
CS 6110 S18 Lecture 4 Reduction Strategies and Equivalence

1 Reduction Strategies

In general there may be many possible β-reductions that can be performed on a given λ-term. How do we
choose which one to perform next? Does it matter?

A specification that tells which of the possible β-reductions to perform next is called a reduction strategy.
The λ-calculus does not specify a reduction strategy; it is nondeterministic. A reduction strategy is needed
in real programming languages to resolve the nondeterminism.

Two common reduction strategies for the λ-calculus are normal order and applicative order. Under the
normal order reduction strategy, the leftmost-outermost redex is always the next to be reduced. By leftmost-
outermost, we mean that if e1 and e2 are redexes in a term and e1 is a subterm of e2, then e1 will not be
reduced next; and among those redexes that are not subterms of other redexes, which are all pairwise
incomparable with respect to the subterm relation, the leftmost one is chosen for reduction. It is known that
if a term has a normal form at all, then normal order reduction will converge to it.

The applicative order reduction strategy is similar, except that the leftmost-innermost redex is chosen. That
is, if e1 and e2 are redexes in a term and e1 is a subterm of e2, then e2 will not be reduced next; and
among those redexes that do not contain other redexes as subterms, which are all pairwise incomparable
with respect to the subterm relation, the leftmost one is chosen for reduction.

In real functional programming languages, reductions inside the body of a λ-abstraction are usually not
performed (although optimizing compilers may do so in some instances). If we restrict the normal order
and applicative order strategies so as not to perform reductions inside the body of λ-abstractions, we obtain
strategies known as call-by-name (CBN) and call-by-value (CBV), respectively.

Most functional programming languages use CBV, with the notable exception of Haskell. Let us define
a value to be a λ-term for which no β-reductions are possible, given our chosen reduction strategy. For
example, λx. x would always be a value, whereas (λx. x) 1 would most likely not be.

Under CBV, functions may only be called on values; that is, the arguments must be fully evaluated. Thus
the β-reduction step (λx. e1) e2 → e1{e2/x} only applies if e2 is a value. Here is an example of a CBV
evaluation sequence, where we consider 3 and succ (the successor function) to be primitive constants.

(λx. succx) ((λy. succ y) 3) → (λx. succx) (succ 3) → (λx. succx) 4 → succ 4 → 5.

An alternative strategy is CBN. Under CBN, we defer evaluation of arguments until as late as possible,
applying reductions from left to right within the expression. Here is the same term evaluated under CBN.

(λx. succx) ((λy. succ y) 3) → succ ((λy. succ y) 3) → succ (succ 3) → succ 4 → 5.

This is the preferred strategy of the language Haskell. Another way to view this is as a form of lazy evaluation;
the arguments to a function are not evaluated until they are actually needed.

2 Structured Operational Semantics (SOS)

Let’s formalize CBV for the pure λ-calculus. First, we restrict our attention to closed λ-terms. Then the
values of the language are simply the closed λ-abstractions:

v ::= λx. e

1

The use of this BNF definition specifies that the metavariable v stands for a value; in this case, any λ-
abstraction.

Next, we can write inference rules to specify when reductions are allowed:

(λx. e) v → e{v/x}
e1 → e′1

e1 e2 → e′1 e2

e → e′

v e → v e′
(1)

This is a simple operational semantics for a programming language based on the λ-calculus. An operational
semantics is a language semantics that describes how to run the program. This can be done through informal
human-language text, as in the Java Language Specification [1], or through more formal rules, as we have
done here.

The leftmost rule of (1) is just β-reduction. But by the use of the metavariable v for the argument of the
function, we have indicated that the rule may only be applied when the argument is a value. The second
rule says that e1 e2 reduces to e′1 e2 in one step provided e1 reduces to e′1 in one step. The rightmost rule
says that v e reduces to v e′ in one step provided e reduces to e′ in one step and v is already reduced.

Rules of the form (1) are known as a Structural Operational Semantics (SOS). They define evaluation as the
result of applying the rules to transform the expression. The rules are typically inductive on the structure
of the expression being evaluated.

