
CS 6110 S23 Lecture 13 State

1 Introduction

Program state refers to the ability to change the values of program variables over time. The λ-calculus and the
FL language do not have state in the sense that once a variable is bound to a value, it is impossible to change
that value as long as the variable is in scope. Although state is not a necessary feature of a programming
language—for example, the λ-calculus is Turing complete but does not have a notion of state—it is a common
feature of most languages, and most programmers are accustomed to it.

2 Programming Paradigms

Two major programming paradigms are functional (stateless) and imperative (stateful). In a purely func-
tional language, expressions resemble mathematical formulas. This allows the programmer to reason equa-
tionally, avoiding many of the pitfalls associated with a constantly changing execution environment. For
example, in a functional language, it is always the case that

x = e ⇒ f(x) = f(e).

Concurrency is easier to implement with a functional language because of confluence (aka the Church–Rosser
property).

On the other hand, imperative programming more closely resembles the way we perceive the real world in
that there exists an underlying notion of state that can change over time. We have seen an example of state
and imperative programming with the language IMP.

3 References

References (aka pointers) provide another level of mutable state. References can be updated in a way that
cannot be handled by the simple substitution rules of their functional counterparts. They are somewhat more
complicated than ordinary variable bindings because they introduce the extra complication of aliasing—the
possibility of naming the same data value with different names.

For example, consider the following code:

let x = ref 1 in
let y = x in
x := 2; !y

The first x points to a newly allocated location holding the value 1. Then y is assigned x, the pointer to the
location holding 1. Then the value pointed to by x is updated to be 2. When y is dereferenced with !y, the
result is now 2. Here x and y are aliases for the same data value. When you kick x, y jumps!

Reference should not be confused with mutable variables. A variable is mutable if its binding can change.
The difference is subtle: variables are bound to values in an environment, and if the variable is mutable, it
can be rebound to a different value. With references, the variable itself is bound to a location. The location is
mutable (it can be rebound to a different value) but the variable itself is immutable. In IMP and imperative
languages such as C, variables are typically mutable, whereas in functional languages such as FL and OCaml,
they are typically not.

1

4 The FL! Language

4.1 Syntax

The syntax for FL! is as follows. There is a countable set Loc of memory locations, denoted generically by
ℓ, that can hold data values. All FL expressions are FL! expressions. In addition, there are a few more:

e ::= . . . | ref e | !e | e1 := e2 | e1 ; e2 | ℓ

4.2 The Store

We define a store as a partial function σ : Loc ⇀ Val with finite domain. A store is very much like an
environment, except that now variables are bound to locations, not to the data values themselves, and the
locations are bound to data values. As with environments, we have a rebinding operator on stores:

domσ[v/ℓ] = domσ ∪ {ℓ} σ[v/ℓ](ℓ′) =

v if ℓ = ℓ′,
σ(ℓ′) if ℓ ̸= ℓ′ and ℓ′ ∈ domσ,
undefined if ℓ ̸= ℓ′ and ℓ′ ̸∈ domσ.

Thus σ[v/ℓ] refers to σ with the location ℓ rebound to the value v if ℓ ∈ domσ, otherwise it refers to σ with
the new location ℓ bound to v and added to domσ.

4.3 Small-Step Semantics

A program in FL! is a configuration ⟨e, σ⟩, where e is an FL! expression and σ is a store. The small-step
SOS is given by augmenting FL with the following additional evaluation contexts and reduction rules:

E ::= . . . | ref E | !E | E := e | v := E | E ; e

The hole [·] is already included in the The evaluation contexts generated by the above grammar are
all the contexts E[·] in which a reduction may be applied. The contexts specify a family of rules collectively
called the context rule

⟨e, σ⟩ → ⟨e′, σ′⟩
⟨E [e], σ⟩ → ⟨E [e′], σ′⟩

.

The reduction rules are

⟨ref v, σ⟩ → ⟨ℓ, σ[v/ℓ]⟩, ℓ /∈ domσ ⟨!ℓ, σ⟩ → ⟨σ(ℓ), σ⟩, ℓ ∈ domσ

⟨ℓ := v, σ⟩ → ⟨null, σ[v/ℓ]⟩, ℓ ∈ domσ ⟨v ; e, σ⟩ → ⟨e, σ⟩.

It can be shown by induction that it is impossible to create dangling pointers in FL!.

5 Translating FL! to FL

We can give an adequate translation of FL! to FL. Using the same mechanisms available in FL that we used
in Lecture 11 to implement environments, we can implement stores and the following operations on them:

lookup σ ⌜ℓ⌝ = σ(ℓ)

update σ v ⌜ℓ⌝ = σ[v/ℓ]

malloc σ v = (⌜ℓ⌝, σ[v/ℓ]) where ℓ is a new location not already in domσ

empty = the completely undefined store with domain ∅.

