CS611 Lecture 14 Mutable variables 28 September, 2005
Scribe: Michael O'Connor, Mia Minnes Lecturer: Andrew Myers

1 References in C

Last time we considered references and their semantics via translation and SOS. Let’s take a closer look at
what happens in a language like C.

1.1 Syntax

e u= --UML--- | eg=ea | xe | &e | er;es

where we think of the constructs respectively as:
e ¢ = ey is assignment where e; is an assignable variable name, for instance, an array reference.
e ke is used to dereference a pointer e (acts sort of like ! in UMLy).

e &e gives a pointer to the location of e.

1.2 Semantics via Translation

The target language is uML. The translation we define will take into account the fact that C has two kinds
of values

e [-values : values which can appear in the LHS of assignment; and
e R-values: ordinary values (i.e., those that can appear in RHS of assignment).

To capture this in the target language, for each expression e of C, we define L]e]po (the left value of e) and
Re]po (the right value of e). As before, we need to keep track of the state of the computation so the results
of the translations are pairs. To summarize:

e L[e]po = (location of e, o”)
e Rle]po = (value of e, o).

The translation is defined inductively on the structure of C programs. Note that (unlike FORTRAN), some
left value translations are not defined. For instance L£[n]po is not defined. This prevents reassigning of an
integer 5 to have the value 3.

Rln]poc = (n,0)
Chlor = (5.0)
Rle]lpe = let(¢,0") = L[e]po in (LOOKUP o'¢,0") if L[e]p is defined

For assignment:

Rler = e2]poc = let(¢,0") = L]e1]poin
let(v,0”) = R[ez]po’ in (v, UPDATE o" (v)

Comments:

e Force left to right evaluation.

e Allowed to “assign down the chain.” For example, e; = e3 = e3 = ¢4 = 5 will assign 5 to each e; in
our translation, just as the piece of code el = €2 = e3 = e4 = 5; will in C.

e An assignment statement is not an lvalue in C. Hence (x = 1) = 3 is not allowed in our language, and
(x=1) =3;isnot in C.

Addressing:

L[xe]lpc = Re]po
Rl&e]poc = Le]po

So the two operations, *, &, are inverses of each other. The semantics defined above let us write, for example
*& * & % &x = 2. This will have the same effect as x = 2. Another example (written in C):

inty =0;
int x = &y;
* = 1;

This piece of code assigns 1 to y. Note that it would be illegal to include a line &y = 0x1002; because we
can’t change the address of a variable.

Functions (ignoring the fact that A is not actually part of C):
R[Az.elpc = (Ayoayn.let (¢,0') = MALLOC o4yn y in R[e](EXTEND p “z” £)o’,0)
Rler ea]poc = let(f,0') = R]ei]poin
let (v,0”) = R[ea]po’ in fvo”
Discussion:

e Choices we made: function applications don’t affect state, in function application use left to right
evaluation.

e In defining function application, the allocation is required because variables must be bound to locations,
whereas the argument of the function is a value (c is call by value).

e The value that a function returns is an rvalue rather than an lvalue. Why? Returning an lvalue whould
mean we could assign new values to locations allocated during computation, e.g. fibo 5 = 1;. We choose
a semantics where we get back the value of a computation rather than its location.

e Note that we do not need to explicitly define the store in the translation of function application because
fvo” returns a pair of the location and the store.

2 Pass (Call) by Reference

It is conceivable to define a language where arguments to functions are lvalues. In this case, the body of
functions can update the argument and therefore change the value stored in the location passed in. Examples
of such a language are PASCAL, MODULA, Ada, Matlab (sort of), FORTRAN.

Consider a simplified version:

e u= - | ANw.e | rcall e7 eg

Note that we are explicitly saying when we pass by reference since we do not have a type system which
would take care of distinguishing between the two cases.

Example program:

let z=1Iin
let f=XNy.y=y+1in

rcall fx

In this program y is an alias for z, so the value at the location of z is updated to 2.

To incorporate call by reference into the semantics, we just need to change the rules for functions.

Rl rz.€]lpoc = (Ayoayn.R[e](EXTEND p “z” y)odyn, o)
Rrcall 1 ex]po = let(f,0') = Rlei]poin
let (¢,0") = L[ea]po’ in flo"”

Since we are given a location, we don’t need to allocate new memory.

3 Objects
3.1 Definition

Objects combine naming and the notion of state. We can think of objects as naming environments. For
instance, we might have

class C{
int x;
int y;
int m(intz){---z---y---this---z};

}

where x,y are fields (which are mutable) and m is method (immutable). Each of the fields and methods
may be public or private, and the class itself might be mentioned using the keyword this. This is remi-
niscent of modules (recall: modules are non-hierarchical scope which introduces names that may or may not
be accessible outside the scope).

Let’s try to encode objects using module constructs:

e == ---UML--- | (fieldszy =e1,...,2, = e,; methods f1 = Ay1.€1,..., fon = Aym-€l,) | ex

where the first new clause defines the object and the second clause selects components of the object.

3.2 Translation

We will translate objects to a naming environment.

[(fields z =€, methods f = \y.e)]po =
_
let z = [e]po in
YA\ Az’
if 2’ = 1 then 2 else
if 2’ = x5 then 29 else. ..
if 2/ = f1 then Az{.[¢,](EXTEND (EXTEND p “y” 2) “this” /)...)

Note that we used the Y combinator to allow method bodies to talk about the object itself, i.e. the
naming environment defined by the object.

3.3 Problem

Objects as recursive records breaks when we try to implement inheritance, because the name “this” is bound
in the methods of the super-object to the wrong fixed point.

