites the intermediate form
after each pass of coalescing and iterates until no
register coalesces occur.

3. The third phase, which is performed lazily, es-
timates the cost of spilling each pseudo-register.
It sums all occurrences of each pseudo-register,
weighting each occurrence of a register by 10",
where n is the loop-nesting depth of that occur-
rence.

4. The fourth phase attempts to find a coloring using
optimistic coloring [BCT94]. If at some point col-
oring stops because no colors are available (and
hence a register must be spilled), the phase re-
moves the pseudo-register with the lowest spilling
cost from the interference graph and continues col-
oring. If the phase colors all registers successfully,
it applies the mapping to the program and register
allocation is finished.

5. The fifth phase, which inserts spill code, is espe-
cially important because the target architecture
has so few registers. The phase creates a new tem-
porary pseudo-register for each individual occur-
rence of a spilled register and inserts load and store
instructions as necessary. It attempts to optimize
reloads from memory: if there are several uses of a
spilled register within a basic block; it will use the
same temporary register several times and intro-
duce only one load of the spilled register®. If this
optimization does not apply, this phase attempts
to replace the spilled register with its stack loca-
tion. Doing so avoids using a temporary register
and makes the program more compact by eliminat-
ing explicit load and store instructions.

After the fifth phase completes, register allocation re-
turns to the fourth phase and tries to color the new
intermediate program again. This process iterates until
all registers are successfully colored.

Tracing garbage collection requires that the runtime
system accurately find all memory locations outside the
heap that contain pointers into the heap. To support
this, each function call is annotated with the set of stack
locations that contain pointers and are live across the
call. These sets are empty at the beginning of register
allocation and are updated during the introduction of
spill code. For each pointer-containing register that is
live across a function call and is being spilled, the cor-
responding stack location is added to to the set for the
function call.

2.11 Runtime Support

The majority of the runtime system code is written
in Java, both for convenience and to provide a large,
complex test case for the Marmot compiler. Opera-
tions including cast, array store and instanceof checks,
java.lang.System.arraycopy(), thread synchroniza-
tion and interface call lookup are implemented in Java.

6See [Bri92] for a detailed description of when this can be
done.

2.11.1 Data Layout

Every object has a vtable pointer and a monitor pointer
as its first two fields. The remaining fields contain the
object’s instance variables, except for arrays, where they
contain the length field and array contents.

The vtable pointer points to a VTable object that
contains a virtual function table and other per-class
metadata. These include a java.lang.Class instance,
fields used in the implementation of interface calls (see
Section 2.11.2), and size and pointer tracking informa-
tion describing instances of the associated class or array
types.

The monitor pointer points to a lazily-created ex-
tension object containing infrequently-used parts of
the per-instance object state. The most prominent is
synchronization state for synchronized statements and
methods and for the wait() and notify() methods
of java.lang.Object. It also incorporates a hash-
code used by java.lang.Object.hashCode(). Bacon
et al. [BKMS98| describes a similar scheme to reduce
space overhead due to synchronization.

2.11.2 Interfaces

Marmot implements interface dispatch via a per-class
data structure called an interface table, or itable. A
class’s vtable contains one itable for each interface the
class implements. FEach itable maps the interface’s
method identifiers to the corresponding method entry
points. The vtable also contains a mapping from the
Class instance for each interface to the position of
its corresponding itable within the vtable. Itables are
shared where possible.

Invoking an interface method consists of calling a
runtime lookup function with the Class instance for
the interface as an argument. This function uses the
interface-to-itable mapping to find the offset for the
itable within the vtable. It then jumps through the
itable to the desired method.

Marmot saves space by sharing itables. If an inter-
face I has direct superinterfaces Si, Sz and so on, it
positions the itable for Sy followed by the itable for Sa,
and so on. Any method m declared in I that is declared
in a superinterface can be given a slot of m from a su-
perinterface.” All new methods declared in I can be
placed after all the itables for the direct superinterfaces
of I.

2.11.3 Exceptions

Marmot uses the same kind of program-counter-based
exception handling mechanism that Java bytecode
[LY97] uses. Memory containing Marmot-generated
machine code is divided into ranges, each of which is
associated with a list of exception handlers. When an
exception occurs, the runtime system finds the range
containing the throwing program point and finds the
appropriate handler in the list.

"Note that more than one direct superinterface of I may de-
clare a method m, so the itable for I may have multiple slots for
m.