As defined above, CBV evaluation is deterministic: there is at most one evaluation rule that applies in any
situation (we will prove this later).

This kind of operational semantics is known as a small-step semantics because it describes only one step
at a time. An alternative is a big-step (or large-step) semantics that describes the entire evaluation of the
program to a final value.

We will see other kinds of semantics later in the course, such as axiomatic semantics, which describes the
behavior of a program in terms of the observable properties of the input and output states, and denotational
semantics, which translates a program into an underlying mathematical representation.

CBN has slightly simpler rules:

(λx. e1) e2 → e1{e2/x}
e0 → e′0

e0 e1 → e′0 e1

We don’t need the rule for evaluating the right-hand side of an application because β-reductions are performed
immediately once the left-hand side is a value.

What happens if we try using Ω as a parameter? It depends on the evaluation strategy. Consider

(λx. λy. y)Ω

Using the CBV evaluation strategy, we must first reduce Ω. This puts the evaluator into an infinite loop.
On the other hand, CBN reduces the term above to λy. y. CBN has an important property: CBN will not
loop infinitely unless every other semantics would also loop infinitely, yet it agrees with CBV whenever CBV
terminates successfully.

2.1 Other Reduction Strategies

As mentioned above, in normal order, the leftmost-outermost redex is reduced first. This is closely related to
CBN evaluation, but also allows reductions in the body of a λ-term. Like CBN, it finds a value if one exists,
albeit not necessarily in the most efficient way. Call-by-value (CBV) is correspondingly related to applicative
order, where the argument to a function must be reduced to a value before the function is applied.

2

In the programming language C, the order of evaluation of arguments is not defined by the language; it
is implementation-specific. Because of this and the fact that C has side effects, C is not confluent. For
example, the value of the expression (x = 1) + x is 2 if the left operand of + is evaluated first, x+ 1 if the
right operand is evaluated first. This makes writing correct C programs more challenging!

The absence of confluence in concurrent imperative languages is one reason that concurrent programming
is difficult. In the λ-calculus, confluence guarantees that reductions can be done in parallel without fear of
changing the result.

3 Term Equivalence

When should two terms be considered equal? This question is not as simple as it may seem. The strictest
definition of equality is syntactic identity, but this is not very interesting or useful. For example, it seems
clear that λx. x and λy. y should be considered equal, as the parameter name is inconsequential. So we
might declare two terms equal if they are syntactically identical modulo α-renaming. This is a reasonable
definition if we wish to regard λ-terms as intensional objects.

As extensional objects, however, it does not go far enough. We would like to consider two terms equal if they
represent the same function. The terms λx. x and λy. y certainly represent the same function (the identity),
but there are others; for example, λx. (λy. y)x. So terms do not have to be α-equivalent to represent the same
function. However, note that λx. (λy. y)x reduces to λx. x in one β-reduction step applied inside the body of
the outer λ-expression. So we might declare two terms equal if either (i) they have a common normal form up
to α-equivalence, or (ii) neither has a normal form; that is, either they both converge to α-equivalent values
under some sequence of reductions, or neither converges under any sequence of reductions. By confluence,
this is an equivalence relation. This normalization approach is useful for compiler optimization and for
checking type equality in some advanced type systems. Unfortunately, it would not work for reduction
strategies like CBN and CBV, which do not allow reductions inside the bodies of λ-abstractions.

It would be nice if we could just say that two terms are equivalent if they give equivalent results on equivalent
inputs. Unfortunately, this is a circular statement, so it doesn’t define anything! It is not even clear that
there is a “right” definition.

Another complication is undecidability. It is likely that any reasonable notion of extensional equivalence
will be undecidable due to the relationship between the λ-calculus and Turing machines. If we could test
equivalence, then we could test equivalence with Ω, which is tantamount to solving the halting problem.

3.1 Contexts and Observational Equivalence

Another approach to the problem of defining equivalence is to say that two terms are equivalent if they
behave indistinguishably in any possible context. But what do we mean by “behave indistinguishably”?

