
CS 6110 S23 Supplementary Lecture C The Scott Topology

There are a few alternative characterizations of CPOs and continuity that are useful to know about. In
particular, the notion of continuity as presented in Lecture 7 is equivalent to continuity in the traditional
topological sense with respect to a certain topology induced by the order. This topology is called the Scott
topology after Dana Scott (1932–).

1 CPOs and Directed Sets

First we give an alternative characterization of CPOs in terms of a seemingly stronger notion of completeness.

Definition C.1. Let (X,⊑) be a poset. A subset A ⊆ X is said to be directed if for every pair of elements
a, b ∈ A, there exists c ∈ A such that a ⊑ c and b ⊑ c. The poset X is said to be directed-complete if every
directed subset of X has a supremum in X.

Theorem C.2. A poset is chain-complete (that is, it is a CPO) iff it is directed-complete.

Proof. Clearly every directed-complete poset is chain-complete, since chains are directed sets. Thus every
directed-complete poset is a CPO.

For the converse, suppose X is chain-complete. We will construct for every directed subset A a certain chain
C in X and show that its supremum is also the supremum of A. The construction is by transfinite induction
on cardinality.

Let A be a directed subset of X. Then every finite subset F of A has an upper bound bF ∈ A. Moreover,
by constructing bF inductively, we can ensure that b{x} = x and if F ⊆ F ′, then bF ⊑ bF ′ .

If A is finite, then its supremum is bA and we are done. Otherwise, let δ = |A | be the cardinality of A (the
least ordinal in one-to-one correspondence with A). Enumerate A as A = {xα | α < δ}. For each β < δ, let

Aβ = {bF | F is a finite subset of {xα | α < β}}.

Here are some things to observe about the Aβ :

(i) Aβ is directed: Every bF , bG ∈ Aβ have an upper bound bF∪G ∈ Aβ .

(ii) If A is infinite, then |Aβ | < |A |. This is because An is finite for finite n, and for infinite β < δ, the set
of all finite subsets of {xα | α < β} has the same cardinality as {xα | α < β}, which is the cardinality
of β, which is less than δ.

(iii) The Aβ form a chain with respect to set inclusion: if β ≤ γ, then Aβ ⊆ Aγ .

(iv) A =
⋃

β<δ Aβ , since every xα ∈ A is b{xα} ∈ Aα+1.

Thus the sets Aβ for β < δ form a chain of directed sets of smaller cardinality than A whose union is
A. By the induction hypothesis, each Aβ has a supremum

⊔
Aβ ∈ X (note: not necessarily in A!). Let

C = {
⊔
Aβ | β < δ}. Then C is a ⊑-chain by (iii) above: if β ≤ γ, then Aβ ⊆ Aγ , therefore

⊔
Aβ ⊑

⊔
Aγ .

Since X is chain-complete, C has a supremum
⊔

C. We claim that this is also the supremum of A. It is
an upper bound for A, since for every xα ∈ A, xα ⊑

⊔
Aα+1 ⊑

⊔
C. But any upper bound x for A is also

an upper bound for Aβ , β < δ, so
⊔
Aβ ⊑ x. As this is true for every β < δ, x is an upper bound for C,

therefore
⊔
C ⊑ x.
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Theorem C.3. Let D and E be CPOs. A monotone function f : D → E is continuous iff it preserves
suprema of directed sets.

Proof. Since f is monotone, the image of a chain is a chain and the image of a directed set is a directed set. If
f preserves suprema of directed sets, then it preserves suprema of chains, since every chain is a directed set.
For the converse, we can again proceed by transfinite induction on cardinality as in the proof of Theorem
C.2. Let A be directed and let Aβ and C be as in that proof. Then

⊔
A =

⊔
C, f(x) ⊑ f(

⊔
A) for x ∈ A,

and by the induction hypothesis, f(
⊔
Aβ) =

⊔
x∈Aβ

f(x), therefore

f(
⊔

A) = f(
⊔

C) =
⊔
y∈C

f(y) =
⊔
β<δ

f(
⊔

Aβ) =
⊔
β<δ

⊔
x∈Aβ

f(x) =
⊔
x∈A

f(x).

The proofs of Theorems C.2 and C.3 are taken from [2].

2 The Scott Topology

A topological space is a pair (X, τ), where X is a set and τ is a topology on X, a collection of subsets of X
containing X and ∅ and closed under finite intersections and arbitrary unions. The elements of τ are called
the open sets of the topology. A subset of X is said to be closed if its complement is open.

The usual notion of continuity for functions between topological spaces is that the inverse image of any open
set is open. That is, for functions f : (X, τ) → (Y, σ) and A ⊆ Y , let f−1(A) = {x ∈ X | f(x) ∈ A}. The
function f is said to be continuous if f−1(A) ∈ τ whenever A ∈ σ. Equivalently, f is continuous if the
inverse image of any closed set is closed.

There is a natural topology on any CPO (X,⊑), the Scott topology, induced by the ordering relation ⊑.

Definition C.4. Let (X,⊑) be a CPO. A subset C ⊆ X is closed in the Scott topology (Scott-closed) if

(i) C is closed downwards under ⊑; that is, if x ⊑ y and y ∈ C, then x ∈ C;

(ii) C is closed under suprema of directed sets; that is, if D is a directed set and D ⊆ C, then
⊔

D ∈ C.

Equivalently stated, A is open in the Scott topology (Scott-open) if

(i) A is closed upwards under ⊑; that is, if x ⊑ y and x ∈ A, then y ∈ A;

(ii) if D is a directed set and
⊔
D ∈ A, then D ∩A ̸= ∅.

Clause (ii) in this definition is unchanged if we replace “directed set” by “chain”. One can easily show that
finite intersections and arbitrary unions of open sets are open, thus the Scott-open sets form a topology.

The following theorem asserts that a function on CPOs is continuous as defined in Lecture 7 iff it is continuous
in the traditional topological sense with respect to the Scott topology.

Theorem C.5. Let D and E be CPOs. A monotone function f : D → E is continuous (in that it preserves
suprema of chains or directed sets) iff f−1(A) is Scott-open in D whenever A is Scott-open in E.

Once set up, this is not difficult to prove.

The Scott topology is weaker than other perhaps more familiar topologies such as those based on metrics
d : X2 → R+. Metric topologies are generated by basic open neighborhoods Nε(x) = {y ∈ X | d(x, y) < ε}
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and enjoy strong separation properties, e.g. they are Hausdorff : every pair of distinct points are contained
in disjoint open sets. Indeed, if ε = d(x, y)/2, then Nε(x)∩Nε(y) = ∅. The Scott topology is not Hausdorff,
but only T0, which just says that for every pair of distinct points x, y, the set of open sets containing x is
not the same as the set of open sets containing y. But note that if x ⊑ y, then every open set containing x
also contains y, so the topology cannot be Hausdorff.
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