- » . | 4 -
¢ /
- ‘e
v [} v a
. {
2 \ . b -
’ s
R A~ . Y
) bV
' b b "~
v h Y M 4 s
e ? - P e '... )
. . L .
. o ». + ? » ¥
' - W A8 In &
( uf ) b 4 h L

». Network Programming Languages
# Data Plane

"

o P 1 4" ¥ " % Vi aM /
Y a 'y v L S », W M "" ," ¥ d
; o e PR R "Antt ‘ e LR
CURRER T v, W07 e TIPS 55 7L O A
> ' i’ )~ N0 2 LN / A R it 7
4

YA g D y AgE - | f AN . g
.. -_'O‘f ; { f-‘"_ ,\ ‘" § PN '.._\ .40 ‘a:‘ {, v.:,, P
Ve VR e b Bty o Ay ) ol ! ; Ak

Nate Foster
Cornell University
Spring 2013

Based on lecture notes by Jennifer Rexford and Michael Freedman



Announcements
B

Overview
. Last lecture today
- Start with SDNs on Tuesday

Homework #1
- Goes out next Tuesday
- Due two weeks later
. Topic: OpenFlow programming



Data Plane
S

Streaming algorithms that act on packets

= Matching on some bits, taking a simple action

= ... at behest of control and management plane
Wide range of functionality

= Forwarding

= Access control

» Mapping header fields

= Traffic monitoring

» Buffering and marking

= Shaping and scheduling

» Deep packet inspection



Packet Forwarding



Packet Forwarding
N

Control plane computes a forwarding table
» Maps destination address(es) to an output link

Handling an incoming packet
» Match: destination address
= Action: direct the packet to

the chosen output link

Switching fabric

« Directs packet from
input link to output link S

Fabric

Processor




Switch: Match on Destination MAC
N

MAC addresses are location independent
= Assigned by the vendor of the interface card
= Cannot be aggregated across hosts in the LAN

mac1 mac2 mac3
host host | ** | host mac] f
mac?2 f
host switch mac3 ‘
mac5 mac4 <=
host mac5 ' Implemented using a
hash table or a content
mac4

addressable memory.



IP Routers: Match on IP Prefix
S

[P addresses grouped into common subnets

= Allocated by ICANN, regional registries, ISPs, and
within individual organizations

= Variable-length prefix identified by a mask length

1.2.34 1.23.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212
host host | ** | host host host | ** | host
LAN 1 LAN 2
foute ™ {router ™ pe=={router
1.2.3.0/24 | <
: * Prefixes may be nested.
5.6.7.0/24 * Routers identify the longest

forwarding table matching prefix.



Switch Fabric: From Input to Output

i -

i -
i - :




Access Control



Access Control: Packet Filtering

"5-tuple”for access control lists (ACLSs)
= Source and destination IP addresses

» TCP/UDP source and destination ports
= Protocol (e.g., UDP vs. TCP)

Should arriving packe
be allowed in?
Departing packet let

Can be more sophisticated

= E.g., blockall
TCP SYN packets
from outside
hosts




Applying Access Control Lists
N

Ordered list of “accept/deny” clauses
= Clauses can have wild cards
= Clauses can overlap

= ... SO order matters Src=1.2.3.4, Dest=56.7.8 Deny

Packet classification Dest=1.2.3.* Allow

= Given all of the fields Dest=1.2.3.8, Dportl=53 Deny

= ... identify the match Src=1.2.3.7, Dport=100 Allow

with the highest priority | pport=100 Deny
Approaches

« Clever algorithms for multi-dimensional classification
= Ternary Content Addressable Memories (TCAMs)



Mapping Header Fields



Network Address Translation (NAT)

138.76.29.7

>

outside




Mapping Addresses and Ports
-
Remap IP addresses and TCP/UDP port numbers
= Addresses: between end-host and NAT addresses
= Port numbers: to ensure each connection is unique

Create table entries as packets arrive

= 5rc 10.0.0.1, SPort 1024, Dest 1.2.3.4, DPort 80
— Map to Src 138.76.29.7, Sport 1024, Dest 1.2.3.4, Dport 80

= 5rc 10.0.0.2, SPort 1024, Dest 1.2.3.4, DPort 80
— Map to Src 138.76.29.7, Sport 1025, Dest 1.2.3.4, Dport 80

Challenges
= When do we remove entries?
= How do we run services behind a NAT?
« What if both ends of a connection are behind NATs



Traffic Monitoring



Observing Traffic Passing Through

source dest
>
~

.- input Output

4 oo e - 000

— //
source dest
prefix prefix

source AS intermediate AS dest AS

Applications of traffic measurement
= Usage-based billing
= Network engineering
» Detecting anomalous or malicious traffic



Passive Traffic Monitoring

Counting the traffic

« Match based on fields in the packet header
= ... and update a counter of # bytes and # packets

Examples
= Link
« |P prefixes
= TCP/UDP ports
 Individual “flows”

Challenges

1.2.3.0/24 3 1500
7.8.0.0/16 10 13000
8.0.0.0/8 100 85020
/.7.6.0/23 1 40

= |dentify traffic aggregates in advance vs. reactively
« Summarizing other information (e.q., time, TCP flags)
= Not knowing if you see all packets in a connection