Marmot implements stack unwinding by creating a
special exception handler for each function body. Each
such handler catches all exceptions. When it is invoked,
it pops the stack frame for the function and rethrows
the exception. Thus, no special-case code is needed in
the runtime system to unwind the call stack when an
exception occurs.

Marmot does not add special checks for null pointer
dereferences or integer divide-by-zero. Instead, it
catches the corresponding operating system exception
and throws the appropriate Java exception.

2.11.4 Threads and Synchronization

Each Java thread is implemented by a native (Win32)
thread. Monitors and semaphores are implemented
using Java objects which are updated in native crit-
ical sections. The mapping from native threads to
java.lang.Thread objects uses Win32 thread-local
storage.

2.11.5 Garbage Collection

At present, Marmot offers a choice of two garbage col-
lection schemes: a conservative collector and a copying
collector. The conservative collector uses a mark-and-
sweep technique, while the copying collector is a semi-
space collector using a Cheney scan. We are working on
making the copying collector generational.

For both collectors, all heap-allocated objects must
be valid Java objects that contain vtable pointers as
their first field. The conservative collector uses infor-
mation in the VTable object concerning the size of the
object. If the object is an array, it also uses type infor-
mation to determine whether or not the array contains
pointers. The copying collector uses additional fields in
the VTable object to derive the locations of all pointers
in an object.

2.11.6 Native Code

Marmot can use the same alignment and calling con-
ventions as native x86 C/C++ compilers. A C++ class
declaration corresponding to a Java class is straightfor-
ward to build manually because Marmot adds fields to
objects in a canonical order.

Native code must interact with the garbage collector.
Before executing blocking system calls, a thread must
put itself in a safe state to allow the collector to run
during the call. A safe state means that the call does
not use any heap data structures because the structures
may move during garbage collection. Native code may
not retain any Java pointers across garbage collection
points. The per-thread state includes fields where native
code may place pointers that must be updated by the
garbage collector. It is not a general solution, but it has
sufficed for our library development.

2.12 Libraries

Marmot uses a set of libraries written from specifica-
tions of the Java 1.1 class libraries [CL98a, CL98b]. The

10

java.lang, java.util, java.io, and java.awt pack-
ages are mostly complete. Individual classes in other
packages have been implemented as required. Some
methods have not yet been updated to provide full UNI-
CODE support. The AWT library currently only sup-
ports the Java 1.1 event model.

The libraries are predominantly written in Java. Na-
tive code is used only when functionality could not be
reasonably expressed in Java; it is not used for perfor-
mance reasons. C++ methods are used as interfaces to
graphics and I/O primitives. Assembly code is used to
implement some of the math libraries (e.g., trigonomet-
ric functions). The libraries are comprised of 33KLOC
of Java code, 4.6KLOC of C++ code (plus 2.3KLOC
C++ header files), and 1IKLOC of assembly code.

3 Results and Analysis

This section presents preliminary performance results
for Marmot. It compares these against three other Java
systems, and provides some performance comparisons
against native C compilation.

3.1 Marmot Versus Java Compilers

To evaluate the quality of the Marmot compiler relative
to other available native-code Java compilers, we chose
three other native-code Java compilers from different
categories:

e Just-in-Time compilers: Microsoft Visual J++
Version 6.0, VM (jview) version 5.00.2922. Cur-
rently considered a state-of-the-art JIT compiler
[Nefo8].

e Commercial static compilers: SuperCede for Java,
Version 2.03, Upgrade Edition.

e Research static compilers: IBM Research High
Performance Compiler for Java (HPJ).

To measure overall performance, we compiled and ex-
ecuted a number of small- to medium-sized Java pro-
grams (described in Figure 4) using each compiler, and
measured the execution time on an otherwise unloaded
dual Pentium I1-300 Mhz PC running Windows NT 4.0
SP3 in 512MB of memory. The running times were
“utime” averaged over 5-50 runs of each program, with
added loops around some of the short-running programs
to avoid problems due to the granularity of the clock.
This measurement methodology is used in all compar-
isons in this paper.

The graph in Figure 5 shows the relative perfor-
mance of all four compilers on the benchmark programs
(results for the benchmarks with C equivalents are given
in Figure 6). The results indicate that Marmot is at
least competitive with the other compilers in terms of
generating code for medium-sized programs.