2

Here ⌜ℓ⌝ denotes the representation in FL of a location ℓ. At the risk of confusion, as we did with environments,
we will denote by σ both the store σ in FL! and its representation in FL.

The following translation maps an FL! expression e to an FL expression JeK. The expression JeK represents
a function that takes an environment ρ and store σ and produces an FL pair (v, σ′), where v is an FL value
and σ′ is a store. The expression let (v, σ′) = JeKρσ in . . . is syntactic sugar for

let x = JeKρσ in let v = #1x in let σ′ = #2 x in

Here is the translation:

JnKρσ ≜ (n, σ)

JxKρσ ≜ (lookup ρ ⌜x⌝, σ)

Jif e0 then e1 else e2Kρσ ≜ let (b, σ′) = Je0Kρσ in
if b then Je1Kρσ′ else Je2Kρσ′

Jref eKρσ ≜ let (v, σ′) = JeKρσ in malloc σ′ v

J!eKρσ ≜ let (⌜ℓ⌝, σ′) = JeKρσ in (lookup σ′ ⌜ℓ⌝, σ′)

Je1 := e2Kρσ ≜ let (⌜ℓ⌝, σ1) = Je1Kρσ in
let (v, σ2) = Je2Kρσ1 in
(null, update σ2 v ⌜ℓ⌝)

Je1 ; e2Kρσ ≜ let (x, σ1) = Je1Kρσ in Je2Kρσ1

Jλx. eKρlexσlex ≜ (λvτ . JeK(update ρlex v ⌜x⌝)τ, σlex)

Je1e2Kρdynσdyn ≜ let (f, σ1) = Je1Kρdynσdyn in
let (v, σ2) = Je2Kρdynσ1 in
f v σ2

Note that the translation of abstractions λx. e take an extra argument for the store in effect at the site of
the call. Thus stores are dynamically scoped.

The let construct let x = e1 in e2 can be considered syntactic sugar for (λx. e2) e1, or it can be taken as
primitive as in FL. If the latter, we might define

Jlet x = e1 in e2Kρσ ≜ let (v, σ′) = Je1Kρσ in
Je2K(update ρ v ⌜x⌝)σ′.

Here is an example of a translation:

Jlet x = ref 2 in !xKρσ = let (v, σ1) = Jref 2Kρσ in J!xK(update ρ v ⌜x⌝)σ1

= let (v, σ1) = let (v′, σ2) = J2Kρσ in malloc σ2 v′ in
let (⌜ℓ⌝, σ3) = JxK(update ρ v ⌜x⌝)σ1 in (lookup σ3 ⌜ℓ⌝, σ3)

= let (v, σ1) = let (v′, σ2) = (2, σ) in malloc σ2 v′ in
let (⌜ℓ⌝, σ3) = (lookup (update ρ v ⌜x⌝) ⌜x⌝, σ1) in (lookup σ3 ⌜ℓ⌝, σ3)

3

This is a pure FL expression. Evaluating, we get

let (v, σ1) = let (v′, σ2) = (2, σ) in malloc σ2 v′ in
let (⌜ℓ⌝, σ3) = (lookup (update ρ v ⌜x⌝) ⌜x⌝, σ1) in (lookup σ3 ⌜ℓ⌝, σ3)

→ let (v, σ1) = malloc σ 2 in
let (⌜ℓ⌝, σ3) = (lookup (update ρ v ⌜x⌝) ⌜x⌝, σ1) in (lookup σ3 ⌜ℓ⌝, σ3)

→ let (v, σ1) = (⌜ℓ′⌝, σ[2/ℓ′]) in
let (⌜ℓ⌝, σ3) = (lookup (update ρ v ⌜x⌝) ⌜x⌝, σ1) in (lookup σ3 ⌜ℓ⌝, σ3)

→ let (⌜ℓ⌝, σ3) = (lookup (update ρ ℓ′ ⌜x⌝) ⌜x⌝, σ[2/ℓ′]) in (lookup σ3 ⌜ℓ⌝, σ3)

→ let (⌜ℓ⌝, σ3) = (⌜ℓ′⌝, σ[2/ℓ′]) in (lookup σ3 ⌜ℓ⌝, σ3)

→ (lookup σ[2/ℓ′] ⌜ℓ′⌝, σ[2/ℓ′])

→ (2, σ[2/ℓ′]).

4

	Introduction
	Programming Paradigms
	References
	The FL! Language
	Syntax
	The Store
	Small-Step Semantics

	Translating FL! to FL

