1

Staged Information Flow for JavaScript

Notes by Matthew Milano and Xiang Long
December 2, 2013

Summary

Static approach for dynamic code
Mechanism

— Split programs into stages

— Context: main program

— Holes: dynamically loaded portions

Traditional static analysis not feasible due to dynamically loaded code not
known ahead of time.

Also there are other JS problems: everything is loaded in the same scope,
including remote code. No private fields or encapsulation.

Solution is to divide into stages as above.

Observation: you can do static flow control without a strongly-typed lan-
guage.

We're not enforcing what the user thinks of as security, we’re enforcing
what the website thinks of as security.

Andrew: it’s really a richer version of the same-origin policy.

Some more motivation straight from the paper. Definition of policies.
Examples:

— Do not want remote code to affect browser location or variables flow-
ing to location. Also should not access cookies.

— Integrity policy: holes cannot write to location.

— Confidentiality policy: cookies cannot flow to holes.

The constraint rules: if you squint, it looks a lot like the typing rules we’ve
traditionally seen.



e It is surprising that the “disallow x.cookie bans cookie” policy works in
practice.

e It’s not clear how coarse their metrics are. They punt on using array
syntax to access object fields (like document|“cookie”]), suggesting that
they “could” just reject it dynamically.

e Summary of results
— Efficient yet imprecise, it’s unclear how useful this is. Performance
evaluated on 100 websites.

— If you make mistakes in the context that’s your problem, tool won’t
help with that.

— They only track flows to and from holes.

— Syntax analysis used to prevent renaming in hole code. E.g. all fields
named “cookie” are made secret. Obvious problems with that.

2 Discussion

e Any prior work?
— Yes, Sabelfeld and Russo did some dynamic analysis. More dynamic
than current paper, but cheap so not to harm use experience.
— Yes, #21 in references.
— Yes, #6 in references.
— Yes, Andrew’s papers on SIF and SWIFT, which targets IS.

e Q: Are these holes particular scripts or any scripts?
A: Any. Would be hard to make specific.

e Q: Is this also why we have a blacklist instead of a whitelist?

A: Probably not - we’re talking safety here, so in some ways a blacklist is
more natural.

It’s not clear [a whitelist] is not just syntactic sugar (as long as you can
quantify over the namespace). Also problems with conflicting policies.

[A whitelist] might be easier for scaling because of the small root set (7),
but Owen doesn’t really think of it in that way.

What would whitelist corruption mean? Un-tainted?

Tom concedes.

e QQ: So do you execute “state” returned before checking RPS?

A: Yes; it’s imperative.



e Q: How do others handle the dictionary-style field lookup in objects?
A: In S3, Arjun uses prefix with lookup indirection.

Observation: Unless you have a lot of secret fields, this isn’t usually a
problem.

Observation: Overwriting the prototype field (“__proto__") is not handled
well by this framework (and is an awful thing to do if you’re a JavaScript
developer). Unfortunately, big frameworks (ex.: Dart compiler) do over-
write this field (Sam knows this because he wrote the code that does it).

e Results discussion

— The actual enforcement mechanism is mostly access control. Fine for
integrity, limiting for confidentiality.

— A lot of the work is on Ads, which are separable and therefore rep-
resent an easy case.

— There’s a “shadow DOM” proposed spec to address this; can spec-
ify certain nodes as invisible through DOM. Still seems like access
control, not proper information flow.

— Considering the “this is inferring an access control policy,” it’s just
me and one other person who I don’t trust at all. I wish they had
taken this step.

— Fabric does this. need to move from isolated co-located code to code
you interact with. Can go way beyond Fabric and this paper. De-
classification is hard.

— Are we fighting a losing battle here? Take the long view: languages
come and go. But Tom’s worried that JavaScript is becomeing the
C of web applications, and so we will be stuck with it for decades to
come.