To determine whether Marmot is competitive across
a range of program features, and not simply dependent
on a superior implementation of a single feature we used
micro-benchmarks (not shown). We started with the

Name LOC | Description

marmot 88K | Marmot compiling itself

jessmab 14K | Java Expert Shell System solving “Bananas and Monkeys” problem.
jessword 14K | Java Expert Shell System solving the “Word game” problem.

jlex 14K | JLex generating a lexer for sample.lex. ‘
javacup | 8760 | JavaCup generating a Java parser

parser 5581 | The JavaCup generated parser parsing Grm.java

SVD 1359 | Singular-Value Decomposition (3x4 and 100x600 matrices) |
plasma 648 | A constrained plasma field simulation/visualization

cn2 578 | CN2 induction algorithm

slice 989 | Viewer for 2D slices of 3D radiology data

linpack 679 | Linpack 10¥1000

impdes 561 | The IMPACT benchmark DES encoding a large file

impgrep 551 | The IMPACT benchmark grep on a large file

impli 8864 | The IMPACT benchmark li on a sample lisp program

impcmp 200 | The IMPACT benchmark cmp on two large files

imppi 171 | The IMPACT benchmark computing 7 to 2048 digits

impwc ‘ 148 | The IMPACT benchmark wc on a large file

impsort 113 | The IMPACT benchmark merge sort of a 1IMB table

impsieve 64 | The IMPACT benchmark prime-finding sieve

Figure 4: Small-to-Medium Benchmark Programs. The programs below the horizontal line have implementations in

both Java and C.

UCSD Benchmarks for Java [GP97], modified them to
prevent the compilers from doing inlining, loop hoisting,
etc., and added tests for other things we wanted to mea-
sure. Marmot generated code was generally compara-
ble with code generated by the other systems. Marmot
floating point performance trailed that of the IBM HPJ
and SuperCede systems by a factor of two (matching
Microsoft Visual J++). For a throw-and-catch combi-
nation Marmot was roughly twice as fast IBM HPJ and
SuperCede, and 70 times faster than Microsoft Visual
J++.

We also wrote micro-benchmarks to measure the
performance of the garbage collectors by updating and
deleting nodes from a large tree data structure. When
deletion of nodes was uniform with respect to the age
of objects, Marmot performed 10 times better than Mi-
crosoft Visual J++4, 2 timers better than SuperCede,
and 1/3 faster than IBM HPJ. When young objects
were deleted at a much faster rate than old objects were
deleted, the performance of Microsoft Visual J++ im-
proves by a factor of two (still 5 times slower than Mar-
mot).

3.2 Marmot Versus C Compilers

Another way to characterize the performance of
Marmot-generated executables is to compare their run
times with those of similar programs written in a
lower-level language and compiled with an optimiz-
ing compiler for that language. The IMPACT/NET
project [HGH96, HCJ197] has transliterated a variety
of C/C++ benchmark programs to Java, making such
comparisons possible. Figure 6 shows the performance
of Java programs compiled by Marmot relative to corre-
sponding C/C++ programs compiled by Microsoft Vi-
sual C++4 version 6.0. For some of these benchmarks,
Marmot performance approaches the performance of
C/C++, but for most of them it is significantly worse.

11

3.3 Marmot Performance Breakdown

One purpose of the Marmot baseline compiler is to di-
rect our future optimization research in profitable direc-
tions. To do so, we needed to understand understand
where Marmot-generated executables spend their time.
We also wanted to determine the overhead incurred by
garbage collection and the runtime checks mandated by
the Java language semantics.

The time spent in the garbage collector can be mea-
sured by instrumentation of the garbage collector. Mar-
mot allows us to selectively disable various nonstandard
optimizations, such as synchronization elimination, as
well as runtime checks required by the Java semantics,
such as array bounds checking. By disabling particular
optimizations or checks, we can determine their bene-
fits or costs, respectively. There are, of course, interac-
tions between these settings, so the order in which they
are disabled is significant. For this study, we have sim-
ply disabled features in a fixed order: stack allocation,
synchronization elimination, dynamic cast check, array
bounds check, array store check, and null pointer check.

Figure 7 shows the resulting performance break-
downs for several benchmark programs. None of the
runtime checks fail during execution of these programs,
so eliminating the checks does not influence the behavior
of the programs (on the specific input data). Eliminat-
ing all the checks provides an upper bound on how much
performance can be gained by semantics-preserving op-
timizations to eliminate the checks.

