
CS 6110 S18 Lecture 13 State

1 Introduction

Program state refers to the ability to change the values of program variables over time. The λ-calculus and the
FL language do not have state in the sense that once a variable is bound to a value, it is impossible to change
that value as long as the variable is in scope. Although state is not a necessary feature of a programming
language—for example, the λ-calculus is Turing complete but does not have a notion of state—it is a common
feature of most languages, and most programmers are accustomed to it.

2 Programming Paradigms

Two major programming paradigms are functional (stateless) and imperative (stateful). In a purely func-
tional language, expressions resemble mathematical formulas. This allows the programmer to reason equa-
tionally, avoiding many of the pitfalls associated with a constantly changing execution environment. For
example, in a functional language, it is always the case that

x = e ⇒ f(x) = f(e).

Concurrency is easier to implement with a functional language because of confluence (aka the Church–Rosser
property).

On the other hand, imperative programming more closely resembles the way we perceive the real world in
that there exists an underlying notion of state that can change over time. We have seen an example of state
and imperative programming with the language IMP.

3 References

References (aka pointers) provide another level of mutable state. References can be updated in a way that
cannot be handled by the simple substitution rules of their functional counterparts. They are somewhat more
complicated than ordinary variable bindings because they introduce the extra complication of aliasing—the
possibility of naming the same data value with different names.

For example, consider the following code:

let x = ref 1 in

let y = x in

x := 2; !y

The first x points to a newly allocated location holding the value 1. Then y is assigned x, the pointer to the
location holding 1. Then the value pointed to by x is updated to be 2. When y is dereferenced with !y, the
result is now 2. Here x and y are aliases for the same data value. When you kick x, y jumps!

Reference should not be confused with mutable variables. A variable is mutable if its binding can change.
The difference is subtle: variables are bound to values in an environment, and if the variable is mutable, it
can be rebound to a different value. With references, the variable itself is bound to a location. The location is
mutable (it can be rebound to a different value) but the variable itself is immutable. In IMP and imperative
languages such as C, variables are typically mutable, whereas in functional languages such as FL and OCaml,
they are typically not.

1



4 The FL! Language

4.1 Syntax

The syntax for FL! is as follows. There is a countable set Loc of memory locations, denoted generically by
ℓ, that can hold data values. All FL expressions are FL! expressions. In addition, there are a few more:

e ::= . . . | ref e | !e | e1 := e2 | e1 ; e2 | ℓ

4.2 The Store

We define a store as a partial function σ : Loc ⇀ Val with finite domain. A store is very much like
an environment, except that variables are bound to locations, not to the data values themselves, and the
locations are bound to data values.

As in the last lecture, we write σ[v/ℓ] refers to the store σ with the location ℓ changed to contain the value
v, if ℓ ∈ domσ, otherwise it refers to σ with the new location ℓ containing value v added to domσ.

4.3 Small-Step Semantics

A program in FL! is a configuration ⟨e, σ⟩, where e is an FL! expression and σ is a store. The small-step
SOS is given by augmenting FL with the following additional evaluation contexts and reduction rules:

E ::= . . . | ref E | !E | E := e | v := E | E ; e

The hole [ · ] is already included in the . . . . The evaluation contexts generated by the above grammar are
all the contexts E[ · ] in which a reduction may be applied. The contexts specify a family of rules collectively
called the context rule

⟨e, σ⟩ → ⟨e′, σ′⟩
⟨E [e ], σ⟩ → ⟨E [e′ ], σ′⟩

The reduction rules are

⟨ref v, σ⟩ → ⟨ℓ, σ[v/ℓ]⟩, ℓ /∈ domσ ⟨!ℓ, σ⟩ → ⟨σ(ℓ), σ⟩, ℓ ∈ domσ

⟨ℓ := v, σ⟩ → ⟨null, σ[v/ℓ]⟩, ℓ ∈ domσ ⟨v; e, σ⟩ → ⟨e, σ⟩.

It can be shown by induction that it is impossible to create dangling pointers in FL!.

5 Translating FL! to FL

To translate FL! to FL, we need a way to encode stores that supports a number of operations including
finding fresh locations. One way to do this is to encode locations as integers and stores σ as pairs whose
first component represents the next free location and whose second component is a function from integers
to values:

lookup σ ℓ = (#2σ)(ℓ)

update σ ℓ v = (#2σ)[v/ℓ]

malloc σ v = let ℓ = #1σ in (ℓ, (#1σ + 1, (#2σ)[v/ℓ]))

empty = (0, λx. error)
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Using this encoding, we can define the following translation, which maps an FL! expression e to a functionJeK taking an environment ρ and store σ and producing an FL pair (e′, σ′), where e′ is an FL expression and
σ′ is a store.

Here let (b, σ′) = Je0 Kρσ in . . . is syntactic sugar for

let x = Je0 Kρσ in let b = #1 x in let σ′ = #2 x in . . . .

JnKρσ = (n, σ)JxKρσ = (lookup ρ “x”, σ)Jif e0 then e1 else e2 Kρσ = let (b, σ′) = Je0 Kρσ in

if b then Je1 Kρσ′ else Je2 Kρσ′

Jref eKρσ = let (v, σ′) = JeKρσ in mallocσ′ vJ!eKρσ = let (ℓ, σ′) = JeKρσ in (lookupσ′ ℓ, σ′)Je1 := e2 Kρσ = let (ℓ, σ1) = Je1 Kρσ in

let (v, σ2) = Je2 Kρσ1 in

(null, update σ2 ℓ v)Je1 ; e2 Kρσ = let (x, σ1) = Je1 Kρσ in Je2 Kρσ1Jλx. eKρlexσlex = (λvσdyn . JeK(update ρlex v “x”)σdyn, σlex)Je1 e2 Kρdynσdyn = let (f, σ1) = Je1 Kρdynσdyn in

let (v, σ2) = Je2 Kρdynσ1 in

f v σ2

Note that the translation is not actually sound—e.g., consider dereferencing a location that is not in the
domain of the store. We can repair this flaw by simply preventing locations from appearing in source
programs and modifying the statement of the soundness lemmas in corresponding ways.
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