For simplicity, let us assume that we are working with an evaluation strategy such as CBV or CBN that is
deterministic, which means that there is at most one next β-reduction that can be performed. We say that
a term e terminates or converges if there is a finite sequence of reductions

e → e′ → e′′ → · · · → v

leading to a value v. We write e ⇓ v when this happens, and we write e ⇓ when e ⇓ v for some v. The
other possibility is that it keeps on reducing forever without ever arriving at a value. When this happens,
we say that e diverges and write e ⇑. Because we have assumed that we are using a deterministic evaluation
strategy, exactly one of these two cases will occur.

3

With CBN or CBV, there are infinitely many divergent terms. One example is Ω, which was defined in the
last lecture. We might consider all divergent terms equivalent, since none of them produce a value.

While we may not have a precise definition of extensional equivalence yet, we can postulate a desirable
property: two equivalent terms, when placed in the same context, should either both diverge or both converge
and give indistinguishable values. Here a context is any term C[·] with a single occurrence of a distinguished
special variable, called the hole, and C[e] denotes the context C[·] with the hole replaced by the term e.
This notion of equivalence is called observational equivalence.

More formally, suppose we already have a notion of equivalence ≡ on values. Then we will say that two
terms are observationally equivalent (with respect to ≡) and write e1 ≡obs e2 if for all contexts C[·],

• C[e1] ⇓ iff C[e2] ⇓; and

• if C[e1] ⇓ v1 and C[e2] ⇓ v2, then v1 ≡ v2.

In other words, either both C[e1] and C[e2] diverge, or both converge and produce equivalent values.

Note that on values themselves, equivalence is not necessarily the same as observational equivalence. Cer-
tainly two values that are observationally equivalent are equivalent in the sense of ≡, because we could put
them in the trivial context consisting of just the hole. However, the converse is not true: we could easily have
values that are equivalent in the sense of ≡ but not observationally equivalent. Is it possible to have ≡obs

and ≡ coincide on values? In other words, does there exist a fixed point of the transformation ≡ 7→ ≡obs? If
so, is it unique? Even if not, is there a reasonable choice for the definition of extensional equivalence?

The answers to these questions lie in the following facts, none of which are difficult to prove. We leave them
as exercises.

Lemma 1. Let ≡ be an arbitrary equivalence relation on values.

(i) The relation ≡obs is an equivalence relation on terms.

(ii) Restricted to values, ≡obs refines ≡; that is, viewed as sets of ordered pairs, ≡obs restricted to values
is a subset of ≡. Thus for any values v1 and v2, if v1 ≡obs v2, then v1 ≡ v2.

(iii) If e1 ≡obs e2, then for all contexts C[·], C[e1] ⇓ iff C[e2] ⇓.

(iv) The transformation ≡ 7→ ≡obs is monotone with respect to the refinement relation. That is, if ≡1

refines ≡2, then ≡1
obs refines ≡2

obs.

Now we can see that there are several fixed points of the transformation ≡ 7→ ≡obs; the identity relation and
the relation of α-equivalence, for two. This follows from Lemma 1(i) and (ii). For CBV and CBN, there is
also a coarsest one that is refined by every other fixed point: define

e1 ≡⇓ e2
△⇐⇒ for all contexts C[·], C[e1] ⇓ iff C[e2] ⇓ .

Theorem 2. For CBV and CBN, the relation ≡⇓ is a fixed point of the transformation ≡ 7→ ≡obs; that is,
≡⇓ = (≡⇓)obs. Moreover, it is the coarsest such fixed point.

The relation ≡⇓ may be a reasonable candidate for extensional equivalence. By definition, to check that e1
and e2 are observationally equivalent, it is enough to check that e1 and e2 both converge or both diverge in
any context; it is unnecessary to compare the resulting values in the case of convergence. This is because if
the values are not equivalent, one can devise a context in which one converges and the other diverges.

4

References

[1] James Gosling, Bill Joy, Jr. Guy L. Steele, and Gilad Bracha. The Java Language Specification. Prentice
Hall, 3rd edition, 2005.

5