It is interesting to note that for the smaller micro-
benchmarks, array bounds checks consume 8-10% of
execution time, consistent with earlier observations
[HGH96]. However, as program sizes increase and more
diverse data structures are used, the relative significance
of bounds checks decreases.

In many small SPEC-like benchmark programs, the
cost of array store checks and dynamic casts was quite

O Marmot

B SuperCede

OiBM HPJ

O Microsoft Visual J++

Speed relative to Microsoft Visual J++
w
f

1 4
S "N Q> 3 L & QO (d {4 @
< & > W > e & & & ©
‘bs (9‘9& 6$ 3 4’2" Q(OS \'0'6 2
& ¢ \Qp & N

Figure 5: Relative performance of compiled code on small-to-medium benchmarks (normalized: Microsoft Visual
J++4 = 1). We were unable to generate an optimized executable of Marmot with the IBM HPJ compiler; we used a
debug executable instead for that single data point.

16 —
1.4
1.2
o mc
2 1 : B Marmot
2 OSuperCede
=08 OIBM HPJ
- B Microsoft Visual J++
(3]
o 0.6
[oR
n
0.4
0.2 i
0,-
\) S N N > <O
S ¥ &L FE Qe°<\ &
& & & & SRS N
006\
A\@Q

Figure 6: Relative performance of compiled code on benchmarks having both C and Java implementations (normal-
ized: Visual C++ Version 6.0 = 1).

12

350.00% M savings from synchronization
elimination
Osavings from copying collector
300.00% - 9 pying
o W savings from stack allocation
& 250.00% -
£ Ocast checks
g
o 200.00% - W array bounds checks
£
1S Oarray store checks
2 150.00% -
° Onull pointer checks
c
[}
% 100.00% | W garbage collection
o —
50.00% Owork
0.00%
G Q N Q O
& & & &
© & & S

Figure 7: Performance breakdowns for Marmot-compiled code. The cost of garbage collection is obtained by in-
strumentation. The other costs are deduced by running programs compiled with various optimizations and runtime
checks enabled and disabled. All costs are relative to the cost of running the programs generated by default. Syn-
chronization elimination and stack allocation benefits occur above the 100% line because the default is to enable
these optimizations.

13

large: as much as 1/4 of the total running time of the
JLex benchmark. To determine that this was not due
to poor implementation we added a micro-benchmark
to measure the cost of such checks (not shown). Mar-
mot’s costs for dynamic type checks are no worse than
those generated by other compilers. This suggests fur-
ther exploring the removal of dynamic type checks via
static analysis.

For the (single-threaded) benchmarks, the synchro-
nization elimination optimization was quite effective.
This result indicates that multithreaded programs, even
those where little or no lock contention takes place, of-
ten spend more time in synchronization operations than
in any other form of runtime checking. As with array
store checks, we have verified that Marmot’s implemen-
tation of synchronization is competitive with that of
other systems (not shown). This suggests that Java
implementors should investigate the elimination of syn-
chronization primitives in multithreaded programs.

4 Related Work

Several Java compiler projects statically compile ei-
ther Java source code or Java bytecodes to C, using
C as a portable assembly language. The most complete
implementations known to us are Harissa [MMBC97],
Toba [PTB"97], and TurboJ [Ope98]. Harissa and Toba
both have their own runtime systems using the Boehm-
Demers-Weiser conservative garbage collector. TurboJ
incorporates compiled code into the Sun Microsystems
Java runtime system using JNI.

Other Java compiler projects statically compile Java
source or Java bytecodes via an existing back end which
is already used to compile other languages. The IBM
High Performance Compiler for Java uses the common
back end from IBM’s XL compilers. j2s from UCSB
[KH97] and j2s from University of Colorado [MDG97]
both use the SUIF system. The IMPACT NET com-
piler [HGH96, HCJ197] uses the IMPACT optimizing
compiler back end. The Java compiler from the Ce-
cil/Vortex project [DDGT96] uses the Vortex compiler
back end. The Vortex runtime system includes a non-
conservative garbage collector tuned for Cecil programs;
the other systems retrofit (conservative) garbage collec-
tors into their runtime systems since the systems were
not designed for tracing collection.

Most Java compilers compiling directly to native
code are part of commercial development systems.
Tower Technology’s TowerJ [Tow98] generates native
code for numerous platforms (machine architectures
and operating systems) while SuperCede [Sup98] and
Symantec’s Visual Café [Sym98] generate native code
for x86 systems. These systems all include customized
runtime systems.

