
CS611 Lecture 22 Denotational Semantics of REC 19 October, 2005
Scribe: Bryant Adams and Olga Belomestnykh Lecturer: Andrew Myers

1 Continuous functions form a CPO

1.1 Motivation

In a pointed CPO, we have a way to get our hands on least upper bounds. In our metalanguage, everything
we work with is either a CPO or a continuous function. For the things that are already CPOs, taking fixed
points is straightforward. What about for our operations, however? It would be nice to know that continuous
functions themselves form a CPO. And, indeed, they do.

Essentially, we want to show that
⊔

n fn is continuous (i.e. given chains fn, dm that (
⊔

n fn)(
⊔

m dm) =⊔
m((

⊔
n fn)dm).)

1.2 Attempt

It would be nice to try to argue as follows:

Start with(
⊔
n

fn)(
⊔
m

dm)

Since LUB is defined pointwise = (
⊔
n

(fn

⊔
m

dm))

By continuity of fn = (
⊔
n

(
⊔
m

fn(dm)))

By wishful thinking = (
⊔
m

(
⊔
n

fn(dm)))

Since LUB is defined pointwise =
⊔
m

((
⊔
n

fn)dm)

(1)

Alas, wishful thinking proves little. If we could just see that joins (
⊔

) commute, though... or, at least,
that they commute when dealing with monotonic functions fn (which our continuous functions are)... then
we’d be in good shape.

1.3 Proof

Theorem 1.1. Given a chain of monotonic functions fn and a chain of arguments dm, it is the case that⊔
n

⊔
m fn(dm) =

⊔
m

⊔
n fn(dm).

Proof. We will introduce a lemma which does all the real work of the theorem:

Lemma 1.2. Given a bi-indexed infinite chain enm such that enm v en′m′ iff (n ≤ n′ and m ≤ m′), it is
the case that

⊔
n

⊔
m enm =

⊔
k ekk =

⊔
m

⊔
n enm

The picture we are working within is an infinite ’square’ (if we were in a finite case, we could have a
rectangle, but if we were in a finite case, the least upper bounds would just be the maxima and there’d be
nothing to worry about.)

1



⊔
n

⊔
m enm

⊔
k ekk

⊔
m

⊔
n enm

⊔
m em2

88

⊔
n e2n

ff

⊔
m em1

88qqqqqqqqqq
e22

ff 88

KS

⊔
n e1n

ffLLLLLLLLLL

⊔
m em0

99sssssssss
e12

ff 88rrrrrrrrrrrr
e21

ffLLLLLLLLLLLL

88

⊔
n e0n

ddIIIIIIIII

e02

ee 77pppppppppppp
e11

ffMMMMMMMMMMMM

88qqqqqqqqqqqq

KS

e20

ffNNNNNNNNNNNN

99

e01

ggOOOOOOOOOOOO

77oooooooooooo
e10

ggOOOOOOOOOOOO

77oooooooooooo

e00

ggOOOOOOOOOOOO

77oooooooooooo

KS

Proof. Consider some k. Certainly, ekk v
⊔

n enk for each k, and so
⊔

m emm v
⊔

m

⊔
n enm.

Now, note that for all n and m, there exists k such that k ≥ m and k ≥ n (in particular, k = max(m,n))
and thus for each n, m there is k such that enm v ekk, so we also have

⊔
n enm v

⊔
k ekk.

¿From this, we see that
⊔

m

⊔
n enm v

⊔
m emm, and thus conclude that

⊔
m emm =

⊔
m

⊔
n enm

The case with reversed indices is identical, so the lemma is proved.

To complete the proof of the theorem, we let enm = fn(dm), and note that for n ≥ n′,m ≥ m′ we have
enm ≥ en′m′ by dm and fn being chains, and the fn being monotonic, so we may apply the lemma.

2 Denotational Semantics for REC

1. REC Language

p ::= let d in e

d ::= f1(x1, . . . , xa1) = e1

...
fn(x1, . . . , xan

) = en

e ::= n | x | e1 ⊕ e2 | let x = e1 in e2 | ifp e0 then e1 else e2 | fi(e1, . . . , eai
)

It is reasonable to expect that under most semantics let f1(x1) = f1(x1) in f1(0) is likely to infinite
loop, but let f1(x1) = f1(x1) in 0 to return 0.

Example:

let

f1(n, m) = (n−m ∗m) ∧ ((n = m ∗ (n div m)) ∨ f1(n, m + 1))
f2(n) = f1(n, 2)
f3(n) = ifp f2(n) then n else f3(n + 1)

in

f3(1000)

2



In this REC program f3(n) finds the first prime number p such that p ≥ n.

2. CBV Denotational Semantics for REC

The meaning function is [[e]] ∈ FEnv → Env → Z⊥. First we must define two environments: one
for variables and one for functions.

ρ ∈ Env = V ar → Z
φ ∈ FEnv = (Za1 → Z⊥) × . . . × (Zan → Z⊥)

V ar is a countable set of variable names. Z is a set of possible bindings. Zn = Z× Z× . . .× Z︸ ︷︷ ︸
n times

.

[[n]]φρ = bnc
[[x]]φρ = bρ xc

[[e1 ⊕ e2]]φρ = let v1 ∈ Z = [[e1]]φρ in

let v2 ∈ Z = [[e2]]φρ in

bv1 ⊕ v2c
= ([[e1]]φρ)⊕⊥ ([[e2]]φρ)

[[e1 ∧ e2]]φρ = let v1 ∈ Z = [[e1]]φρ in

if v1 ≤ 0 then 0 else [[e2]]φρ

[[let x = e1 in e2]]φρ = let y ∈ Z = [[e1]]φρ in

[[e2]] φ ρ[x 7→ y]
[[ifp e0 then e1 else e2]]φρ = let v0 ∈ Z = [[e0]]φρ in

if v0 > 0 then[[e1]]φρ else [[e2]]φρ

[[fi(e1, . . . , eai)]]φρ = let v1 ∈ Z = [[e1]]φρ in
...
let vai ∈ Z = [[eai ]]φρ in

(πi φ)〈v1, . . . , vai〉

• Where does φ come from?

φ = 〈F1, . . . , Fn〉
= fix λφ ∈ FEnv .〈λy1 ∈ Z, . . . , ya1 ∈ Z.[[e1]] φ {x1 7→ y1, . . . , xa1 7→ ya1},

...
λy1 ∈ Z, . . . , yan ∈ Z.[[en]] φ {x1 7→ y1, . . . , xan 7→ yan}〉

• Is FEnv a pointed CPO?
FEnv is a product. A product is a pointed CPO when each (Zai → Z⊥) is a pointed CPO.

A function is a pointed CPO when the codomain of that function is a pointed CPO and Z⊥ is a
pointed CPO. Therefore, FEnv is a pointed CPO.

• Is the function that we’re applying fix to continuous?
It is written using metalanguages, thus it is indeed continuous.

3. CBN Denotational Semantics
The denotational semantics for CBN are the same as those for CBV with two exceptions:

[[let x = e1 in e2]]φρ = [[e2]] φ ρ[x 7→ ([[e1]] φ ρ)]
[[fi(e1, . . . , eai)]]φρ = (πi φ)〈 ([[e1]] φ ρ), . . . , [[eai ]] φ ρ) 〉

3