Resource Allocation



Buffering
N

Drop-tail FIFO queue

= Packets served in the order they arrive
« ... and dropped if queue is full -

Random Early Detection (RED)
= When the buffer is nearly full
= ... drop or mark some packets to signal congestion

Multiple classes of traffic
« Separate FIFO queue for each flow or traffic class
= ... with alink scheduler to arbitrate between them

SO—




Link Scheduling

Strict priority
= Assign an explicit rank to the queues
= ... and serve the highest-priority backlogged queue

->O R

Weighted fair scheduling
= Interleave packets from different queues
= ...In proportion to weights

50% red, 25% blue, 25% green




Traffic Shaping
N

Force traffic to conform with a profile
« To avoid congesting downstream resources
» To enforce a contract with the customer
Leaky-bucket shaping
= Can send at rate r and intermittently burst
= Parameters: token rate r and bucket depth d

\L Tokens arrive (rate r)

Max # of tokens
(d tokens)

tokens A leaky-bucket shaper for
each flow or traffic class

packets



Traffic Classification and Marking
-~
Mark a packet to influence handling downstream
» Explicit Congestion Notification (ECN) flag
» Type-of-Service (ToS) bits

Ways to set the ToS bits

» End host sets the bits based on the application
— But, then the network must trust (or bill!) the end host

= Network sets the bits based on traffic classes

— But, then the network needs to know how to classify
packets

[dentifying traffic classes
« Packet classification based on the “five tuple”
« Rate limits, with separate mark for “out of profile” traffic



Generalizing the Data Plane



Many Boxes, But Similar Functions

Router

= Forward on destination IP
address

« Access control on “5-tuples”

= Link scheduling ana
marking

= Monitoring traffic
» Deep packet inspection
Switch

= Forward on destination
MAC address

Firewall

= Access control on "five
tuple” (@and more)

NAT

= Mapping addresses and
port numbers

Shaper

= Classify packets

« Shape or schedule
Packet sniffer

» Monitoring traffic



c OpenFlow

Match
« Match on a subset of bits in the packet header
» £.g., key header fields (addresses, port numbers, etc.)
« Well-suited to capitalize on TCAM hardware

Action
« Perform a simple action on the matching packet
« E.g., forward, flood, drop, rewrite, count, etc.

Controller
= Software that installs rules and reads counts
= ... and handles packets the switch cannot handle

25



Programmable Data Plane
S

Programmable data plane
= Arbitrary customized packet-handling functionality
= Building a new data plane, or extending existing one

Speed is important
= Data plane in hardware or in the kernel
= Streaming algorithms the handle packets as they arrive

Two open platforms

« Click: software data plane in user space or the kernel
= NetFPGA: hardware data plane based on FPGAS

Lots of ongoing research activity. ..



Click Modular Router
(backup slides)




Click Motivation

Flexibility

= Add new features and enable experimentation
Openness

= Allow users/researchers to build and extend

= (In contrast to most commercial routers)
Modularity

« Simplify the composition of existing features

= Simplify the addition of new features
Speed/efficiency

= Operation (optionally) in the operating system

= Without the user needing to grapple with OS internals

28



Router as a Graph of Elements
-

Large number of small elements
» Each performing a simple packet function
= E.g., IP look-up, TTL decrement, buffering
Connected together in a graph
= Elements inputs/outputs snapped together
= Beyond elements in series to a graph
» £.g., packet duplication or classification
Packet flow as main organizational primitive
= Consistent with data-plane operations on a router
= (Larger elements needed for, say, control planes)

29



Click Elements: Push vs. Pull
N

Packet hand-off between elements

= Directly inspired by properties of routers

= Annotations on packets to carry temporary state
Push processing

= [nitiated by the source end

« £.g, when an unsolicited packet arrives (e.g., from a
device)

Pull processing
= [nitiated by the destination end

« £.g., to control timing of packet processing (e.qg., based
on a timer or packet scheduler)

30



Click Language

Declarations
« Create elements src :: FromDevice(ethO);

Connections ctr:: Cogmter;
sink :: Discard;
« Connect elements

src -> ctr;
ctr -> sink;

Compound elements

= Combine multiple smaller elements, and treat as single,
new element to use as a primitive class

Language extensions through element classes
« Configuration strings for individual elements
= Rather than syntactic extensions to the language

31



Handlers and Control Socket

Access points for user interaction

« Appear like files in a file system

= Can have both read and write handlers
Examples

= Installing/removing forwarding-table entries

= Reporting measurement statistics

« Changing a maximum queue length
Control socket

= Allows other programs to call read/write handlers

« Command sent as single line of text to the server
= http://read.cs.ucla.edu/click/elements/controlsocket?s=llrpc

32



Example: EtherSwitch Element
N

Ethernet switch

« Expects and produces Ethernet frames

« Each input/output pair of ports is a LAN

= Learning and forwarding switch among these LANs
Element properties

« Ports: any # of inputs, and same # of outputs

= Processing: push
Element handlers

= Table (read-only): returns port association table

= Timeout (read/write): returns/sets TIMEOUT

htt3|30://read.cs.ucla.edu/cIick/elements/etherswitch



An Observation...
S

Click is widely used

« And the paper on Click is widely cited
Click elements are created by others

= Enabling an ecosystem of innovation

Take-away lesson
= Creating useful systems that others can use and extend
has big impact in the research community

= And brings tremendous professional value
« Compensating amply for the time and energy ©

34