Sun Microsystem’s HotSpot compiler [HBG97] uses
technology similar to that of the Self compilers. Op-
timizations are based on measured runtime behavior,
with recompilation and optimization being performed
while the program is running.

Instantiations’ Jove compiler [Ins98] and Natural-
Bridge’s BulletTrain compiler [Nat98] both employ

14

static whole-program analysis and optimization. They
include their own runtime systems. Although little pub-
lished information is available about these two systems,
it appears that of all the Java compilers mentioned they
are the closest in design to the baseline Marmot system.

5 Conclusion

To provide a realistic baseline for future optimization
research, we have built Marmot, an optimizing native
compiler and runtime system for Java. Since Marmot
is a research vehicle, we have focused on ease of im-
plementation and modification rather than on compila-
tion speed, compiler storage usage, debugging support,
library completeness, or other requirements of produc-
tion systems. Examples of this approach include our de-
cisions to implement the compiler in Java, to separately
perform optimizations that could have been engineered
into a single pass, to produce and link assembly code
rather than generating native executables directly, and
to implement library functionality as needed and in Java
where possible.

We have shown that, for a variety of bench-
marks, Marmot-compiled executables achieve perfor-
mance comparable or superior to those generated by
other research and commercial Java systems. We be-
lieve, however, that there is much room for future im-
provement. The preliminary execution time breakdowns
of Section 3 indicate that a large amount of potentially
removable overhead remains, particularly in garbage
collection, synchronization, and safety checking. We are
actively pursuing optimization research in these areas.

Acknowledgements

We would like to thank Cheng-Hsueh Hsieh and Wen-
mei Hwu of the IMPACT team for sharing their bench-
marks with us.

References

[App98| Andrew W. Appel. Modern Compiler Implementa-

ton in Java. Cambridge University Press, 1998.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. Ad-
dison-Wesley, Reading, MA, USA, 1986.

[ASUS6)

[Asu91] Jonathan M. Asuru. Optimization of array subscript
range checks. ACM Letters on Programming Lan-

guages and Systems, 1(2):109-118, June 1991.

David F. Bacon. Fast and Effective Optimization of
Statically Typed Object-Oriented Languages. PhD
thesis, U.C. Berkeley, October 1997.

Preston Briggs, Keith D. Cooper, Timothy J. Har-
vey, and L. Taylor Simpson. Practical improvements
to the construction and destruction of static single
assignment form. Software: Practice and Experi-
ence, 1(1), January 1988.

Preston Briggs, Keith D. Cooper, and Linda Torc-
zon. Improvements to graph coloring register allo-
cation. ACM Transactions on Programming Lan-
guages and Systems, 16(3):428-455, May 1994.

[Bac97]

[BCHSSS]

[BCT94]

[BKMS98]

[Brio2]

[BS96]

[cACt81]

(eleked

[CFRT89)

[CFRWO1]

[CG95]

[Chag2]

[CL98a]

[CLO8b]

[CMCH91]

[CSS96]

[DDGt96]

[DET73]

David F. Bacon, Ravi Konuru, Chet Murthy, and
Mauricio Serrano. Thin locks: Featherweight syn-
chronization for Java. In Proceedings of the SIG-
PLAN 98 Conference on Programming Language
Design and Implementation, pages 258-268, June
1998.

Preston Briggs. Register Allocation via Graph Col-
oring. PhD thesis, Rice University, April 1992.

David F. Bacon and Peter F. Sweeney. Fast static
analysis of C++4 virtual function calls. In Proceed-
ings OOPSLA ’96, ACM SIGPLAN Notices, pages
324-341, October 1996. Published as Proceedings
OOPSLA 96, ACM SIGPLAN Notices, volume 31,
number 10.

Gregory J. Chaitin, Marc A. Auslander, Ashok K.
Chandra, John Cocke, Martin E. Hopkins, and Pe-
ter W. Markstein. Register allocation via coloring.
Computer Languages, 6(1):47-57, January 1981.

Patrick Cousot and Radhia Cousot. Abstract inter-
pretation: A unified lattice model for static anal-
ysis of programs by construction or approximation
of fixpoints. In Proceedings of the Fourth Annual
ACM Symposium on Principles of Programming
Languages, pages 238-252, Los Angeles, January
1977.

Ron Cytron, Jeanne Ferrante, Berry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. An
efficient method of computing static single assign-
ment form. In Proceedings of the Sizteenth Annual
ACM Symposium on Principles of Programming
Languages, January 1989.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, and
Mark N. Wegman. Efficiently computing static sin-
gle assignment form and the control dependence
graph. ACM Transactions on Programming Lan-
guages and Systems, 13(4):451-490, October 1991.

Wei-Ngan Chin and Eak-Khoon Goh. A reexam-
ination of ”optimization of array subscript range
checks”. ACM Transactions on Programming Lan-
guages and Systems, 17(2):217-227, March 1995.

G.J. Chaitin. Register allocation and spilling via
graph coloring. In Proceedings of the ACM SIG-
PLAN ’82 Symposium on Compiler Construction,
pages 98-105, June 1982.

Patrick Chan and Rosanna Lee. The Java Class
Libraries, volume 1. Addison-Wesley, second editon
edition, 1998.

Patrick Chan and Rosanna Lee. The Java Class
Libraries, volume 2. Addison-Wesley, second editon
edition, 1998.

Pohua P. Chang, Scott A. Mahlke, William Y. Chen,
and Wen-mei W. Hwu. Profile-guided automatic in-
line expansion for ¢ programs. Software: Practice
and Ezxperience, 22(5):349-369, May 1991.

Jong-Deok Choi, Vivek Sarkar, and Edith Schon-
berg. Incremental computation of static sin-
gle assignment form. In CC ’96: Sizth Inter-
national Conference on Compiler Construction,
LNCS 1060, pages 223-237, April 1996.

Jeffrey Dean, Greg DeFouw, David Grove, Vassily
Litvinov, and Craig Chambers. Vortex: An optimiz-
ing compiler for object-oriented languages. In Pro-
ceedings OOPSLA 96, ACM SIGPLAN Notices,
pages 83-100, October 1996. Published as Proceed-
ings OOPSLA ’96, ACM SIGPLAN Notices, volume
31, number 10.

George B. Dantzig and B. Curtis Eaves. Fourier-
Motzkin elimination and its dual. Journal of Com-
binatorial Theory (A), 14:288-297, 1973.

15

[DGC95]

[DMMO98]

[Duf74]

[GA6]

[GP97]

[GS98]

[Gup90]

[Gup93]

[HBG197]

[HCJ197]

[HGH96]

[Ins98]

[KHO7]

[Kno98]

[KW95]

[LT79]

[LY97]

Jeffrey Dean, David Grove, and Craig Cham-
bers. Optimization of object-oriented programs us-
ing static class hierarchy analysis. In W. Olthoff,
editor, Proceedings ECOOP’95, LNCS 952, pages
77-101, Aarhus, Denmark, August 1995. Springer-
Verlag.

Amer Diwan, Kathryn S. McKinley, and J. Eliot B.
Moss. Type-based alias analysis. In Proceedings
of the SIGPLAN ’98 Conference on Programming
Language Design and Implementation, pages 106—
117, June 1998.

R. J. Duffin. On Fourier’s analysis of linear inequal-
ity systems. In Mathematical Programming Study
1, pages 71-95. North Holland, New York, 1974.

Lal George and Andrew W. Appel. Iterated regis-
ter coalescing. A CM Transactions on Programming
Languages and Systems, 18(3):300-324, May 1996.

William G. Griswold and Paul S. Phillips.
Bill and paul’s excellent ucsd bench-
marks for java (version 1.1). http://www-
cse.ucsd.edu/users/wgg/JavaProf/javaprof.html, October

1997.

David Gay and Bjarne Steensgaard. Stack allocating
objects in Java. In preparation, 1998.

Rajiv Gupta. A fresh look at optimizing array
bound checking. In Proceedings of the SIGPLAN
’90 Conference on Programming Language Design
and Implementation, pages 272-282, June 1990.

Rajiv Gupta. Optimizing array bound checks us-
ing flow analysis. ACM Letters on Programming
Languages and Systems, 2(1-4):135-150, March—
December 1993.

Urs Holzle, Lars Bak, Steffen Grarup, Robert
Griesemer, and Srdjan Mitrovic. Java on steroids:
Sun’s high-performance Java implementation. Pre-
sentation at Hot Chips IX, Stanford, California,
USA, August 1997.

Cheng-Hsueh A. Hsieh, Marie T. Conte, Teresa L.
Johnson, John C. Gyllenhaal, and Wen-mei W.
Hwu. Optimizing NET compilers for improved Java
performance. Computer, 30(6):67-75, June 1997.

Cheng-Hsueh A. Hsieh, John C. Gyllenhaal, and
Wen-mei W. Hwu Hwu. Java bytecode to native
code translation: The Caffeine prototype and pre-
liminary results. In IEEE Proceedings of the 29th
Annual International Symposium on Microarchi-
tecture, 1996.

Super
for

Jove:
environment

Instantiations, Inc. opti-
mizing deployment Java.
http://www.instantiations.com/javaspeed/jovereport.htm,

July 1998.

Holger Kienle and Urs Hoélzle. j2s: A SUIF Java
compiler. In Proceedings of the Second SUIF Com-
piler Workshop, August 1997.

Todd B. Knoblock. Array bounds check optimiza-
tions for Java. In preparation, 1998.

Priyadarshan Kolte and Michael Wolfe. Elimination
of redundant array subscript range checks. In Pro-
ceedings of the SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation,
pages 270-278, 1995.

Thomas Lengauer and Robert Endre Tarjan. A
fast algorithm for finding dominators in a flow-
graph. ACM Transactions on Programming Lan-
guages and Systems, 1(1):121-141, July 1979.

Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. The Java Series. Addison-
Wesley, Reading, MA, USA, 1997.

[MCMS82]

[MDG97]

[MMBC97]

[Muc97]

[Nat98)
[Nefos)

[Ope9s]

[PTBT97]

[SGY5]

[S177]

[Sup9s]

[Sym98]

[Tar96]

[Tow98]

[Wil76]

[XP98)

Victoria Markstein, John Cocke, and Peter Mark-
stein. Optimization of range checking. In Proceed-
ings of the ACM SIGPLAN ’86 Symposium on
Compiler Construction, pages 114-119, June 1982.

Sumith Mathew, Eric Dahlman, and Sandeep
Gupta. Compiling Java to SUIF: Incorporating sup-
port for object-oriented languages. In Proceedings
of the Second SUIF Compiler Workshop, August
1997.

Gilles Muller, Barbara Moura, Fabrice Bellard, and
Charles Consel. Harissa: a flexible and efficient Java
environment mixing bytecode and compiled code.
In Proceedings of the Third Conference on Object-
Oriented Technologies and Sytems (COOTS '97),
1997.

Steven S. Muchnick. Advanced Compiler Design
and Implementation. Morgan Kaufmann, San Fran-
cisco, 1997.

NaturalBridge, LLC. Bullettrain Java compiler
technology. http://www.naturalbridge.com/, 1998.

John Neffenger. Which Java VM scales best? Java-
World, 3(8), August 1998.

The Open Group. TurboJ
high performance Java compiler.

http://www.camb.opengroup.com/openitsol/turboj/,

February 1998.

Todd A. Proebsting, Gregg Townsend, Patrick
Bridges, John H. Harman, Tim Newsham, and
Scott A. Watterson. Toba: Java for applications:
A way ahead of time (WAT) compiler. In Proceed-
ings of the Third Conference on Object-Oriented
Technologies and Sytems (COOTS ’97), 1997.

Vugranam C. Sreedhar and Guang R. Gao. A lin-
ear time algorithm for placing ¢-nodes. In Proceed-
ings 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages
62-73, January 1995.

Norishisa Suzuki and Kiyoshi Ishihata. Implemen-
tation of an array bound checker. In Proceedings of
the Fourth Annual ACM Symposium on Principles
of Programming Languages, pages 132-143, Janury
1977.

SuperCede, Inc. SuperCede for Java, Version 2.03,
Upgrade Edition. http://www.supercede.com/, Septem-
ber 1998.

Symantec Corporation. Visual Café Pro.
http://www.symantec.com/, September 1998.

David Tarditi. Design and Implementation of Code
Optimizations for a Type-Directed Compiler for
Standard ML. PhD thesis, Carnegie Mellon Uni-
versity, December 1996.

Tower Technology. TowerJ, release 2.
http://www.twr.com/, September 1998.

H. P. Williams. Fourier-Motzkin elimination exten-
sion to integer programming problems. Journal of
Conbinatorial Theory (A), 21:118-123, 1976.

Hongwei Xi and Frank Pfenning. Eliminating array
bound checking through dependent types. In Pro-
ceedings of the SIGPLAN ’98 Conference on Pro-
grammaing Language Design and Implementation,
page unknown pages, 1998.

16

